
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 5: Basic Search Techniques for Graphs

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.



5. Basic Search Techniques for Graphs

5.1 Binary Tree Traversal

5.1.1 A review of terminology for the traversal of binary trees

• The three basic traversal strategies are preorder, inorder, and

postorder.

• The high-level control structures are described below.

procedure preorder(T : bin tree);

〈 if T 6= ∅
then 〈 visit(root(T )); visit(left child(T )); visit(right child(T )); 〉

〉
procedure inorder(T : bin tree);

〈 if T 6= ∅
then 〈 visit(left child(T )); root(T )); visit(right child(T )); 〉

〉
procedure postorder(T : bin tree);

〈 if T 6= ∅
then 〈 visit(left child(T )); visit(right child(T )); visit(root(T )); 〉

〉

• There are also three mirror-image traversals with left and right

reversed.

TDBC91 slides, page 5.1, 20081002



5.1.2 The complexity of tree traversal Assume that the following

conditions hold:

(a) The time required to reach a left or right child vertex, from its

parent, is Θ(1).

(b) The time required to reach a parent vertex, from a left or right

child vertex, is Θ(1).

(c) The time required for a visit operation is Θ( f ), for some com-

plexity function f .

Then:

• The time required for tree traversal in any of the above cases is

Θ(n · f ).

• In particular, if Θ( f ) = Θ(1), then the time required is Θ(n). 2

TDBC91 slides, page 5.2, 20081002



5.2 Searching Trees

5.2.1 Basic assumptions

• The following basic assumptions are made about the context of

searching trees.

• All trees are rooted.

• The number of children of a vertex is arbitrary, but finite.

• The children (and so subtrees) of each vertex are ordered and

numbered, from left to right.

5.2.2 Depth-first search of trees

• The basic recursive algorithm is as follows:

/∗ Recursive depth-first search ∗/
procedure RDFS(T : tree);

〈 if T = ∅
then failure

else 〈 visit(root(T ));

if item found

then success

else foreach subtree S of T do

RDFS(S);

〉
〉

TDBC91 slides, page 5.3, 20081002



• While depth-first search is a naturally recursive process, it is in-

structive to remove the recursion.

• Assume that the abstract data type (ADT) stack is available:

type ST = stack of T 0;

/∗ The operations are the following: ∗/
insert : T 0×ST → ST

delete : ST → T 0(×ST)

is empty : ST → boolean

new : 1→ ST

• A high-level description of depth-first search now becomes:

/∗ Non-recursive depth-first search ∗/
procedure DFS(T : tree)

S : stack of ptr to(vertex);

n : ptr to(vertex);

〈 new(S);

if T = ∅
then failure

else 〈 insert(ptr to(root(T )),S);

while (¬is empty(S)) do

〈 n ← delete(S);

visit(vertex of(n));

if item found

then success

else 〈 foreach d ∈ children(vertex of(n)) do

insert(ptr to(d),S);

〉
〉

〉

TDBC91 slides, page 5.4, 20081002



• The following is a sample tree on which to run the algorithm.

1

2

4 5 6

3

7 8

• Note that if the child vertices are pushed onto the stack from left

to right, then they are processed from right to left.

Example: (of order of visit) 〈1,3,8,7,2,6,5,4〉

• To process them from left to right, push them onto the stack from

right to left.

Example: (of order of visit) 〈1,2,4,5,6,3,7,8〉

TDBC91 slides, page 5.5, 20081002



5.2.3 Breadth-first search of trees

• The algorithm for breadth-first search is exactly the same as that

for (nonrecursive) depth-first search, save that S is taken to be a

queue instead of a stack.

• Note that there is no problem of order reversal; children of a ver-

tex are pushed onto the queue in left-to-right order.

5.2.4 Best-first search of trees

• In best-first search, it is assumed that there is some sort of eval-

uation function on the vertices which indicates which are most

promising.

• The vertices are maintained in a priority queue.

• The algorithm for breadth-first search is exactly the same as that

for (nonrecursive) depth-first search, save that S is taken to be a

priority queue instead of a stack.

TDBC91 slides, page 5.6, 20081002



5.3 Searching and Traversing Directed Graphs

5.3.1 Assumptions and conventions

• All graphs to be searched have a distinguished start vertex.

• All vertices are reachable from the start vertex.

• Each vertex has a mark field, which is used to tag each vertex

which is visited, so it is not processed repeatedly.

TDBC91 slides, page 5.7, 20081002



5.3.2 Depth-first traversal of general cyclic graphs

• The simplest and most general way to realize depth-first search is

to use recursion.

/∗ Assume that all vertices are initially unmarked. ∗/
/∗ graph of(v) the subgraph whose start vertex is v . ∗/
/∗ Incoming edges to v are ignored. ∗/
procedure DFGS(G : directed graph);

〈 visit(start vertex(G));

mark(start vertex(G));

foreach v ∈ adjacent(start vertex(G)) do

if (¬marked(v))

then DFGS(graph of(v));

〉

• Note that the order of search is dependent upon the order in which

the vertices are selected in the foreach statement.

• It is easy to convert this to a search.

• Just terminate when the desired element is found.

TDBC91 slides, page 5.8, 20081002



5.3.3 Stack-based depth-first traversal of general cyclic graphs

/∗ Assume that all vertices are initially unmarked. ∗/
procedure NRDFGS(G : directed graph);

S : stack of ptr to(vertex);

n : ptr to(vertex);

〈 new(S);

insert(ptr to(start vertex(G),S));

while (¬is empty(S)) do

〈 n← delete(S);

if (unmarked(vertex of(n))

then 〈 mark(vertex of(n));

visit(vertex of(n));

foreach m ∈ children(vertex of(n)) do

if unmarked(m)

then insert(ptr to(m),S);

〉
〉

• Note that vertices are marked as they are visited, and not as they

are pushed onto the stack.

• This approach is taken because a vertex may be reached in many

different ways, and so pushed onto the stack several times.

• It is possible to avoid pushing a vertex onto the stack more than

once.

• To do so, backpointers from the vertices to their entries in the

stack must be maintained.

TDBC91 slides, page 5.9, 20081002



• If a vertex is to be pushed onto the stack, a check to see whether

or not it is already on the stack is made first.

• If it is already on the stack, then that entry is removed or disabled,

and only the new, top one retained.

TDBC91 slides, page 5.10, 20081002



5.3.4 Breadth-first traversal of graphs

/∗ Assume that all vertices are initially unmarked ∗/
procedure BFGS(G : directed graph);

Q : queue of ptr to(vertex);

n : ptr to(vertex);

〈 new(Q);

insert(ptr to(start vertex(G),Q));

mark(start vertex(G));

while (¬is empty(Q)) do

〈 n← delete(Q);

visit(vertex of(n));

foreach m ∈ children(vertex of(n)) do

if (unmarked(vertex of(m)))

then 〈 insert(ptr to(m),Q);

mark(vertex of(m));

〉
〉

〉

• Note that vertices are marked as they are inserted into the queue.

• Thus, there is no need to move them within the queue, as there is

within the stack with depth-first search.

5.3.5 Best-first search of graphs

• The approach is exactly the same as for breadth-first search, save

that a priority queue is used.

TDBC91 slides, page 5.11, 20081002



5.4 Game Graphs

• In this subsection, game graphs are presented as an application of

searching.

• Attention is restricted to two-person games with perfect informa-

tion.

5.4.1 Grundy’s game — a simple example

• Begin with a stack of n coins.

• Each of two players moves, in turn.

• Amove consists of splitting some pile of coins into two unequally

sized piles, each nonempty.

• The player who cannot continue loses.

• The graph below illustrates the situation for an initial stack of

seven coins.

7

6,1 5,2 4,3

5,1,1 4,2,1 3,2,2 3,3,1

4,1,1,1 3,2,1,1 2,2,2,1

3,1,1,1,1 2,2,1,1,1

2,1,1,1,1,1

TDBC91 slides, page 5.12, 20081002



• Define the value of a leaf vertex to be:

• +∞ if it is an oval vertex (player 1 wins);

• −∞ if it is a rectangular vertex (player 2 wins);

• For interior vertices, define the values as follows:

oval vertices=

{

−∞ if the value of at least one of its successors is −∞

+∞ if the value of each of its successors is +∞.

rect vertices=

{

+∞ if the value of at least one of its successors is +∞

−∞ if the value of each of its successors is −∞.

• For the game graph of the previous slide, the values of the vertices

are as follows.

7
−∞

6,1
−∞

5,2
−∞

4,3
−∞

5,1,1
+∞

4,2,1
−∞

3,2,2
+∞

3,3,1
−∞

4,1,1,1
+∞

3,2,1,1
−∞

2,2,2,1
+∞

3,1,1,1,1
+∞

2,2,1,1,1
−∞

2,1,1,1,1,1
+∞

TDBC91 slides, page 5.13, 20081002



5.4.2 Theorem In a two-person game with perfect information, if

both players make optimal moves, player 1 will win iff the root is a

+∞ vertex. 2

5.4.3 Max-min graphs

(a) An max-min graph is a directed, acyclic graph G= (V,E,g) with

a distinguished start vertex s ∈V and two classes of non-leaf ver-

tices:

• max vertices;

• min vertices;

subject to the constraints:

• Every successor of a max vertex is a min vertex;

• Every successor of a min vertex is a max vertex.

(b) A value function for G is a function

p :V → Z∪{−∞,+∞}

subject to the following constraints:

(i) For a leaf vertex v, p(v) is arbitrary.

(ii) For a max vertex v,

p(v) = max({p(w) | w is a direct successor of v}

(iii) For a min vertex v,

p(v) = min({p(w) | w is a direct successor of v}

(c) The value of (G, p) is p(s).

TDBC91 slides, page 5.14, 20081002



5.4.4 The need for approximation

• A general top-down strategy for determining p(s) begins with s

and recursively evaluates each subgraph.

• For graphs arising from larger games, the cost becomes prohibitive.

• Examples sizes for the full game graph, using symmmetries:

tic-tac-toe: 105 vertices.

checkers: 1040 vertices.

chess: 10120 vertices.

• In the latter two cases, it is impossible to generate the entire game

tree.

• Approximation schemes are clearly necessary.

TDBC91 slides, page 5.15, 20081002



5.4.5 The evaluation-function strategy

• In the evaluation function strategy, the entire game tree is not

generated.

• Rather, it is only generated to a predetermined level.

• At the leaf level, an estimate of the quality of each vertex is made.

• Based upon these estimates, a heuristic procedure for obtaining

values at deeper levels is employed.

• As an example, consider the simple game of tic-tac-toe.

• This game may result in a draw, so there are three “final” values:

+∞ if X wins

−∞ if O wins

0 for a draw

• The max/min strategy may still be applied.

• A simple evaluation function for a board configuration b is the

following:

e(b) =















+∞ if X has won

−∞ if O has won

#b(X)−#b(O) otherwise

in which

#b(Z) = number of rows, columns, and diagonals open for Z

with Z ∈ {X ,O}.

TDBC91 slides, page 5.16, 20081002



• The following configuration b has #(X) = 6 and #(O) = 4, so

e(b) = 2.

O

X

O

X

O

X

• Note that e(b) = 0 for a draw configuration under this definition.

• On the next slide, the expansion of the first two levels of a game

is shown.

• Configurations which are equivalent under rotation or reflection

are not repeated.

• The following two configurations are equivalent under a rotation

of 90◦.

O

X

O

X

O

X X OX OX O

• The following two configurations are equivalent under a reflec-

tion.

X OX OX O O XO XO X

TDBC91 slides, page 5.17, 20081002



XXX

min =−1

X

O

X

O

X

O
e = 1

(6−5)

X

O

X

O

X

O

e = 0
(5−5)

X

O

X

O

X

O

e = 1
(6−5)

X

O

X

O

X

O

e = 0
(5−5)

X

O

X

O

X

O
e =−1
(4−5)

XXX

min =−2

O

X

O

X

O

X
e =−1
(5−6)

O

X

O

X

O

X
e = 0

(5−5)

O

X

O

X

O

X
e =−1
(5−6)

X OX OX O
e = 0

(6−6)

X OX OX O
e =−2
(4−6)

XXX

min = 1

O

X

O

X

O

X
e = 1

(5−4)

O XO XO X
e = 2
(6−4)

TDBC91 slides, page 5.18, 20081002



• Decision is via a so-called “min-max” procedure.

• Player X is a maximizer, since a higher e(−) score on a vertex

favors X.

• In particular, a score of +∞ means a victory for player X.

• Thus, a vertex for which X has the next move is a max vertex.

• Similarly, player O is a minimizer, and so a vertex for which O

has the next move is a min vertex.

• Formally, to expand upon the definitions of 5.4.3:

(a) A max vertex in a two-person game tree is a vertex in which

the player who is trying to maximize the score (i.e., who

wins with +∞) has the next move.

(a) A min vertex in a two-person game tree is a vertex in which

the player who is trying to minimize the score (i.e., who wins

with −∞) has the next move.

• In the graph, player X chooses the move b which yields the best

guaranteed value of e(b).

• Player X assumes that player O will make the best move.

• Thus, player X chooses the move which will be the least damag-

ing, in the case that player O makes an optimal move.

• Player X choose the vertex at level one whose whose minimum-

value child has the maximum value.

• Once player X makes a move, this process is repeated, with the

new configuration as root vertex.

TDBC91 slides, page 5.19, 20081002



5.4.6 The α-β pruning strategy

• It is not always necessary to generate the full tree to n levels in an

n-level evaluation strategy.

• Some subtrees may be eliminated via a pruning strategy.

• In the example of 5.4.5, with depth-first expansion, after evaluat-

ing the vertex

XXX

at the second level of the tree, and determining its min-value to

be −1, the vertex

XXX

is expanded.

• Note that its first descendant

X

O

X

O

X

O

evaluates to −1.

• Since
XXX

is a min vertex, its value cannot exceed −1.

• Thus, it cannot be a better choice for X than
XXX

, since X seeks to

maximize.

• Hence, evaluation of the subtree rooted at
XXX

need not continue.

TDBC91 slides, page 5.20, 20081002



• The value −1 generated at
XXX

is called an α-value for the root

vertex. Formally:

(a) An α-value for a max vertex is a known lower bound on the

ultimate value of that vertex.

(b) The simple α-pruning rule states that if the value of a min

vertex is found to be less than or equal to an α-value for its

parent vertex, then it is not necessary to determine its value

further.

• The dual concepts are as follows

(c) A β-value for a min vertex is a known upper bound on the

ultimate value of that vertex.

(d) The simple β-pruning rule states that if the value of a max

vertex is found to be greater than or equal to an β-value for

its parent vertex, then it is not necessary to determine its

value further.

• Finally, these two may be combined:

(c) The technique of α-β-pruning combines these two ideas.

TDBC91 slides, page 5.21, 20081002



5.4.7 The deep α-β pruning rule

• In deep α-β pruning, α and β values of all ancestors of a vertex,

rather than just those of its parent, are used to direct the pruning

process.

• The idea is sketched with a simple example.

Aα = 8

Bβ = 138

Cα = 513

Dβ = 75

T

shallow

deep

• Expansion of the subtree T is not stopped by α pruning, since

7 > 5.

• However, 7 is a maximum value for vertex C.

• Thus, in fact, 7 is a β value for vertex B.

• Hence, the α value of the root cannot change, and so the evalua-

tion may be halted.

TDBC91 slides, page 5.22, 20081002


