Slides for a Course
 on
 the Analysis and Design of Algorithms

Chapter 5: Basic Search Techniques for Graphs

Stephen J. Hegner
Department of Computing Science
Umeå University
Sweden
hegner@cs.umu.se
http://www.cs.umu.se/ ~hegner

(c)2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

5. Basic Search Techniques for Graphs

5.1 Binary Tree Traversal

5.1.1 A review of terminology for the traversal of binary trees

- The three basic traversal strategies are preorder, inorder, and postorder.
- The high-level control structures are described below.
procedure preorder (T : bin_tree $)$;
\langle if $T \neq \emptyset$
then $\langle\operatorname{visit}(\operatorname{root}(T)) ;$ visit $($ left_child $(T))$; visit $(\operatorname{right} c h i l d(T))$;
\rangle
procedure inorder (T : bin_tree $)$;
\langle if $T \neq \emptyset$
then $\langle\operatorname{visit}($ left_child $(T)) ;$ root $(T)) ;$ visit $($ right_child $(T)) ;\rangle$
\rangle
procedure postorder (T : bin_tree $)$;
\langle if $T \neq \emptyset$
then $\langle\operatorname{visit}($ left_child $(T)) ;$ visit $(\operatorname{right}$ _child $(T)) ;$ visit $(\operatorname{root}(T))$;
\rangle
- There are also three mirror-image traversals with left and right reversed.

5.1.2 The complexity of tree traversal Assume that the following

 conditions hold:(a) The time required to reach a left or right child vertex, from its parent, is $\Theta(1)$.
(b) The time required to reach a parent vertex, from a left or right child vertex, is $\Theta(1)$.
(c) The time required for a visit operation is $\Theta(f)$, for some complexity function f.

Then:

- The time required for tree traversal in any of the above cases is $\Theta(n \cdot f)$.
- In particular, if $\Theta(f)=\Theta(1)$, then the time required is $\Theta(n)$.

5.2 Searching Trees

5.2.1 Basic assumptions

- The following basic assumptions are made about the context of searching trees.
- All trees are rooted.
- The number of children of a vertex is arbitrary, but finite.
- The children (and so subtrees) of each vertex are ordered and numbered, from left to right.

5.2.2 Depth-first search of trees

- The basic recursive algorithm is as follows:
/* Recursive depth-first search */
procedure $\operatorname{RDFS}(T$: tree);
\langle if $T=\emptyset$
then failure
else $\langle\operatorname{visit}(\operatorname{root}(T))$;
if item found then success else foreach subtree S of T do RDFS(S);
\rangle
>

TDBC91 slides, page 5.3, 20081002

- While depth-first search is a naturally recursive process, it is instructive to remove the recursion.
- Assume that the abstract data type (ADT) stack is available:
type $S T=$ stack of T_{0};
/* The operations are the following: */
insert : $\quad T_{0} \times S T \rightarrow S T$
delete : $\quad S T \rightarrow T_{0}(\times S T)$
is_empty : ST \rightarrow boolean
new : $\quad \mathbf{1} \rightarrow$ ST
- A high-level description of depth-first search now becomes:
/* Non-recursive depth-first search */ procedure $D F S(T:$ tree $)$
S : stack_of ptr_to(vertex);
n : ptr_to(vertex);
〈 new (S);
if $T=\emptyset$
then failure else $\langle\operatorname{insert}($ ptr_to $(\operatorname{root}(T)), S)$; while (\neg is_empty (S)) do〈 $n \leftarrow \operatorname{delete}(S) ;$ visit(vertex_of(n));
if item found
then success else \langle foreach $d \in$ children(vertex_of $(n))$ do insert(ptr_to $(d), S)$;
- The following is a sample tree on which to run the algorithm.

- Note that if the child vertices are pushed onto the stack from left to right, then they are processed from right to left.

$$
\text { Example: (of order of visit) }\langle 1,3,8,7,2,6,5,4\rangle
$$

- To process them from left to right, push them onto the stack from right to left.

Example: (of order of visit) $\langle 1,2,4,5,6,3,7,8\rangle$

5.2.3 Breadth-first search of trees

- The algorithm for breadth-first search is exactly the same as that for (nonrecursive) depth-first search, save that S is taken to be a queue instead of a stack.
- Note that there is no problem of order reversal; children of a vertex are pushed onto the queue in left-to-right order.

5.2.4 Best-first search of trees

- In best-first search, it is assumed that there is some sort of evaluation function on the vertices which indicates which are most promising.
- The vertices are maintained in a priority queue.
- The algorithm for breadth-first search is exactly the same as that for (nonrecursive) depth-first search, save that S is taken to be a priority queue instead of a stack.

5.3 Searching and Traversing Directed Graphs

5.3.1 Assumptions and conventions

- All graphs to be searched have a distinguished start vertex.
- All vertices are reachable from the start vertex.
- Each vertex has a mark field, which is used to tag each vertex which is visited, so it is not processed repeatedly.

5.3.2 Depth-first traversal of general cyclic graphs

- The simplest and most general way to realize depth-first search is to use recursion.
/* Assume that all vertices are initially unmarked. */ /* graph_of (v) the subgraph whose start vertex is v. */
/* Incoming edges to v are ignored. */
procedure $\operatorname{DFGS}(G$: directed_graph $)$;
〈 visit(start_vertex (G));
mark (start_vertex $(G))$;
foreach $v \in$ adjacent (start_vertex $(G))$ do
if ($\neg \operatorname{marked}(v)$)
then DFGS (graph_of(v));
\rangle
- Note that the order of search is dependent upon the order in which the vertices are selected in the foreach statement.
- It is easy to convert this to a search.
- Just terminate when the desired element is found.

5.3.3 Stack-based depth-first traversal of general cyclic graphs

/* Assume that all vertices are initially unmarked. */
procedure $N R D F G S$ (G : directed_graph $)$;
S : stack of ptr_to(vertex);
n : ptr_to(vertex);
〈 new (S);
insert (ptr_to(start_vertex $(G), S)$);
while (\neg is_empty (S)) do
$\langle n \leftarrow \operatorname{delete}(S) ;$
if (unmarked(vertex_of (n))
then $\langle\operatorname{mark}($ vertex_of $(n))$;
visit(vertex_of (n));
foreach $m \in$ children(vertex_of (n)) do
if unmarked (m)
then insert $\left(p t r_{-} t o(m), S\right)$;
\rangle
\rangle

- Note that vertices are marked as they are visited, and not as they are pushed onto the stack.
- This approach is taken because a vertex may be reached in many different ways, and so pushed onto the stack several times.
- It is possible to avoid pushing a vertex onto the stack more than once.
- To do so, backpointers from the vertices to their entries in the stack must be maintained.
- If a vertex is to be pushed onto the stack, a check to see whether or not it is already on the stack is made first.
- If it is already on the stack, then that entry is removed or disabled, and only the new, top one retained.

5.3.4 Breadth-first traversal of graphs

/* Assume that all vertices are initially unmarked */ procedure $B F G S$ (G : directed_graph);
Q : queue of ptr_to(vertex);
n : ptr_to(vertex);
〈 new (Q);
insert (ptr_to(start_vertex $(G), Q)$);
mark (start_vertex $(G))$;
while (\neg is_empty $(Q))$ do
$\langle n \leftarrow \operatorname{delete}(Q) ;$
visit(vertex_of (n));
foreach $m \in$ children(vertex_of $(n))$ do
if $($ unmarked $($ vertex_of $(m)))$
then $\left\langle\operatorname{insert}\left(p t r _t o(m), Q\right)\right.$; mark(vertex_of(m));
\rangle
\rangle
>

- Note that vertices are marked as they are inserted into the queue.
- Thus, there is no need to move them within the queue, as there is within the stack with depth-first search.

5.3.5 Best-first search of graphs

- The approach is exactly the same as for breadth-first search, save that a priority queue is used.

TDBC91 slides, page 5.11, 20081002

5.4 Game Graphs

- In this subsection, game graphs are presented as an application of searching.
- Attention is restricted to two-person games with perfect information.

5.4.1 Grundy's game - a simple example

- Begin with a stack of n coins.
- Each of two players moves, in turn.
- A move consists of splitting some pile of coins into two unequally sized piles, each nonempty.
- The player who cannot continue loses.
- The graph below illustrates the situation for an initial stack of seven coins.

TDBC91 slides, page 5.12, 20081002

- Define the value of a leaf vertex to be:
- $+\infty$ if it is an oval vertex (player 1 wins);
- $-\infty$ if it is a rectangular vertex (player 2 wins);
- For interior vertices, define the values as follows:
oval vertices $= \begin{cases}-\infty & \text { if the value of at least one of its successors is }-\infty \\ -\infty & \text { if } 0\end{cases}$ rect vertices $= \begin{cases}+\infty & \text { if the value of at least one of its successors is }+c \\ -\infty & \text { if the value of each of its successors is }-\infty\end{cases}$
- For the game graph of the previous slide, the values of the vertices are as follows.

TDBC91 slides, page 5.13, 20081002
5.4.2 Theorem In a two-person game with perfect information, if both players make optimal moves, player 1 will win iff the root is a $+\infty$ vertex.

5.4.3 Max-min graphs

(a) An max-min graph is a directed, acyclic graph $G=(V, E, g)$ with a distinguished start vertex $s \in V$ and two classes of non-leaf vertices:

- max vertices;
- min vertices;
subject to the constraints:
- Every successor of a max vertex is a min vertex;
- Every successor of a min vertex is a max vertex.
(b) A value function for G is a function

$$
p: V \rightarrow \mathbb{Z} \cup\{-\infty,+\infty\}
$$

subject to the following constraints:
(i) For a leaf vertex $v, p(v)$ is arbitrary.
(ii) For a max vertex v,

$$
p(v)=\max (\{p(w) \mid w \text { is a direct successor of } v\}
$$

(iii) For a min vertex v,

$$
p(v)=\min (\{p(w) \mid w \text { is a direct successor of } v\}
$$

(c) The value of (G, p) is $p(s)$.

5.4.4 The need for approximation

- A general top-down strategy for determining $p(s)$ begins with s and recursively evaluates each subgraph.
- For graphs arising from larger games, the cost becomes prohibitive.
- Examples sizes for the full game graph, using symmmetries: tic-tac-toe: 10^{5} vertices. checkers: 10^{40} vertices. chess: 10^{120} vertices.
- In the latter two cases, it is impossible to generate the entire game tree.
- Approximation schemes are clearly necessary.

5.4.5 The evaluation-function strategy

- In the evaluation function strategy, the entire game tree is not generated.
- Rather, it is only generated to a predetermined level.
- At the leaf level, an estimate of the quality of each vertex is made.
- Based upon these estimates, a heuristic procedure for obtaining values at deeper levels is employed.
- As an example, consider the simple game of tic-tac-toe.
- This game may result in a draw, so there are three "final" values:

$$
\begin{array}{cl}
+\infty & \text { if } \mathrm{X} \text { wins } \\
-\infty & \text { if O wins } \\
0 & \text { for a draw }
\end{array}
$$

- The max/min strategy may still be applied.
- A simple evaluation function for a board configuration b is the following:

$$
e(b)= \begin{cases}+\infty & \text { if } \mathrm{X} \text { has won } \\ -\infty & \text { if } \mathrm{O} \text { has won } \\ \#_{b}(\mathrm{X})-\#_{b}(\mathrm{O}) & \text { otherwise }\end{cases}
$$

in which
$\#_{b}(Z)=$ number of rows, columns, and diagonals open for Z with $Z \in\{X, O\}$.

- The following configuration b has $\#(X)=6$ and $\#(O)=4$, so $e(b)=2$.

- Note that $e(b)=0$ for a draw configuration under this definition.
- On the next slide, the expansion of the first two levels of a game is shown.
- Configurations which are equivalent under rotation or reflection are not repeated.
- The following two configurations are equivalent under a rotation of 90°.

- The following two configurations are equivalent under a reflection.

TDBC91 slides, page 5.17, 20081002

TDBC91 slides, page $5.18,20081002$

- Decision is via a so-called "min-max" procedure.
- Player X is a maximizer, since a higher $e(-)$ score on a vertex favors X .
- In particular, a score of $+\infty$ means a victory for player X.
- Thus, a vertex for which X has the next move is a max vertex.
- Similarly, player O is a minimizer, and so a vertex for which O has the next move is a min vertex.
- Formally, to expand upon the definitions of 5.4.3:
(a) A max vertex in a two-person game tree is a vertex in which the player who is trying to maximize the score (i.e., who wins with $+\infty$) has the next move.
(a) A min vertex in a two-person game tree is a vertex in which the player who is trying to minimize the score (i.e., who wins with $-\infty$) has the next move.
- In the graph, player X chooses the move b which yields the best guaranteed value of $e(b)$.
- Player X assumes that player O will make the best move.
- Thus, player X chooses the move which will be the least damaging, in the case that player O makes an optimal move.
- Player X choose the vertex at level one whose whose minimumvalue child has the maximum value.
- Once player X makes a move, this process is repeated, with the new configuration as root vertex.

TDBC91 slides, page 5.19, 20081002

5.4.6 The $\alpha-\beta$ pruning strategy

- It is not always necessary to generate the full tree to n levels in an n-level evaluation strategy.
- Some subtrees may be eliminated via a pruning strategy.
- In the example of 5.4.5, with depth-first expansion, after evaluating the vertex

at the second level of the tree, and determining its min-value to be -1 , the vertex

is expanded.
- Note that its first descendant

evaluates to -1 .
- Since is a min vertex, its value cannot exceed -1 .
- Thus, it cannot be a better choice for X than \not 田, since X seeks to maximize.
- Hence, evaluation of the subtree rooted at \nVdash need not continue.
- The value -1 generated at is called an α-value for the root vertex. Formally:
(a) An α-value for a max vertex is a known lower bound on the ultimate value of that vertex.
(b) The simple α-pruning rule states that if the value of a min vertex is found to be less than or equal to an α-value for its parent vertex, then it is not necessary to determine its value further.
- The dual concepts are as follows
(c) A β-value for a min vertex is a known upper bound on the ultimate value of that vertex.
(d) The simple β-pruning rule states that if the value of a max vertex is found to be greater than or equal to an β-value for its parent vertex, then it is not necessary to determine its value further.
- Finally, these two may be combined:
(c) The technique of α - β-pruning combines these two ideas.

5.4.7 The deep $\alpha-\beta$ pruning rule

- In deep $\alpha-\beta$ pruning, α and β values of all ancestors of a vertex, rather than just those of its parent, are used to direct the pruning process.
- The idea is sketched with a simple example.

- Expansion of the subtree T is not stopped by α pruning, since $7>5$.
- However, 7 is a maximum value for vertex C .
- Thus, in fact, 7 is a β value for vertex B.
- Hence, the α value of the root cannot change, and so the evaluation may be halted.

