
Profiling of Algorithms
• Profiling refers to the experimental measurement

of the performance of algorithms.

• Profiling techniques fall into two main categories:

• Instruction counting – the number of times
which particular instruction(s) are executed is
measured.

• Clock-based timing – the time required for
certain blocks of code to execute is measured.

Each has advantages and disadvantages, which
shall briefly be discussed.

profiling 20080831, page 1 of 19

The Augment-Run-Analyze Process

Regardless of the technique employed, all profiling
techniques involve three distinct steps.

1. Augmentation – Special code is added to the
original program. This purpose of this code is to
generate data on the execution of the program.

2. Execution – The augmented program is run. The
augmentation code generates timing data which
are written to a special file.

3. Analysis – A special program, called the
analyzer, is run on the timing data to generate a
report on the performance of the program.

profiling 20080831, page 2 of 19

Instruction Counting

The technique of instruction counting is very
simple; the number of times certain critical
instructions are executed is recorded.

This is illustrated below for a simple bubble sort
program.

begin
 comp_count ← 0;

assign_count ← 0;
for i ← 2 to array_size do
 for j ← array_size downto i do

 comp_count ← comp_count + 1;
 if a[j-1] > a[j]
 then {swap}
 temp ← a[j-1];

 a[j-1] ← a[j];
 a[j] ← temp;
 assign_count ← assign_count + 3;
 end if;
 end for;
 end for;
end program.

This illustration shows the augmentation of the
original program.

profiling 20080831, page 3 of 19

Sometimes, it is necessary to run a series of test
cases, as illustrated by the following example.

begin
 for k ← 1 to no_test_cases do

local_comp_count ← 0;
local_assign_count ← 0;

 a ← test_data[k]; {array assignment}
for i ← 2 to array_size do
 for j ← array_size downto i do

 local_comp_count ← local_comp_count +1;
 if a[j-1] > a[j]
 then {swap}
 temp ← a[j-1];

 a[j-1] ← a[j];
 a[j] ← temp;
 local_assign_count
 ← local_assign_count + 3;
 end if;
 end for;
 end for;
 comp_count[k] ← local_comp_count;
 assign_count[k] ← local_assign_count;
 end for;
end program.

Again, only the augmented program is shown.
Analysis is a separate step.

profiling 20080831, page 4 of 19

Counters may also be used to record the number of
calls to procedures.

var merge_count, mergesort_count: integer;
merge_count ← 0;
mergesort_count ← 0;

procedure mergesort
 (a: int_array; low, high: array_index)
 begin
 if low < high then
 mid ← (low + high) div 2;
 mergesort(a, low, mid);
 mergesort(a, mid+1, high);
 merge(low, mid, high, a);
 end if;
 mergesort_count ← mergesort_count + 1;
end procedure mergesort;

procedure merge (low, mid, high: array_index)
 var b: array[low, high]; {local array}
 begin
 p1 ← low; p2 ← mid + 1; p ← low;
 while p1 ≤ mid and p2 ≤ high do
 if a[p1] ≤ a[p2] then
 b[p] ← a[p1]; p1 ← p1 + 1;
 else
 b[p] ← a[p2]; p2 ← p2 + 1;
 end if;
 p ← p + 1;
 end while;
 if p1 ≤ mid then
 a[p..high] ← a[p1..mid];
 end if;
 a[low..p-1] ← b[low..p-1];
 merge_count ← merge_count + 1;
end procedure merge;

profiling 20080831, page 5 of 19

Advantages of instruction counting:

• It is extremely simple to implement.

• The measurement code does not introduce error
into the quantities being measured.

Disadvantages of instruction counting:

• Instruction counts are not always definitive in
measuring the “real” performance of an
algorithm, or in identifying bottlenecks in their
performance.

Actual systems which used instruction counting for
profiling:

• In early versions of Berkeley UNIX, (early to mid
1980’s) there was a Pascal interpreter called px.
Associated with it was a counting profiler called
pxp.

profiling 20080831, page 6 of 19

Clock-Based Timing

There are two principal flavors of clock-based
timing of algorithms.

• Fixed-position logging.

• Random-sample logging.

Each approach has its advantages and
disadvantages.

profiling 20080831, page 7 of 19

Fixed-Position Logging

The idea is to plant, within the program to be
profiled, instructions which will log the elapsed
running time. This is best illustrated via an
example.

begin
 begin_time ← clock();

for i ← 2 to array_size do
 for j ← array_size downto i do

 if a[j-1] > a[j]
 then {swap}
 temp ← a[j-1];

 a[j-1] ← a[j];
 a[j] ← temp;
 end if;
 end for;
 end for;
 end_time ← clock();
 elapsed_time ← end_time – begin_time;
end program.

Basic contraints:

• The function clock() must measure the amount
of time which has been allocated to the program
which is being profiled.

• A “time-of-day” clock, or “system-uptime” clock,
is not appropriate.

• UNIX provides access to such a clock via the
getitimer calls.

profiling 20080831, page 8 of 19

Clock accuracy and granularity:

• A digital clock “ticks” at discrete intervals.

• The length of this interval is called the granularity
of the clock.

• The internal clock on a modern computer has a
very small granularity – less than a nanosecond.

• However, the clocks which are accessible via
system calls often has much higher granularities
– on the order of hundredths of a second.
(Typical examples are 10 ms. and 1/60 sec.)

Note: The accuracy of the clock refers to how close
the length of the ticks are to the advertised interval.
Clocks on modern digital computers are crystal
controlled, and are extremely accurate.
Unfortunately, the textbook confuses these two
concepts, and uses the term “accuracy” to denote
granularity.

profiling 20080831, page 9 of 19

• The granularity must be considered when
constructing a profiling experiment. For example,
the entire program above could very well run
without the profiling clock ticking at all, in which
case it would appear to run in zero time.

One solution is to run the program many times, and
then average the results.

begin
 begin_time ← clock();
 for k ← 1 to no_repeats do

a ← initial_array_data;
 for i ← 2 to array_size do

 for j ← array_size downto i do
 if a[j-1] > a[j]

 then {swap}
 temp ← a[j-1];

 a[j-1] ← a[j];
 a[j] ← temp;
 end if;
 end for;
 end for;
 end for;
 end_time ← clock();
 run_time
 ← (end_time – begin_time) / no_repeats;
end program.

The value of no_repeats should be chosen so that
the difference end_time – begin_time is much
greater than the clock granularity.

profiling 20080831, page 10 of 19

Consider the following alternative:

begin
 for k ← 1 to no_repeats do
 a ← initial_array_data;
 begin_time[i] ← clock();
 for i ← 2 to array_size do

 for j ← array_size downto i do
 if a[j-1] > a[j]

 then {swap}
 temp ← a[j-1];

 a[j-1] ← a[j];
 a[j] ← temp;
 end if;
 end for;
 end for;
 end_time[i] ← clock();
 end for;
 run_time ← 0;
 for k ← 1 to no_repeats do
 run_time ← run_time +
 (end_time[k] – begin_time[k]);
 end for;
 run_time ← run_time / no_repeats;
end program.

Disadvantage over previous program:

• The many time-recording statements introduce
noise and inaccuracy into the final measurement.

Advantage:

• The time to re-initialize the array is not
measured.

profiling 20080831, page 11 of 19

Consider the following example:

procedure mergesort
 (a: int_array; low, high: array_index)
 begin
 write_time_marker
 (“begin”,”mergesort”,clock());
 if low < high then
 mid ← (low + high) div 2;
 mergesort(a, low, mid);
 mergesort(a, mid+1, high);
 merge(low, high, mid);
 end if;
 write_time_marker
 (“end”,”mergesort”,clock());
end procedure mergesort;

procedure merge (low, mid, high: array_index)
 var b: array[low, high]; {local array}
 begin
 write_time_marker
 (“begin”,”merge”,clock());

 p1 ← low; p2 ← mid + 1; p ← low;
 while p1 ≤ mid and p2 ≤ high do
 if a[p1] ≤ a[p2] then
 b[p] ← a[p1]; p1 ← p1 + 1;
 else
 b[p] ← a[p2]; p2 ← p2 + 1;
 end if;
 p ← p + 1;
 end while;
 if p1 ≤ mid then
 a[p..high] ← a[p1..mid];
 end if;
 a[low..p-1] ← b[low..p-1];
 write_time_marker
 (“end”,”merge”,clock());
end procedure merge;

The procedure write_time_marker places data into a
file, which are later processed. A typical data file is
shown on the next slide.

profiling 20080831, page 12 of 19

The times are all shown as just “t_”. For each time
marker, the corresponding node in the call graph is
shown in brackets. The numbers of the nodes of
the call graph is shown below.

begin mergesort t_ [0]
begin mergesort t_ [1]
begin mergesort t_ [3]
begin mergesort t_ [7]
end mergesort t_ [7]
begin mergesort t_ [8]
end mergesort t_ [8]
begin merge t_ [3]
end merge t_ [3]
end mergesort t_ [3]
begin mergesort t_ [4]
begin mergesort t_ [9]
end mergesort t_ [9]
begin mergesort t_ [10]
end mergesort t_ [10]
begin merge t_ [4]
end merge t_ [4]
end mergesort t_ [4]
begin merge t_ [1]
end merge t_ [1]
end mergesort t_ [1]
begin mergesort t_ [2]

begin mergesort t_ [5]
begin mergesort t_ [11]
end mergesort t_ [11]
begin mergesort t_ [12]
end mergesort t_ [12]
begin merge t_ [5]
end merge t_ [5]
end mergesort t_ [5]
begin mergesort t_ [6]
begin mergesort t_ [13]
end mergesort t_ [13]
begin mergesort t_ [14]
end mergesort t_ [14]
begin merge t_ [6]
end merge t_ [6]
end mergesort t_ [6]
begin merge t_ [2]
end merge t_ [2]
end mergesort t_ [2]
begin merge t_ [0]
end merge t_ [0]
end mergesort t_ [0]

profiling 20080831, page 13 of 19

7 8

3

9 10

4

1

11 12

5

13 14

6

2

0

• In a “professional” package, software tools to
perform automatic augmentation, as well as
analysis, are available.

• Since automatic augmentation is a relatively
complex process, it is common in “roll-your-own”
applications to perform manual augmentation,
but to write a program to perform analysis.

Systems which perform fixed-position logging:

• The University of Minnesota Pascal profiling
system for the CDC Cyber systems (1970’s).

• Software assignment 1.

profiling 20080831, page 14 of 19

Advantages of fixed-position logging:

• Very detailed information about performance may
be obtained.

• Caller-specific information about performance
may be obtained. For example, if procedure C is
called by both procedure A and procedure B,
separate information about the performance of C
under each caller may be obtained.

• It is not necessary to modify the compiler in any
way. The existing compiler can be used.

Disadvantages of fixed-position logging:

• The timing instructions themselves consume
time, and so introduce errors into the
measurement process.

• Special measures must be taken to make sure
that enough measurements are taken to avoid
problems with clock granularity.

• It is essential to have available a clock which can
measure the amount of time which has been
allocated to the program being profiled.
(Operating system support)

profiling 20080831, page 15 of 19

Random-Sample Logging

To overcome some of the problems encountered in
fixed-position logging, random-sample logging is
sometimes used.

Idea:

• At random times, sample the execution of
the program, determining which
procedure/statement is executing.

• From these samples and knowledge of the
total running time of the program, construct a
profile of how much time is spent executing
each procedure/statement.

profiling 20080831, page 16 of 19

Implementation:

• Generally, this approach requires compiler
support.

• At compilation, a table which matches addresses
to routines is constructed.

• During execution, the sampler looks at the
address of the executed instruction, and from
that determines which instruction is executing.
These data are recorded in a file.

• The absolute number of times which each routine
is called is also computed via special code which
is constructed during compilation.

• Total running time may be determined from the

sample rate and the number of samples
collected. No other measurement of total running
time is necessary.

• As in fixed position logging, there is a separate
analyze phase during which the data file is
crunched, and program statistics generated.
From the number of times which each procedure
was invoked, together with the statistical
distribution of how often the program was found
executing a given procedure, relatively
informative profiles may be generated.

profiling 20080831, page 17 of 19

Example:

• Sample rate =1000/second.

• 10000 samples taken.

• Recorded call data:

Procedure No. Calls No. Sample Hits
A 300 1000
B 600 2000
C 1000 7000

We may then compute the following:

• Total running time = 10 seconds.

Procedure Total time Time per call
A 1 sec. 3.33 msec.
B 2 sec. 3.33 msec.
C 7 sec. 7.00 msec.

profiling 20080831, page 18 of 19

Advantages of random-sample logging:

• Clock granularity is not an issue.

• There are fewer timing instructions to generate
noise and corrupt the measurements.

Disadvantages of random-sample logging:

• Compiler support is required. It is difficult to “roll
your own.”

• Call sequences are difficult to determine. (If
procedure C is called by both procedure A and
procedure B, it is difficult to determine how much
of the execution time of C is attributable to each
type of call.)

Systems which perform random-sample logging:

• The gprof profiling system under UNIX.

profiling 20080831, page 19 of 19

	Profiling of Algorithms
	The Augment-Run-Analyze Process
	Instruction Counting
	Clock-Based Timing
	Fixed-Position Logging
	Random-Sample Logging

