Slides for a Course
 on the Analysis and Design of Algorithms

Chapter 8: Problem Complexity

Stephen J. Hegner
Department of Computing Science
Umeå University
Sweden
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

(c)2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

8. Problem Complexity

- In the previous part of the course, the focus has been upon the complexity of specific algorithms.
- In this section, the question of identifying lower bounds on the complexity for all algorithms which solve a given problem will be studied.
- At this point, attention will be restricted to a single but very important problem: sorting.

8.1 The complexity of sorting

8.1.1 Decision trees

- The following assumptions define the problem context:
(i) Given is an array of elements of data type S :
A : $\operatorname{array}[1 . . n]$ of $S ;$
(ii) S has a total order \leq, but no other operations.
(iii) Only comparisons of elements provide information about the associated irreflexive ordering $<$ on S.
- A convenient means of representing the sorting process is via decision trees.
- The decision tree for $S=\{a, b, c\}$ with $A=\langle a, b, c\rangle$ is shown on the next page.

TDBC91 slides, page 8.1, 20081008

- The above convention preserves the initial order of equal elements (stable sort).
- Note that there are six leaves, one for each permutation of the array.
- In general, for an array of n elements, there will be n ! leaves to the decision tree.

TDBC91 slides, page 8.2, 20081008

8.1.2 Terminology Let T be a binary tree.

- Recall that $\operatorname{EPL}(T)$ denotes the (total) external path length, and LeafNode (T) denotes the number of leaf vertices. (See 2.2.5.)
(a) The average external path length of T, denoted $\operatorname{AvgExtPL}(T)$, is $\operatorname{EPL}(T) /$ LeafNode (T).

8.1.3 Lemma For any binary tree T,

$$
\operatorname{AvgExtPL}(T) \geq \log _{2}(\operatorname{LeafNode}(T))
$$

PROOF:

- The proof is by induction on the length d of the longest path from the root to a leaf.

Basis: For $d=0$, the proof is trivial.
Step: Assume that the assertion is true for all path lengths $c<d$, and let T^{\prime} be a binary tree whose longest external path has length d. There are two possibilities for the shape of this tree:
(a)

Case (a) is trivial. For case (b), note that T_{1} and T_{2} each satisfy the inductive hypothesis, since they are of height at most $d-1$, and:

AvgExtPL(T)

$$
\begin{aligned}
& =\left(1+\operatorname{Avg} \operatorname{ExtPL}\left(T_{1}\right)\right) \cdot\left(\frac{m_{1}}{m_{1}+m_{2}}\right)+\left(1+\operatorname{AvgExtPL}\left(T_{2}\right)\right) \cdot\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \\
& \geq 1+\log _{2}\left(m_{1}\right) \cdot\left(\frac{m_{1}}{m_{1}+m_{2}}\right)+\log _{2}\left(m_{2}\right) \cdot\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \\
& =1+\left(\frac{1}{m_{1}+m_{2}}\right) \cdot\left(m_{1} \cdot \log _{2}\left(m_{1}\right)+m_{2} \cdot \log _{2}\left(m_{2}\right)\right)
\end{aligned}
$$

- The minimum of this value occurs when $m_{1}=m_{2}$. (Replace m_{2} with $m-m_{1}$ in the above formula, and differentiate with respect to m_{1}. The derivative is zero when $m_{1}=m-m_{1}$, and it is easily verified that the second derivative is positive.)
- However, when $m_{1}=m_{2}=m / 2$, the above formula becomes just $1+\log _{2}(m)$. Thus, to complete the above line of inequalities, the following is added:

$$
\geq 1+\log _{2}(m)
$$

8.1.4 Theorem Any comparison-based sorting algorithm must have average time complexity at least as great as $\Theta(n \cdot \log (n))$, with n the size of the list to be sorted.

Proof: This follows directly from the above lemma and Stirling's approximation, which states that

$$
\log (n!)=n \cdot \log (n)+f(n)
$$

with $f(n) \in O(n)$.
TDBC91 slides, page 8.4, 20081008

