
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 8: Problem Complexity

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.



8. Problem Complexity

• In the previous part of the course, the focus has been upon the

complexity of specific algorithms.

• In this section, the question of identifying lower bounds on the

complexity for all algorithms which solve a given problem will

be studied.

• At this point, attention will be restricted to a single but very im-

portant problem: sorting.

8.1 The complexity of sorting

8.1.1 Decision trees

• The following assumptions define the problem context:

(i) Given is an array of elements of data type S:

A : array[1..n] of S ;

(ii) S has a total order ≤, but no other operations.

(iii) Only comparisons of elements provide information about

the associated irreflexive ordering < on S.

• A convenient means of representing the sorting process is via de-

cision trees.

• The decision tree for S = {a,b,c} with A = 〈a,b,c〉 is shown on

the next page.

TDBC91 slides, page 8.1, 20081008



A = 〈a,b,c〉 abc

acb

bca

bac

cab

cba

abc

acb

cab

A[1]≤A[2]

abc

acb

A[1]≤A[3]

abc

A[2]≤A[3]

acb

A[3]<A[2]

cab

A[3]<A[1]

bac

bca

cba

A[2]<A[1]

bac

A[1]≤A[3]

bca

cba

A[3]<A[1]

bca

A[2]≤A[3]

cba

A[3]<A[2]

• The above convention preserves the initial order of equal ele-

ments (stable sort).

• Note that there are six leaves, one for each permutation of the

array.

• In general, for an array of n elements, there will be n! leaves to

the decision tree.

TDBC91 slides, page 8.2, 20081008



8.1.2 Terminology Let T be a binary tree.

• Recall that EPL(T ) denotes the (total) external path length, and

LeafNode(T ) denotes the number of leaf vertices. (See 2.2.5.)

(a) The average external path length of T , denoted AvgExtPL(T ), is

EPL(T )/LeafNode(T ).

8.1.3 Lemma For any binary tree T ,

AvgExtPL(T ) ≥ log2(LeafNode(T ))

PROOF:

• The proof is by induction on the length d of the longest path from

the root to a leaf.

Basis: For d = 0, the proof is trivial.

Step: Assume that the assertion is true for all path lengths c< d, and

let T ′ be a binary tree whose longest external path has length d.

There are two possibilities for the shape of this tree:

(a) (b)

T ′ T1 T2
︸ ︷︷ ︸

m1 leaves

︸ ︷︷ ︸

m2 leaves

Case (a) is trivial. For case (b), note that T1 and T2 each satisfy

the inductive hypothesis, since they are of height at most d− 1,

and:

TDBC91 slides, page 8.3, 20081008



AvgExtPL(T )

= (1+AvgExtPL(T1)) ·

(
m1

m1+m2

)

+(1+AvgExtPL(T2)) ·

(
m2

m1+m2

)

≥ 1+ log2(m1) ·

(
m1

m1+m2

)

+ log2(m2) ·

(
m2

m1+m2

)

= 1+

(
1

m1+m2

)

· (m1 · log2(m1)+m2 · log2(m2))

• The minimum of this value occurs when m1 = m2. (Replace m2

with m−m1 in the above formula, and differentiate with respect

to m1. The derivative is zero when m1 = m−m1, and it is easily

verified that the second derivative is positive.)

• However, when m1 = m2 = m/2, the above formula becomes just

1+ log2(m). Thus, to complete the above line of inequalities, the

following is added:

≥ 1+ log2(m)

2

8.1.4 Theorem Any comparison-based sorting algorithmmust have

average time complexity at least as great as Θ(n · log(n)), with n the

size of the list to be sorted.

PROOF: This follows directly from the above lemma and Stirling’s

approximation, which states that

log(n!) = n · log(n)+ f (n)

with f (n) ∈ O(n). 2

TDBC91 slides, page 8.4, 20081008


