Slides for a Course on the Analysis and Design of Algorithms

Chapter 8: Problem Complexity

Stephen J. Hegner Department of Computing Science Umeå University Sweden hegner@cs.umu.se http://www.cs.umu.se/~hegner

©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

8. Problem Complexity

- In the previous part of the course, the focus has been upon the complexity of specific algorithms.
- In this section, the question of identifying lower bounds on the complexity for all algorithms which solve a given problem will be studied.
- At this point, attention will be restricted to a single but very important problem: sorting.

8.1 The complexity of sorting

8.1.1 Decision trees

- The following assumptions define the problem context:
 - (i) Given is an array of elements of data type S:

A: array[1..n] of S;

- (ii) S has a total order \leq , but no other operations.
- (iii) Only comparisons of elements provide information about the associated irreflexive ordering < on S.
- A convenient means of representing the sorting process is via *decision trees*.
- The decision tree for $S = \{a, b, c\}$ with $A = \langle a, b, c \rangle$ is shown on the next page.

- The above convention preserves the initial order of equal elements (*stable sort*).
- Note that there are six leaves, one for each permutation of the array.
- In general, for an array of *n* elements, there will be *n*! leaves to the decision tree.

TDBC91 slides, page 8.2, 20081008

- **8.1.2 Terminology** Let *T* be a binary tree.
 - Recall that EPL(*T*) denotes the (total) *external path length*, and LeafNode(*T*) denotes the number of leaf vertices. (See 2.2.5.)
 - (a) The average external path length of T, denoted AvgExtPL(T), is EPL(T)/LeafNode(T).

8.1.3 Lemma For any binary tree T,

```
\mathsf{AvgExtPL}(T) \geq \log_2(\mathsf{LeafNode}(T))
```

PROOF:

• The proof is by induction on the length *d* of the longest path from the root to a leaf.

<u>Basis</u>: For d = 0, the proof is trivial.

<u>Step</u>: Assume that the assertion is true for all path lengths c < d, and let T' be a binary tree whose longest external path has length d. There are two possibilities for the shape of this tree:

Case (a) is trivial. For case (b), note that T_1 and T_2 each satisfy the inductive hypothesis, since they are of height at most d - 1, and:

TDBC91 slides, page 8.3, 20081008

AvgExtPL(T)
=
$$(1 + \text{AvgExtPL}(T_1)) \cdot \left(\frac{m_1}{m_1 + m_2}\right) + (1 + \text{AvgExtPL}(T_2)) \cdot \left(\frac{m_2}{m_1 + m_2}\right)$$

 $\geq 1 + \log_2(m_1) \cdot \left(\frac{m_1}{m_1 + m_2}\right) + \log_2(m_2) \cdot \left(\frac{m_2}{m_1 + m_2}\right)$
= $1 + \left(\frac{1}{m_1 + m_2}\right) \cdot (m_1 \cdot \log_2(m_1) + m_2 \cdot \log_2(m_2))$

- The minimum of this value occurs when $m_1 = m_2$. (Replace m_2 with $m m_1$ in the above formula, and differentiate with respect to m_1 . The derivative is zero when $m_1 = m m_1$, and it is easily verified that the second derivative is positive.)
- However, when $m_1 = m_2 = m/2$, the above formula becomes just $1 + \log_2(m)$. Thus, to complete the above line of inequalities, the following is added:

$$\geq 1 + \log_2(m)$$

8.1.4 Theorem Any comparison-based sorting algorithm must have average time complexity at least as great as $\Theta(n \cdot \log(n))$, with n the size of the list to be sorted.

PROOF: This follows directly from the above lemma and *Stirling's approximation*, which states that

$$\log(n!) = n \cdot \log(n) + f(n)$$

with $f(n) \in O(n)$. \Box

TDBC91 slides, page 8.4, 20081008