
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 3: Combinatorial Optimization and the
Greedy Method

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

3. Combinatorial Optimization and the Greedy

Method

3.1 Properties of Optimization Problems

TDBC91 slides, page 3.1, 20080922

3.1.1 Nature of Optimization Problems

• Consider the problem, from elementary physics, of firing a pro-

jectile so as to hit a given target.

v0 θ0

target

• Two initial values determine the trajectory:

• v0 = magnitude of initial velocity of the projectile;

• θ0 = angle from horizontal of initial velocity of projectile.

• Each such pair (v0,θ0) determines a possible solution (landing

position), as determine by the laws of physics.

• Solutions may have the following properties:

admissibility: v0 does not exceed a specified maximum (based

upon available resources).

feasibility: the projectile hits the target.

optimality: the total energy expended is a minimum, or the total

time required to reach the target is a minimum (as defined in

the problem specification).

• The goal here is to carry these ideas over to discrete optimization

problems.

TDBC91 slides, page 3.2, 20080922

3.1.2 Knapsack problems – contrasting examples of combinato-

rial optimization

The common setting:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive real num-

bers.

The simple or continuous knapsack problem:

• Find (x1,x2, . . . ,xn) ∈ [0,1]N such that:

(a) ∑
n
i=1 xi · vi is a maximum, subject to the constraint that

(b) ∑
n
i=1 xi ·wi ≤M.

The discrete knapsack problem:

• Find (x1,x2, . . . ,xn) ∈ {0,1}N such that:

(a) ∑
n
i=1 xi · vi is a maximum, subject to the constraint that

(b) ∑
n
i=1 xi ·wi ≤M.

Note: [0,1] = {x ∈R | 0≤ x≤ 1}.

TDBC91 slides, page 3.3, 20080922

3.1.3 Example Let M = 8; n = 4, and let vi and wi be as shown in

the table below.

i 1 2 3 4

vi 1 2 5 6
wi 2 3 4 5

Solution to the simple knapsack problem:

1. Order the objects with greatest vi/wi first: 〈3,4,2,1〉.

2. Add objects, or appropriate fractions thereof, until the knap-

sack is filled.

Solution: obj3+0.8 ·obj4.

Value: 5+0.8 ·6 = 49/5.

Solution to the discrete knapsack problem:

1. Essentially requires a search of the entire space of possibili-

ties.

Solution: obj4+ obj2.

Value: 6+2 = 8 = 40/5.

Note: If the objects are sorted by value per unit weight (〈3,4,2,1〉),
with test and select in that order, an optimal solution is not ob-

tained:

obj3 fits with v3 = 5, w3 = 4; include.

obj4 does not fit; reject.

obj2 fits with v2 = 2, w3 = 3; include.

obj4 does not fit; reject.

If the objects are sorted by value, with the same strategy, the op-

timal solution is obtained in this example, but not in general.

TDBC91 slides, page 3.4, 20080922

3.1.4 Example Let M = 100; n = 3, and let vi and wi be as shown

in the table below.

i 1 2 3

vi 52 50 49
wi 51 50 50

Solution to the discrete knapsack problem:

• In this case, ordering by nonincreasing vi/wi is the same as

ordering by nonincreasing vi.

• In each case, the order is 〈obj1,obj2,obj3〉.

• A “greedy” strategy of select-and-test of the elements in or-

der does not yield an optimal solution:

(i) Select obj1; total value = 52; total weight = 51.

(ii) Reject obj2; too heavy.

(iii) Reject obj3; too heavy.

• The optimal solution is seen by inspection to be {obj2,obj3},
with total value 99.

• Thus, this “greedy” approach does not produce the optimal

solution.

• In fact:

• The best known algorithm for the discrete knapsack prob-

lem is exponential, although the base may be less than

two; i.e., Θ(kn) worst-case time complexity for some k

with 1 < k ≤ 2. The best practical algorithm is Θ(2n).

• The best algorithm for the continuous knapsack prob-

lem has Θ(n · log(n)) worst-case time complexity.

TDBC91 slides, page 3.5, 20080922

3.2 Matroids and the Greedy Method

3.2.1 Definition – subset systems A subset system is a pair S =

(E,J) in which E is a finite set and J is a collection of subsets of E

which is closed under inclusion. That is, if A ∈ J and B ⊆ A, then

B ∈ J.
The elements of J are sometimes called the independent sets of S.

3.2.2 Combinatorial Optimization Problems

• A combinatorial optimization problem P is specified by the fol-

lowing:

(a) A subset system S = (E,J).

(b) A profit function p : E→N.

• A feasible solution for P is any I ∈ J.

• An optimal solution for P is a feasible solution J with the prop-

erty that, for any feasible solution I,

∑
x∈J

p(x)≥∑
x∈I

p(x)

• Sometimes, p(J) is used to denote ∑x∈J p(x).

• Thus, the optimality constraint is expressible as

p(J)≥ p(I)

TDBC91 slides, page 3.6, 20080922

3.2.3 Example – the discrete-solution subset system for a knap-

sack problem Consider the knapsack example of 3.1.3, withM = 8;

n = 4, and vi and wi be as shown in the table below.

i 1 2 3 4

vi 1 2 5 6
wi 2 3 4 5

The discrete-solution subset system is defined as follows.

• The set E is just {obj1,obj2,obj3,obj4}.

• The associated subset system consists of the subsets of

{obj1,obj2,obj3,obj4}which constitute feasible solutions; i.e., which
have total weight no greater than 8.

• The independents sets are thus {obj1,obj2}, {obj1,obj3},
{obj1,obj4}, {obj2,obj3}, {obj2,obj4}, {obj1}, {obj2}, {obj3},
{obj4}, and ∅.

• The profit function p : E → N just maps a set of objects to the

sum of the values of those objects.

TDBC91 slides, page 3.7, 20080922

3.2.4 Example – the continuous-solution subset system for a knap-

sack problem Continue with the previous example; M = 8; n = 4,

and vi and wi be as shown in the table below.

i 1 2 3 4

vi 1 2 5 6
wi 2 3 4 5

The continuous-solution subset system is defined as follows.

• Each object of the original problem is divided up into objects of

unit weight.

• obj1 is divided up into two objects, obj11 and obj12, each with

weight 1 and value 1/2.

• obj2 is divided up into three objects, obj21, obj22, and obj23,

each with weight 1 and value 2/3.

• obj3 is divided up into four objects, obj31, obj32, obj33, and

obj34, each with weight 1 and value 5/4.

• obj4 is divided up into five objects, obj41, obj42, obj43, obj44,

and obj45, each with weight 1 and value 6/5.

• The objects of the new system are obj11, obj12, obj21, obj22, obj23,

obj31, obj32, obj33, obj34, obj41, obj42, obj43, obj44, obj45.

• The independent sets consist of all subsets of this new set of ob-

jects containing at most eight elements.

• The profit function is defined as above, in the obvious way.

TDBC91 slides, page 3.8, 20080922

3.2.5 The greedy method and matroids The greedy method is a

general technique for obtaining feasible solutions to an arbitrary com-

binatorial optimization problem

P = ((E,J), p)

• The pseudocode is as follows.

solution←∅;
pool ← E;

while (pool 6= ∅) do
〈 e←member of pool with greatest profit;

pool ← pool \{e};
if solution ∪{e} ∈ J
then solution← solution ∪{e};

〉

• The terminology greedy is used because this technique always

takes the path of selecting the most profitable local solution.

• As illustrated in 3.1.4, this method does not always yield an opti-

mal solution for a discrete knapsack problem.

• The subset system S = (E,J) is called a matroid if, for any profit

function p : E→N, the greedy method finds an optimal solution.

• Sometimes, the term greedy method is used more generally for

simple select-and-test approaches (such as ordering knapsack ob-

jects by profit per unit weight), but in these notes it will be used

in the strict sense as defined above.

TDBC91 slides, page 3.9, 20080922

3.2.6 Fact Any combinatorial optimization problem associated with

an instance of the simple knapsack problem is a matroid.

PROOF OUTLINE:

• The idea has already been presented in 3.2.4.

• If the capacity M is an integer, just break the objects into pieces

of unit weight.

• If the capacity M is not an integer, but is a rational number r/s,

multiply it and the weight of each object by s.

• This results in an equivalent problem with integer capacity

and weights.

• Treat this problem as in 3.2.4.

• If the capacityM is not a rational number, some approximation is

necessary.

• This case is sufficiently esoteric that it will not be considered

here.

2

TDBC91 slides, page 3.10, 20080922

3.2.7 Theorem— characterization of matroids Let S= (E,J) be

a subset system. Then the following conditions are equivalent:

(a) S is a matroid.

(b) If I,J ∈ J with Card(J) > Card(I), then there is an e ∈ J \ I with
I∪{e} ∈ J.
(Card(I) = cardinality of I = number of elements in I.)

(c) If A⊆ E and I,J ∈ J are maximal independent subsets of A, then
Card(I) = Card(J).

(I ⊆ A is amaximal independent subset of A if for any K ∈ J with
I ⊆ K ⊆ A, it must be that K = I.)

PROOF:

(a) =⇒ (b): Assume that S is a matroid, and that Card(J) >

Card(I). Define the following profit function:

p(x) =















Card(J)+1 x ∈ I

Card(J) x ∈ J \ I

0 x 6∈ I∪ J

I is suboptimal, since

p(I)≤ (Card(J)+1) · (Card(J)−1)

< (Card(J))2 ≤ p(J)

The greedy method will start by picking all of the elements if I.

Since S is a matroid, the greedy method must yield an optimal solution.

This mandates adding some element of J \ I to the elements of I which

have already been selected, thus establishing the condition.

TDBC91 slides, page 3.11, 20080922

(b) =⇒ (c): Assume that condition (b) holds, let A ⊆ E, and

suppose that both I and J are maximal independent subsets of A with

Card(I) < Card(J). Then (b) guarantees that there is an e ∈ J \ I with
the property that I ∪ {e} ∈ J. Clearly, I ∪ {e} ⊆ A as well, since

e ∈ J ⊆ A. This contradicts the maximality of I, whence it must be

the case that Card(I) = Card(J).

(c) =⇒ (a): Assume that condition (c) holds, then for any fixed

A ⊆ E, all maximal independent subsets of A have the same cardinal-

ity. Let p : E →N be any profit function, and let G = {g1,g2, . . . ,gm}
be any solution obtained by the greedy method. Assume further that

p(g1)≥ p(g2)≥ . . .≥ p(gm). Let B = {b1,b2, . . . ,bn} be any maximal

independent subset of E for which p(B)≥ p(G). Assume furthermore

that p(b1) ≥ p(b2) ≥ . . . ≥ p(bn). Since G is maximal by construc-

tion, it follows that Card(G) = Card(B), i.e., m = n, by (c) with A = E.

Furthermore, for all i, 1 ≤ i ≤ m, p(gi) ≥ p(bi). If not, let j be the

smallest index for which p(g j) < p(b j). Define A = {e ∈ E | p(e) ≥
p(b j)}. Then {g1,g2, . . . ,g j−1} is a maximal independent subset of A,

since if {g1,g2, . . . ,g j−1,e} ∈ J with e ∈ A, then since p(e)≥ p(b j) >

p(g j), the greedy method would have selected e before g j. How-

ever, {b1,b2, . . . ,b j} is independent (since it is a subset of an inde-

pendent set) and a subset of A as well, with Card({b1,b2, . . . ,b j}) >

Card({g1,g2, . . . ,g j−1}), contradicting (c). Hence it must be the case

that p(g j)≥ p(b j), and so G is optimal. 2

TDBC91 slides, page 3.12, 20080922

3.3 Job Scheduling with Unit-Time Jobs

3.3.1 The job scheduling problem

• Given:

• A set E = {job1, job2, . . . , jobn} of jobs.

• A profit function p : E→N.

• A deadline function d : E→N
>0.

• Write J = (E, p,d).

• Conceptual model:

• Each job takes unit time to run.

• Each scheduled job must be completed before its deadline.

• Only one job may run at a time.

• Once a job starts, it is not interrupted.

• A schedule for a subset I ⊆ E is an injective function

f : I→N
>0

• In schedule f , f (job j) is the end time of job j.

• Thus, job j runs from time f (job j)−1 to time f (job j).

• The schedule f is legal if f (job j)≤ d(job j) for all job j ∈ I.

• A subset I ⊆ E is feasible if it possesses a legal schedule.

• A subset I ⊆ E is optimal if it is feasible, and, for any other fea-

sible J ⊆ E,

∑
job j∈J

p(job j)≤ ∑
jobi∈I

p(jobi)

TDBC91 slides, page 3.13, 20080922

3.3.2 Example Let a job scheduling problem be defined by the ta-

ble below.

Job Profit Deadline Time

job1 100 2 1

job2 10 3 1

job3 15 2 1

job4 27 1 1

• Note that all jobs have unit running time by definition. This value

is shown only for emphasis.

• The feasible solutions are all subsets of {job1, job2, job3, job4} ex-
cept {job1, job3, job4} and {job1, job2, job3, job4}.

• The optimal solution is {job1, job2, job4}.

3.3.3 The combinatorial optimization problem for job scheduling

Let J = (E, p,d) be a job-scheduling problem with unit-time jobs.

• The combinatorial optimization problem associated withJ is just

P = ((E,J), p), with

J = {I ⊆ E | I is feasible}.

TDBC91 slides, page 3.14, 20080922

3.3.4 Lemma Let J = (E, p,d) be a job-scheduling problem with

unit deadlines, and let I ⊆ E. Then I is feasible iff for some (resp. any)

ordering O = {jobi1, jobi2, . . . , jobik} of I such that

d(jobi1)≤ d(jobi2)≤ . . .≤ d(jobik),

the function

fO : I→N
>0

jobi j 7→ j

is a legal schedule for I.

PROOF: Let f : I → N
>0 be a legal schedule for I. If there is a pair

(jobir, jobis) ∈ I× I such that

f (jobir) < f (jobis) and d(jobir) > d(jobis) (*)

then replace f with f ′ : I→N
>0 defined by

f ′(jobit) =















is t = r

ir t = s

it otherwise

Then f ′ is also legal. Repeat this process until there is no pair with the

property (*).

The converse is obvious. 2

TDBC91 slides, page 3.15, 20080922

3.3.5 Theorem – job scheduling and matroids Let J = (E,P,d)

be a job-scheduling problemwith unit deadlines, and letP = ((E,J), p)

be the associated combinatorial optimization problem. Then (E,J) is

a matroid.

PROOF: Let I,J ∈ J with J maximal and Card(I) < Card(J), and let

f : I→N

g : J→N

be legal schedules which meet the conditions of 3.3.4. Define jobα ∈ J

to be the unique element satisfying the following two conditions:

(i) jobα 6∈ I;

(ii) If job j ∈ J \ I, then g(job j)≤ g(jobα).

In other words, jobα is the element of J \ I which is furthest to the right
in g. Since Card(I) < Card(J), such a jobα must exist. Now let

σ ={job j ∈ J | g(jobα) < g(job j)}

σ′ ={jobi ∈ I | (∃job j ∈ σ)(f (job j)≤ f (jobi))}

Note that σ ⊆ I and that σ ⊆ σ′. σ′ defines the shortest final interval

of f which contains all elements of σ. These may be visualized as

follows, with ρ = I \σ′.

f

ρ σ′

g
σ

jobα

TDBC91 slides, page 3.16, 20080922

Now define

σ′′ = σ′ \σ

and let

f ′ : I∪{jobα}→N

be defined as follows.

• The elements in σ and in σ′′ occur in the same order in f ′ as in f .

• The order of elements in σ′ are re-arranged so that all elements of

σ′′ come before any element of σ; jobα is inserted between these

two sets.

This may be visualized as follows.

f ′
ρ σ′′

jobα

σ

This schedule is legal because:

• The elements of ρ are not moved.

• The elements of σ′′ are scheduled no later in f ′ than in f .

• The elements of {jobα}∪σ are scheduled no later in f ′ than in g.

Thus, I∪{jobα} ∈ J, so I Is not maximal in J. Hence, using the char-

acterization 3.2.7(b), it follows that (E,J) is a matroid. 2

3.3.6 Corollary The greedy strategy of 3.2.5 always finds an opti-

mal solution of the job scheduling problem with unit deadlines. 2

TDBC91 slides, page 3.17, 20080922

3.3.7 Basic implementation of job scheduling The following are

the key data structures.

Given: source : array[1..n] of job; /∗ Sorted by profit ∗/
Build: solution : array[0..n] of job; /∗ Sorted by deadlline ∗/
Fixed: solution[0]; /∗ Dummy job with deadline = 0 and profit = 0 ∗/

〈 solution[1]← source[1];

solnsize← 1;

for i ← 2 to n do

〈 /∗ A: Find the position for the job source[i]. ∗/
check ← solnsize;

while deadline(source[i]) < deadline(solution[check])

and deadline(solution[check]) > check

do check ← check −1;

/∗ B: If the job fits, insert it as element check +1. ∗/
if deadline(source[i]) > check

then 〈 for j ← solnsize downto check +1 do

solution[j +1]← solution[j];

solution[check +1]← source[i];

solnsize← solnsize+1;

〉
〉

〉

soln[0]
(dummy)

soln[1] soln[2] soln[3] soln[4] soln[5] · · · soln[k]

solnsize(soln is short for solnsize).

TDBC91 slides, page 3.18, 20080922

3.3.8 Proposition The time complexity of the job scheduling algo-

rithm of 3.3.7 is:

• Θ(n2) in the worst case;

• Θ(n) in the best case;

plus the amount of time needed to sort the array source.

PROOF: The outer loop (A) is executed n−1 times, regardless of the

nature of the input. The inner loop (B) is executed once in the best

case (that the new job is inserted at the right of the existing list) and

i times in the worst case (that the new job is inserted at the left of the

existing list). This easily accounts for both cases. 2

3.3.9 Improving upon the time complexity

• The key idea is to put each new job in the rightmost possible slot.

dummyd = 1 d = 4 d = 4 d = 7
}



}



}

d = 1 2≤ d ≤ 4 d = 5 6≤ d ≤ 7 d = 8

· · ·

• The slots are grouped, with one vacant slot per group (except pos-

sibly for the first group).

• The vacant slot is leftmost in the group.

• A new element with deadline d in the indicated range may be

inserted into the group. It is then combined with its neighbor to

the left.

• Effective management of this situation calls for the partition-

union data type.

TDBC91 slides, page 3.19, 20080922

3.3.10 The partition-union data type Let S be a finite set. The

partition union data type on S is structured as follows.

values: partitions of the set S;

operations:

find: Determine whether or not two elements of S belong to

the same block of the partition;

union: Combine two blocks of the partition into one.

3.3.11 An effective realization using rooted trees

• The illustration is via example. Let

• S = {1,2, . . . ,10};

• Partition = {{1,7,8,9},{2,5,10},{3,4,6}}.

• A tree representation is as follows.

1

7 8 9

2

5 10

3

4 6

TDBC91 slides, page 3.20, 20080922

• This representation is not unique; the only requirement is that

each block of the partition be represented by a rooted tree.

8

1

7

9

10

5

2

6

4 3

• To implement the find operation, simply follow the path from

each vertex to its root, and compare.

TDBC91 slides, page 3.21, 20080922

• To implement the union operation, glue the trees together.

1

7 8 9

S

2

5 10

7→

2

5 10 1

7 8 9

• This gluing is not unique; other possibilities include the follow-

ing.

1

7 8 9

2

5 10

1

7 8 9 2

5 10

TDBC91 slides, page 3.22, 20080922

• To have fast finds, it is essential to keep the depth of the trees to a

minimum.

• Two rules to help achieve this goal are the following.

Weighting rule: In the union operation, glue the tree with fewer

vertices to the root of the other one.

Collapsing rule: In a find, move all vertices which are examined

to a direct connection to the root.

• In a find of 18 in the tree to the left, the tree to the right is obtained.

1

10 6

13

18

20

1

10 6 13 18

20

TDBC91 slides, page 3.23, 20080922

3.3.12 Theorem (Tarjan) In the context of a partition-union data

structure, assume that the following operations may be performed in

unit time.

(a) Following a pointer one level up.

(b) Assigning a new value to a pointer.

Then the worst-case time complexity for any mix of m finds and n− 1

unions, with m≥ n, is O(m ·α(m,n)), in whichα(m,n) grows extremely

slowly. (α(m,n) ≤ 5 for any practical case.) Thus, for all practical

purposes, the computation is linear in m.

PROOF: Consult the following references:

[1] Tarjan, R. E., “Complexity of a good but not linear set union

algorithm,”, J. ACM 22(1975), pp. 215-225.

[2] Tarjan, R. E. and J. van Leeuven, “Worst-case analysis of set

union algorithms,” J. ACM, 31(1984), pp. 245-281.

2

TDBC91 slides, page 3.24, 20080922

3.3.13 Corollary There is an algorithm for the job scheduling prob-

lem with unit deadlines which has worst-case time complexity which is

almost linear, aside from the complexity of sorting the list of jobs ini-

tially.

PROOF OUTLINE:

• Use the basic data structure of 3.3.9, with each group of slots

corresponding to a block in the partition. Each slot contains a

field in which the index of a job may be stored.

• Initially, each slot is in a block by itself.

• This includes a block for the dummy slot.

• In each block B, a special value min(B) identifying the least index

within that block is maintained.

• In each block B, each slot execpt for min(B) is occupied by a job.

The slot min(B) is free.

• To insert a job j with deadline d, find the block B which contains

slot d (applying the collapsing rule), put j in slotmin(B), and then

merge B with the block which contains min(B)−1.

• When adjacent blocks are merged, they are combined using the

union operation, following the weighting rule.

• Failure occurs when an insertion must be into slot 0.

2

TDBC91 slides, page 3.25, 20080922

3.4 A Brief Review of SomeKey Concepts fromGraph

Theory

3.4.1 Undirected Graphs An undirected graph G = (V,E,g) is

given by:

(i) V = finite set of vertices or nodes;

(ii) E = finite set of edges;

(iii) g : E→ #2(V), with #2(V) denoting those subsets of V contain-

ing exactly two elements.

For an example, let

• V = {a,b,c}

• E = {e1,e2,e3}

• g : e1 7→ {a,b}, e2 7→ {a,b}, e3 7→ {b,c}.

The corresponding graph is shown below.

a

b

c

e1

e2

e3

TDBC91 slides, page 3.26, 20080922

3.4.2 Directed Graphs A directed graph G= (V,E,g) is given by:

(i) V = finite set of vertices or nodes;

(ii) E = finite set of edges;

(iii) g : E→V ×V .

For an example, let

• V = {a,b,c}

• E = {e1,e2,e3}

• g : e1 7→ (a,b), e2 7→ (b,a), e3 7→ (b,c).

The corresponding graph is shown below.

a

b

c

e1

e2

e3

• The term “graph” will be used to denote both directed and undi-

rected graphs, when the type does not matter or may be deter-

mined from context.

TDBC91 slides, page 3.27, 20080922

3.4.3 Labellings and subgraphs Let G = (V,E,g) be a graph (ei-

ther directed or undirected).

(a) Let S be any set. An S-labelling for G is any function f : E→ S.

• The following illustrates an example for the undirected graph of

3.4.1.

S = N

f (e1) = 3

f (e2) = 1

f (e3) = 6
a

b

c

3

1

6

(b) A subgraph of G = (V,E,g) is any graph G′ = (V ′,E ′,g′) with

• V ′ ⊆V

• E ′ ⊆ E

• g′ = g|E with

{

g′(E ′)⊆ 2V
′

(undirected graph)

g′(E ′)⊆V ′×V ′ (directed graph)

(c) A subgraph G′ = (V ′,E ′,g′) of G = (V,E,g) is full if each e′ ∈ E

with

{

g(e′)⊆ 2V
′

(undirected graph)

g(e′)⊆V ′×V ′ (directed graph)

}

is in E ′.

TDBC91 slides, page 3.28, 20080922

3.4.4 Paths and cycles Let G = (V,E,g) be a graph, and let u,v ∈
V .

(a) A path from u to w is a nonempty sequence

〈e1,e2, . . . ,en〉

of edges such that there are v1,v2, . . . ,vn+1 ∈V with

(i)

{

g(ei) = {vi,vi+1} (undirected graph)

g(ei) = (vi,vi+1) (directed graph)

(ii) v1 = u and vn+1 = w.

(b) In a simple path, all vertices are distinct, except possibly for v1 =

vn+1.

• In the graphs of 3.4.1 and 3.4.2:

• 〈e1,e3〉 is a simple path from a to c.

• 〈e1,e2,e1,e2,e3〉 is a path from a to c which is not simple.

• It is possible to speak of an undirected path in a directed graph

(obvious definition).

(c) A cycle in G is a path from a vertex to itself.

(d) A cycle is nontrivial if it is a simple path of length greater than

one.

(e) An undirected graph is connected if there is a path between any

two vertices.

• Usually, a directed graph is taken to be connected if the under-

lying undirected graph (obtained by forgetting edge direction) is

connected.

TDBC91 slides, page 3.29, 20080922

3.4.5 Trees and spanning trees

(a) A tree in an undirected graph is a connected subgraph containing

no nontrivial cycles.

(b) A spanning tree of the graph G = (V,E,g) is a subgraph T =

(VT ,ET ,gT) which is a tree, and which has VT =V .

• Let G be the following graph:

1 2

3 4

5

• The following are all examples of spanning trees of G.

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

TDBC91 slides, page 3.30, 20080922

3.4.6 Theorem – characterization of spanning trees Let G= (V,E,g)

be a graph, and let G′ = (V,E ′,g′) be a subgraph of G with the same

vertices as G. The following conditions are then equivalent:

(a) G′ is a spanning tree of G.

(b) G′ is connected and Card(E ′) = Card(V)−1.

(c) G′ is a tree, but the addition of any additional edge from E \E ′

results in a cycle.

PROOF: Easy exercise. 2

3.4.7 Corollary Let G′ be a subgraph of the graph G, and suppose

further that G′ has no cycles. Then G′ may be extended to a spanning

tree G′′ of G. 2

TDBC91 slides, page 3.31, 20080922

3.5 The Minimum-Spanning-Tree Problem

3.5.1 The minimum-spanning-tree problem

Given: An undirected graph G = (V,E,g) with a labelling

p : E→N
>0

Find: A spanning tree T = (VT ,ET ,GT) of G such that the cost

∑
e∈ET

p(e)

is a minimum over all such trees of G.

• Typical applications:

• Linking a communication network with minimum cost.

• Minimum-cost wiring layout.

3.5.2 Observation For a connected, undirected graph G with an

N-labelling, a minimum spanning tree always exists.

PROOF: Since G is connected, it must have at least one spanning tree.

On the other hand, there are only finitely many spanning trees, so there

must be one with minimal cost. 2

TDBC91 slides, page 3.32, 20080922

3.5.3 Convention From now on, all graphs to be considered will

have the following properties:

(a) There is at most one edge connecting any two vertices.

(b) No edge connects a vertex to itself.

3.5.4 The matroid of subtrees of a graph Let G = (V,E,g) be

any undirected graph.

(a) A forest of G is any collection F of subtrees of G with the prop-

erty that no two distinct members of F have any vertices in com-

mon.

• Note that any subgraph of G which contains all vertices of Gmay

be identified uniquely by its set of edges.

• Thus, a forest of Gmay be viewed as a subset of E with the prop-

erty that the full subgraph of G defined by those vertices contains

no cycles.

• (b) The graphic matroid of G is the pairM(G) = (E,FG) with

FG ⊆ 2E the set of all subsets of E which define forests of G.

3.5.5 Theorem Let G= (V,E,g) be a connected, undirected graph.

ThenM(G) is indeed a matroid, with the maximal independent sets

consisting of precisely the spanning trees.

PROOF: The proof follows directly from 3.4.6(b), which asserts that

all spanning trees have exactly Card(V)− 1 edges, and that spanning

trees are maximal as trees. An application of 3.2.7 completes the proof.

2

TDBC91 slides, page 3.33, 20080922

3.5.6 Kruskal’s algorithm for the minimum-spanning-tree prob-

lem

• Kruskal’s algorithm for the graph G = (V,E,g) with N-labelling

f : E → N is precisely the greedy algorithm for the associated

matroid F(G).

• Note that this is a minimization problem, while the greedy tem-

plate of 3.2.5 illustrates a maximization problem, but there is no

essential difference.

solution←∅;
pool ← E;

while (pool 6= ∅) do
〈 e← edge in of pool with lowest cost;

pool ← pool \{e};
if solution ∪{e} ∈ F(G)

then solution← solution ∪{e};
〉

• Example:

1 2

34 5

6

10

30
45

50
40

35

1520
55

25

Edge Selection:

{1,2} 10

{3,6} 15

{4,6} 20

{2,6} 25

——{1,4} 30

{3,5} 35

——{2,5} 40

——{1,5} 45

——{2,3} 50

——{5,6} 55

TDBC91 slides, page 3.34, 20080922

3.5.7 Overview of the implementation of Kruskal’s algorithm

1. The solution is constructed as a partition-union data type.

• The underlying set is the set V of vertices of the graph.

• The blocks in the partition are collections of vertices which

lie in the same tree of the forest.

• To determine whether a new edge will cause a cycle, it suf-

fices to check whether both of its vertices lie in the same tree

of the forest.

• If they lie in the same tree, adding the edge will create

a cycle, so it is not included.

• If they lie in separate trees, those two trees are merged

into a common block upon adding the edge.

2. The algorithm may be stopped when there is only one block re-

maining in the partition, even if the pool is not empty.

3. To find the next edge of minimum cost in the pool, the data struc-

ture known as a priority queue is employed.

TDBC91 slides, page 3.35, 20080922

3.5.8 Priority queues Let (S,≤) be a finite ordered set. The pri-

ority queue data type on (S,≤) is structured as follows.

values: subsets of the set S;

operations:

is empty: Determine whether or not the priority queue is empty.

insert new: Insert a new element into the queue.

retrieve min: Retrieve the minimum element, and delete if from

the queue.

3.5.9 Some important properties of binary trees

(a) A binary tree is full if every leaf is the same distance from the

root.

(b) The lexicographical ordering of the vertices of a full binary tree

is breadth first, level-by-level.

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

(c) A binary tree is complete if it consists of the first k vertices (for

k ∈N) of some full binary tree.

TDBC91 slides, page 3.36, 20080922

3.5.10 Realization of priority queues using min-heaps Let T be

a complete binary tree with vertices labelled by values in the ordered

set (S,≤).

(a) T is a min-heap if, for any vertex t of T ,

Value(t)≤Value(LeftChild(t)) (2)

Value(t)≤Value(RightChild(t))

• Example:

2

6

13

24 23

10

11 12

5

7

19

16

• The implementation of the operators is as follows.

is empty: Trivial.

TDBC91 slides, page 3.37, 20080922

insert new: Insert the new element as the next element in the com-

plete tree, and then adjust upward.

• Example:

2

6

13

24 23

10

11 12

5

7

19 4

16

Readjust upwards

2

6

13

24 23

10

11 12

4

5

19 7

16

TDBC91 slides, page 3.38, 20080922

retrieve min: Delete the root (the minimum element) move the last

element in the full-tree ordering up to be the new root, and adjust

downward.

• Example:

×2

6

13

24 23

10

11 12

4

5

19 7

16

7

6

13

24 23

10

11 12

4

5

19

16

Readjust downwards

4

6

13

24 23

10

11 12

5

7

19

16

TDBC91 slides, page 3.39, 20080922

3.5.11 Implementation of complete binary trees using arrays

• The following record type is employed for storage of a complete

binary tree in an array.

compl bintree = record

tree : array[1..max tree size] of value;

last : 0..max tree size;

end record

• Let T be of type compl bintree. The storage layout is as follows:

• The root is at T.tree[1].

• The left child of T.tree[k], if it exists, is at T.tree[2k].

• The right child of T.tree[k], if it exists, is at T.tree[2k+1].

• Note that this follows exactly the lexicographic ordering of

the vertices of a complete binary tree, as defined in 3.5.9.

• Such a tree, with the vertices labelled by their position in the

array, is shown below.

[1]

[2]

[4]

[8] [9]

[5]

[10] [11]

[3]

[6]

[12] [13]

[7]

[14] [15]

• The entry last is used to identify the last vertex under row-

by-row ordering of the complete binary tree.

TDBC91 slides, page 3.40, 20080922

3.5.12 The complexity of operations on a min-heap Let T be a a

complete binary tree of size n which is used to realize a min-heap. The

complexities of the associated operations are as follows.

Operation Complexity Cases

insert new Θ(1) best

insert new Θ(1) average

insert new Θ(log(n)) worst

retrieve min Θ(log(n)) all

is empty Θ(1) all

PROOF: The Θ(1) cases. except for the average case of insert new,

are immediate. The Θ(log(n)) cases arise from the need to adjust along

a path between the root and a leaf. The average case complexity of

inserting a new element is highly nontrivial and is established in the

following articles.

• T. Porter and I. Simon, Random insertion into a priority queue

structure, IEEE Trans. on Software Engrg., 1(1975), 292–298.

• E.-E. Doberkat, Inserting a new element into a heap, BIT, 21(1981),

255–269.

2

TDBC91 slides, page 3.41, 20080922

3.5.13 The “obvious” way to build a min-heap

• Repeatedly insert into an initially empty tree.

• The worst-case time complexity for each operation is Θ(log(n)),

for a tree of size n, although the average is Θ(1) (according to the

table of 3.5.12).

• Rough per-opertation complexity argument for the worst case:

• In total, n elements must be inserted.

• A typical insertion requires adjustment along half of the tree

height.

• A typical insertion occurs when the tree is half full, resulting

in a path length of n−1 from root to leaf.

• Thus, the complexity is

0.5 ·Θ(log(n−1)) = 0.25 ·Θ(log(n)) = Θ(log(n))

• Thus, while an average-case complexity of Θ(n) holds for the en-

tire build operation, the worst-case complexity for this approach

will be Θ(n · log(n)).

TDBC91 slides, page 3.42, 20080922

3.5.14 A better way to build a min-heap

• Start with the elements of the tree in arbitrary order, and “heapify”

bottom up.

• This results in an amortization of the adjustment complexity, and

a consequent reduction in the overall complexity.

• Example:
3

2 1

15

17

11 7

4

8

• The subtrees with more than one vertex are processed in the re-

verse order of the indices of their roots.

Process 1 :
4

8

;
4

8

Process 2 :
17

11 7

;
7

11 17

Process 3 : 15

7

11 17

4

8

;

4

7

11 17

8

15

TDBC91 slides, page 3.43, 20080922

3.5.15 Theorem – the complexity of heapification The worst-case

time complexity of the heapification operation described in 3.5.14 is

Θ(n), with n the number of elements in the tree.

PROOF:

• Let k = ⌊log2(n)⌋ = height of the tree.

• Say that the root is at level one.

• The length of a path from a vertex at level i to a leaf is k− i+1.

• Thus, for a vertex at level i, there are k− i+1 swaps in an adjust-

ment, per vertex, maximum.

• The total number of swaps is thus bounded as follows.

k

∑
i=1

(2i−1 · (k− i+1)) =
k

∑
i=1

(2k−i · i) = 2k ·
k

∑
i=1

(2−i · i) ≤ 2 ·n

• To see this, note that:

2k ≤ n and

k

∑
i=1

(2−i · i)≤
1

2
+(

1

4
+
1

4
)+(

1

8
+
1

8
+
1

8
)+(

1

16
+

1

16
+

1

16
+

1

16
)

+ . . .+(k−1) · (
1

2k−1
)+ k ·

1

2k

=
k

∑
i=1

2−i+
k

∑
i=2

2−i . . .+
k

∑
i=k−1

2−i+
k

∑
i=k

2−i

≤ 1+2−1+2−2+ . . .+2−(k−1) +2−k

≤
∞

∑
i=0

2−i = 2

2

TDBC91 slides, page 3.44, 20080922

3.5.16 Corollary The time complexity of the heapification opera-

tion described in 3.5.14 is Θ(n) in all cases, with n the number of

elements in the tree. 2

TDBC91 slides, page 3.45, 20080922

3.5.17 Analysis of Kruskal’s Algorithm Let G be a labelled graph

representing the minimum-spanning-tree problem, with

• nV = number of vertices;

• nE = number of edges.

Assume further that nE ≥ nV − 1 (otherwise, in view of 3.4.6, there

cannot be a solution). Then Kruskal’s algorithm may be realized with

a worst-case and average-case running time of Θ(nE · log(nE)), and a

best-case time of Θ(nE).

PROOF:

• Assume that the graph is specified as a set of edges, with each

edge description containing the following:

• the two endpoints (vertices);

• the cost

• The vertices are stored in a partition-union data structure.

• Initially, each vertex is in its own block.

• When an edge is added, its vertices are combined into a sin-

gle block.

• If two vertices lie in the same block, adding an edge connect-

ing them will result in a cycle, so such edges are rejected.

TDBC91 slides, page 3.46, 20080922

• The high-level pseudocode:

1 Build the min heapM of edges, with cost as value;

2 Build the initial partition-union structure N of vertices;

3 solution← ∅;
4 while (M not empty and N has more than one block) do

5 〈 e← retrieve min(M);

6 v 1 ← find(N ,vertex 1(e));

7 v 2 ← find(N ,vertex 2(e));

8 if (v 1 6= v 2)

9 then 〈 union(N ,v 1 ,v 2);

10 solution← solution ∪{e};
11 〉
12 〉

• The test for emptiness of M may be dropped if it is known that

the input graph is connected.

• The line-by-line complexity is as follows:

Line 1: Θ(nE) (see 3.5.15).

Line 2: Θ(nV), and since, nE ≥ nV −1, it is O(nE) as well.

Line 3: Θ(1).

Line 4: The loop is executed Θ(nE) times, average and worst.

Line 5: Θ(log(nE)).

Lines 6+7: O(nE ·α(nV ,nE)) total for the whole loop (see 3.3.12).

Line 9: Subsumed by 6+7.

Line 10: Θ(1).

• Thus, the loop total (Lines 4-10) is:

O(nE)+Θ(nE · log(nE))+O(nE ·α(nE,nV)) = Θ(nE · log(nE))

TDBC91 slides, page 3.47, 20080922

• This complexity is also valid for the entire algorithm, since Lines

1-3 show a lesser complexity.

• These results apply to both the average and worst case.

• The best case is Θ(nE). (Exercise) 2

3.5.18 Corollary Kruskal’s algorithmmay be realized with a worst-

case and average-case running time of Θ(nE · log(nV)), and a best-case

time of Θ(nE), with nE and nV denoting the number denoting the num-

ber of edges and vertices in the graph, respectively, under the con-

straint that nE ≥ nV −1.

PROOF: This follows immediately from 3.5.17, since Card(nE) ≤
Card(nV)2 implies that log(nE)≤ 2 · log(nV). 2

3.5.19 Variations on Kruskal’s algorithm

• There is an algorithm which runs in worst-case time

O(nE · log(log(nV))):

Yao, A. C., “AnO(|E| loglog |V |) algorithm for finding min-

imum spanning trees,” 4, pp. 21-23 (1975).

• Prim’s algorithm (to be examined next).

TDBC91 slides, page 3.48, 20080922

3.5.20 Prim’s Algorithm

• Prim’s algorithm differs fromKruskal’s in that a single tree (rather

than a forest of trees) is maintained during the construction pro-

cess.

• The high-level pseudocode:

e ← edge of minimum cost in the set E of all edges;

solution←{e};
pool ← E \{e};
while (pool 6= ∅) do

〈 e←edge in pool of least cost

which is connected to some edge in solution;

pool ← pool \{e};
if (solution ∪{e} is a tree)
then solution← solution ∪{e};

〉

• Example:

1 2

34 5

6

10

30
45

50
40

35

1520
55

25

Edge Selection:

{1,2} 10

{2,6} 25

{3,6} 15

{4,6} 20

——{1,4} 30

{3,5} 35

——{2,5} 40

——{1,5} 45

——{2,3} 50

——{5,6} 55

TDBC91 slides, page 3.49, 20080922

Since Prim’s algorithm is not formally a greedy algorithm, the re-

sults of 3.2.7 do not guarantee that it will always find an optimal solu-

tion. A more direct proof is needed.

3.5.21 Theorem—Prim’s algorithms finds optimal solutions

Prim’s algorithm always finds a minimum spanning tree, whenever

such a tree exists.

PROOF: Fix a problem instance for which a spanning tree exists.

Let P = 〈p1, p2, . . . , pn−1〉 be a sequence of edge selections yielded by
Prim’s algorithm, and let R = 〈p1, . . . , pk〉 be the maximal initial seg-

ment of P which is extendable to an optimal solution. (Surely k ≥ 1,

since Kruskal’s algorithm, which is known to be optimal, could select

p1 first.) Now let Q = 〈p1, p2, . . . , pk,qk+1, . . .qn−1〉 be an optimal ex-

tension of R. (There is no particular significance to the ordering of the

qi’s.) If k 6= n− 1, then {p1, p2, . . . , pk,qk+1, . . . ,qn−1}∪ {pk+1} must

contain a nontrivial cycleC. This cycleC must contain pk+1 with

• Cost(r) < Cost(pk+1) for all r ∈C \{p1, . . . , pk+1}.

If not, it would be possible to replace some edge r ∈C\{p1, . . . , pk+1}
with Cost(r) ≥ Cost(pk+1) by the edge pk+1 and maintain an optimal

solution, thus contradicting the maximality of R. (Note that any edge

in C may be deleted and a spanning tree will result.) However, it must

also be the case that

• Cost(pk+1)≤ Cost(r) for all r ∈C \{p1, . . . , pk+1} which are ad-

jacent to some member of {p1, . . . , pk},

else Prim’s algorithm would have selected such an r. Note that there

must be at least one such adjacent element, since {p1, p2, . . . , pk+1}
does not contain a cycle. Thus, no such cycle C can exist, and so

k = n−1, whence the algorithm yields a minimum spanning tree. 2

TDBC91 slides, page 3.50, 20080922

3.5.22 A basic implementation of Prim’s Algorithm

• Prim’s algorithm is not amenable to the traditional notion of a

min-heap of edges, since the notion of an acceptable candidate

edge changes with each addition of a new edge to the tree.

• Rather, the vertices are labelled by members of {1,2, . . . ,n}, and
the graph is is represented by the array

cost = array[0..n,0..n] of integer;

with

cost[i, j] =

{

cost of the edge from i to j if such an edge exists;

∞ if no such edge exists.

• Entries for cost[0,x], cost[x,0], with x ∈ 0..n are dummies.

• By convention, cost[i, j] > 0 for all non-dummy entries.

• As the algorithm proceeds, the following arrays are constructed:

tree = array[1..n−1,1..2] of 1..n;

= array[1..n−1] of array[1..2] of 1..n;

near = array[1..n] of 0..n;

with

tree[i] =(n1,n2) = ith edge found by the algorithm.

near[i] =















index of the vertex in the partial solution

which is nearest (least cost) to vertex i, if

vertex i is not in the partial solution;

0, if vertex i is connected to the partial solution.

TDBC91 slides, page 3.51, 20080922

• The pseudocode for the algorithm:

tree[1]← edge with minimum cost;

for i ← 1 to n do

if cost [i , tree[1,2]] < cost [i , tree[2,2]]

then near[i]← tree[1,2];

else near[i]← tree[2,2];

near[tree[1,1]]← 0; near[tree[1,2]]← 0;

min dist ← 0; i ← 2;

while (i ≤ n−1 and min dist <∞) do

〈 for j ← 2 to n do

〈 min dist ←∞;

if (cost [j ,near[j]] < min dist)

then 〈 min dist ← cost [j ,near[j]];

min vertex← j ;

〉
〉

if min dist <∞
then 〈 tree[i]← (min vertex,near[min vertex]);

near[min vertex]← 0;

for j ← 1 to n do

if (near[j] 6= 0 and

cost [j,min vertex] < cost [j ,near[j]])

then near[j]←min vertex;

〉
else no spanning tree;

i ← i +1;

〉

TDBC91 slides, page 3.52, 20080922

3.5.23 Theorem The implementation of Prim’s algorithm, as given

in 3.5.22 has complexity Θ(n2) in all cases, with n the number of ver-

tices in the graph.

PROOF: This is immediate, in view of the matrix representation of the

graph. 2

3.5.24 Priority queues with the decrease elt operation

• Although Prim’s algorithm is not amenable to the notion of a tra-

ditional min-heap, a modified version in which the weights of

objects in the heap may be decreased dynamically is useful.

• Let (S,≤) be a finite ordered set. The adjustable priority queue

data type on (S,≤) is structured is an extension of the previously

defined priority queue of 3.5.8, with the following additional op-

eration:

decrease elt: Replace a particular element in the queue with one

of a lesser value.

• The implementation of a priority queue as a min-heap, as de-

scribed in 3.5.10 may be augmented easily to accommodate this

additional operation, by using the readjustment operation as de-

scribed in 3.5.10.

TDBC91 slides, page 3.53, 20080922

• Example:

×
3

2

6

13

24 23

10

11 12

4

5

19 7

16

2

6

13

24 3

10

11 12

4

5

19 7

16

Readjust upwards

2

3

6

24 13

10

11 12

4

5

19 7

16

TDBC91 slides, page 3.54, 20080922

The following summarizes the operations on this extended version

of a min-heap. It is an extension of 3.5.12.

3.5.25 The complexity of operations on an extended min-heap

Let T be a a complete binary tree of size n which is used to realize

a min-heap. The complexity of the associated operations is as follows.

Operation Complexity Cases

insert new Θ(1) best

insert new Θ(1) average

insert new Θ(log(n)) worst

retrieve min Θ(log(n)) all

decrease elt Θ(1) best

decrease elt Θ(1) ? average

decrease elt Θ(log(n)) worst

is empty Θ(1) all

PROOF: All cases except decrease elt were considered in 3.5.12. In

the worst case, the complexity of the decrease elt operation is clearly

identical to that of insert new. On the average, a vertex in the heap will

be only one position away from a leaf, since roughly half of the vertices

are at the leaf level, in view of 2.2.11. The best case is immediate. 2

TDBC91 slides, page 3.55, 20080922

3.5.26 An improved implementation of Prim’s algorithm

• A key observation is that Prim’s algorithm operates on vertices,

while Kruskal’s algorithm operates on edges.

• In Prim’s algorithm, an adjustable priority queue of vertices is

maintained.

• The following arrays are used.

initial cost to tree = array[vertex] of integer; (3)

nearest = array[vertex] of vertex; (4)

• This array initial cost to tree represents the initial minimum cost

of an edge from that vertex to the tree under construction; it is

used to build the initial priority queue.

• The array nearest identifies the vertex in the tree under construc-

tion which is nearest to the vertex which is indexed.

• The constant init vertex identifies the initial vertex, which may

but not need be connected to a minimum-cost edge.

• For each vertex, a set of those vertices which are adjacent to it in

the graph (i.e., connected by single edge) is available.

adj set = array[vertex] of set of(v record);

type v record = record id : vertex; /∗ key ∗/
dist : pos integer;

end;

• In the above, id is an identifier for the adjacent vertex, and dist is

the distance from that vertex to the element of the array in which

the record occurs.

• Pseudocode is on the next page.

TDBC91 slides, page 3.56, 20080922

1 in queue[init vertex]← false;

2 initial cost to tree[init vertex]← 0;

3 foreach v ∈ vertex \{init vertex} do
4 〈 in queue[v]← true;

5 initial cost to tree[v]←∞;

6 〉
7 foreach x ∈ adj set [init vertex] do

8 initial cost to tree[x.id]← x.dist ;

10 /∗ Build the priority queueM on the set vertex\{init vertex} ∗/
11 /∗ with Priority(x) = initial cost to tree(x). ∗/
12 build priority queue(M ,vertex \{init vertex}, initial cost to tree);

13 while (not (is empty(M))) do

14 〈 next vertex← retrieve min(M);

15 in queue[next vertex]← false;

16 foreach x ∈ adj set [next vertex] do

17 if ((in queue[x.id] = true)

18 and (x.dist < cost to tree[x.id]))

19 then 〈 nearest [x.id]← next vertex;

20 decrease elt(M,x.id ,x.dist);

21 〉
22 〉

• The array in queue indicates whether or not a given vertex is in

M.

• Upon completion of the algorithm, for each vertex v other than

init vertex, nearest[v] contains the identity of the vertex which is

connected to it via a single edge in the spanning tree.

• Note that the operation decrease elt requires a link from a vertex

to its representation in the priority queue.

TDBC91 slides, page 3.57, 20080922

3.5.27 The complexity of the improved version of Prim’s algo-

rithm Prim’s algorithm may be realized with a worst-case running

time of Θ(nE · log(nV)), an average-case time of Θ(nV · log(nV)+nE),

and a best-case time of Θ(nE), with nE and nV denoting the number

denoting the number of edges and vertices in the graph, respectively.

PROOF: In the above pseudocode, the loop spanning lines 3-6 takes

time Θ(nV) in all cases, while the loop spanning lines 7-8 takesO(nE).

Line 12 takes Θ(nV) time in all cases. The outer while loop, beginning

at line 13, is executed Θ(nV) times. Line 14 requires Θ(log(nV)) in

both the worst and average cases. Note also that the for loop spanning

lines 16-21 is executed at most twice for each edge (once for each of

its vertices); that is, 2 ·nE times. This time is amortized over the entire

run, and is not repeated for each iteration of the outer loop. Inside the

for loop, only line 20 takes more than constant time; it is bounded by

O(log(nV)) in the worst and Θ(1) in the average case. Thus, the entire

running time is Θ(nV · log(nV)+nE · log(nV)) = Θ(nE · log(nV)) in the

worst case and Θ(nV · log(nV)+nE) in the average case.

Although the pseudocode will run in time Θ(nV) in the best case

(exercise), it will take at least Θ(nE) to build the array adjacent, so this

is a better measure of the best case performance. 2

TDBC91 slides, page 3.58, 20080922

3.5.28 Remarks on Kruskal’s vs. Prim’s algorithms

• Both algorithms exhibit time complexity Θ(nE · log(nV)) in the

worst case. Using the given implementations, Prim’s algorithm

may be a bit better in the average case.

• Both may be improved to Θ(nE + nV · log(nV)) in the worst case

by replacing the min-heap with a Fibonacci heap. (Not covered

in these notes.)

• The choice of which to use is best made via experimental work

on appropriate data for the application under consideration.

TDBC91 slides, page 3.59, 20080922

