
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 1: Fundamental Notions

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

1. Introduction

1.1 Problems and Algorithms

Abstractly, a problem is just a function

p : Problem instances→ Solutions

Example: Sorting a list of integers

Problem instances = lists of integers

Solutions = sorted lists of integers

p : ℓ 7→ Sorted version of ℓ

An algorithm for p is a program which computes p.

There are four related issue which warrant consideration:

Issue 1: Characterize those problem instances which are solvable by

algorithm.

• This is not a trivial question.

• Church’s Thesis: There is an “upper bound” which is shared by

the idealization of virtually all known programming languages in

which unlimited memory is allowed.

• The detailed study of this issue is a subject for a course in the

theory of computation.

• In this course, the focus will be upon problems which admit an

algorithm. (solvable problems)

TDBC91 slides, page 1.1, 20080831

Issue 2: Characterize the amount of computing resources which a given

algorithm A requires to solve a problem p.

Issue 3: Given a particular problem p which is solvable by algorithm,

characterize how good the best possible algorithm for p can be, in

terms of the amount of computing resources required.

Issue 4: Given a problem p, design good algorithms for p.

TDBC91 slides, page 1.2, 20080831

1.2 Key Conceptual Properties of Algorithms

There are four key conceptual properties of algorithms:

Finiteness: The algorithm must eventually halt for all specified input

data.

Correctness: The algorithm must compute the correct function.

Definiteness: Each step of the algorithm must be precisely defined.

Effectiveness: The steps must be executable on a “physically realiz-

able” computer.

• Definiteness and effectiveness are guaranteed when the algorithm is

specified in a “real” programming language.

• Finiteness and correctnessmust be established in each case.

• With regard to correctness, there is some common terminologywhich

is useful to know:

Partial correctness: The algorithm performs the correct computation

whenever it halts.

Total correctness: The algorithm is partially correct and it always

halts.

TDBC91 slides, page 1.3, 20080831

1.3 Algorithm Analysis

• The main focus of algorithm analysis in this course will be upon the

“quality” of algorithms already known to be totally correct.

• This analysis proceeds in two dimensions:

Time complexity: The amount of time which execution of the algo-

rithm takes, usually specified as a function of the size of the input.

Space complexity: The amount of space (memory) which execution

of the algorithm takes, usually specified as a function of the size

of the input.

• Such analyses may be performed both experimentally and analyti-

cally.

TDBC91 slides, page 1.4, 20080831

1.4 Designing Algorithms

In addition to analyzing given algorithms, it is important to study the

process of designing good algorithms in the first place.

• There are two principal approaches to algorithm design.

By problem: Study sorting algorithms, then scheduling algorithms,

etc.

By strategy: Study algorithms by design strategy. Examples of de-

sign strategies include:

• Divide-and-conquer

• The greedy method

• Dynamic programming

• Backtracking

• Branch-and-bound

• In this course, algorithm design will be studied by strategy. This

offers the following advantages:

• It provides a common framework for analysis.

• It provides insight into how algorithms for new problems may be

designed.

TDBC91 slides, page 1.5, 20080831

1.5 Computational Models

• Church’s Thesis establishes that what may be accomplished algo-

rithmically is independent of the choice of computational model.

• The computational model nonetheless does affect how these things

are accomplished, and so is central to the issue of algorithm design

and performance analysis.

• The study in this course will be limited to sequential algorithms.

• Most computers nowadays are still sequential.

• A solid grounding in sequential algorithms is essential to the un-

derstanding of parallel algorithms.

• The study of parallel algorithms is the subject of other courses.

• The computational model to be used is that of a “typical” imperative

programming language (Algol, Pascal, C, Java, etc.)

• The details which make these languages different will not be rele-

vant at the level of analysis and design which will be presented.

TDBC91 slides, page 1.6, 20080831

1.6 Some Basics of Algorithm Analysis

A formal measure of algorithm quality is needed.

Consider the simple example of Bubblesort; the following program

sorts the n-element array a[1..n] into nondecreasing order.

for i← 2 to n do

for j← n downto i do

if a[j−1]> a[j]

then /∗ swap ∗/
〈 temp← a[j−1]; a[j−1]← a[j]; a[j]← temp; 〉

Space requirements:

• This program requires n+3 integer storage locations.

• n locations for the array.

• One location for temp.

• One location each for the loop variables i and j.

Caution:

• Not every (mathematical) integer fits in a computer word.

• Using standard binary representation, the (nonnegative) integer

k requires max(1, log2(k)) bits for storage, so in a uniform rep-

resentation, to sort the integers {0,1, ..,k}, a storage size for

integers of at least log2(k) bits is required.

• Thus, a total of (k+3) · log2(k+3) bits of storage is required.

• The measurement of space for an algorithm depends upon what

is admitted as an elementary data structure.

• In the study of algorithm complexity (but not the later study

of problem complexity), the computer notion of a word-based

integer will be regarded as an elementary data structure.

TDBC91 slides, page 1.7, 20080831

Time requirements:

First question: What is to be measured?

Experimental measurement: In profiling, the actual system time

used is measured.

Formal analysis: In formal algorithm analysis, the number of ele-

mentary instructions which have been executed is measured.

• Time measurement in formal analysis thus depends upon

what is admitted as an elementary operation.

• In the analyses of these notes, the basic operations of an im-

perative programming language are taken as elementary.

• Procedure calls are not elementary.

• These ideas will not be developed formally; that which is

admitted as elementary will be obvious from the examples.

• Next, a closer look at the time complexity of bubblesort is made.

TDBC91 slides, page 1.8, 20080831

• If the list is totally sorted to begin with, then:

• There are no variable assignments, other than those to the loop

variables.

• For the moment, assignments to loop variables and compar-

isons for loop termination will be ignored.

• Excluding operations to manage loop indices, the number of com-

parisons is as follows:

1st pass: n−1

2nd pass: n−2
... ...

(n−1)st pass: 1

=
n−1
∑
i=1

i=
n · (n−1)

2
=

1

2
· (n2−n).

• If the list is in reverse order to begin with, then:

• The number of comparisons is the same as above.

• Each comparison results in a swap.

• Thus, there are 3
2
· (n2−n) assignments.

• It is easy to see that:

• the best case (fewest elementary operations) occurs when the list

is totally ordered. (1
2
· (n2−n) total operations)

• the worst case (most elementary operations) occurs when the list

is in reverse order. (2 · (n2−n) total operations)

TDBC91 slides, page 1.9, 20080831

• It is also reasonable to ask about average complexity.

Question: Over what should the average be taken?

• In general, this question does not have an easy answer.

• Average complexity must be considered on a case-by-case basis,

and will be considered in detail for select problems.

• For this algorithm, the number of comparison and assignment op-

erations κ of any case is bounded by

1

2
· (n2−n)≤ κ≤ 2 · (n2−n)

• Any measure of the average must therefore lie between these

bounds.

TDBC91 slides, page 1.10, 20080831

Justification for ignoring loop assignments and comparisons:

• Loop initialization requires one assignment and one comparison..

• Each pass through a loop requires:

• One assignment to increase or decrease the loop variable.

• One comparison to decide whether or not to continue.

• The number of assignments and comparisons necessary to man-

age loop indices is as follows.

outer loop
︷ ︸︸ ︷

2+
n

∑
i=2

(2 +

inner loop
︷ ︸︸ ︷

(2+
i

∑
j=n

2)) = 2 · (
n

∑
i=2

(1+(1+
i

∑
j=n

1)))

= 2 · (1+
n

∑
i=2

(2+(n− i+1)))

= 2 · (1+
n

∑
i=2

(n− i+3))

= 2 · (1+
n+1

∑
i=3

i)

= 2 · (1− (1+2)+
n+1

∑
i=1

i)

= 2 · (−2+(n+1) ·n/2)
= 2 · (−4+n2+n)

= 2 · (n2+n−4)

TDBC91 slides, page 1.11, 20080831

• The total complexity κ′ is obtained by combining this result with

the formula for κ on the previous slide.

1

2
· (n2−n)+n2+n−4≤ κ′ ≤ 2 · (n2−n)+n2+n−4

or

3

2
·n2+ 1

2
·n−4≤ κ′ ≤ 3 ·n2−n−4

• With or without the loop overhead, the complexity is represented

by a formula of the form

k2 ·n2+ k1 ·n+ k0

with the ki real constants and k2 > 0.

• The general idea is to consider behavior:

• only as n→∞, and

• up to constant multiples.

• Since

lim
n→∞

k2 ·n2+ k1 ·n+ k0

n2
= k2

the complexity k2 ·n2+ k1n+ k0 is considered to be equivalent to

the simpler formula n2, and it is said that the order of the time

complexity of the bubblesort algorithm is n2.

• This idea will be formalized shortly.

TDBC91 slides, page 1.12, 20080831

Further remarks on complexity:

â In general, it is not the case that the best and worst case time

complexities of an algorithm are of the same order.

Example: Improved bubblesort

swapflag← true; i← 2;

while swapflag do

〈 swapflag← f alse;

for j← n downto i do

if a[j−1]> a[j]

then

〈 temp← a[j−1]; a[j−1]← a[j];

a[j]← temp;

swapflag← true; 〉
i← i+1;

〉

• In this version of bubblesort:

• The worst case time complexity is of order n2, as before.

• The best case time complexity is of order n.

â The analyses presented here assume that integer comparison and

assignment may be performed in constant time.

• This assumption is reasonable for integers of fixed storage size.

• It is not valid in situations in which integers of arbitrary size

may be represented (e.g., Common Lisp).

• In these notes, unless specifically stated to the contrary, it will

be assumed that all integers are of fixed storage size.

TDBC91 slides, page 1.13, 20080831

1.7 Formalization of the Concept of Order

The next task is to formalize the notion of one function being more

difficult to compute than another, subject to the following assumptions:

• The argument n defining the instance size is sufficiently large (asymp-

totic measure).

• Positive constant multipliers are ignored.

The following notation will be used throughout these notes.

1.7.1 Notation for common sets of numbers

N = natural numbers = {0,1,2, . . .}
N>0 = positive integers = N\{0}= {1,2, . . .}
Z = integers = {. . . ,−2,−1,0,1,2, . . .}
Q = rational numbers

R = real numbers

R≥0 = nonnegative real numbers

R>0 = positive real numbers

C = complex numbers

TDBC91 slides, page 1.14, 20080831

1.7.2 Definition Let f :N→R. f is said to be eventually nonneg-

ative (abbreviated e.n.) if there is an no ∈N such that f (n) ∈ R≥0 for
all n≥ no. The special notation

f :N
e.n.−→R

is used to denote that f is eventually nonnegative.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

-1

-2
no

• “Physically meaningful” complexity functions will never be nega-

tive for usable arguments.

• However, f (n) may not be meaningful for all values of n, and the

negative values of f (n) may correspond to values of n which are

never used.

• In any case, behavior for values of n which are less than no is not

significant for the asymptotic mathematical analysis.

TDBC91 slides, page 1.15, 20080831

1.7.3 Definition Let f :N
e.n.−→R. Define

O(f)= {g :N e.n.−→R | (∃no∈N)(∃c∈R>0)(∀n≥ no)(g(n)≤ c · f (n))}

If g ∈ O(f):

• It is said that “g is big-oh of f ”.

• It is customary to write g = O(f), although g ∈ O(f) is more

consistent mathematically.

• The intuition is that g is “smaller” than f ; i.e., that g represents a

lesser complexity.

TDBC91 slides, page 1.16, 20080831

1.7.4 Example Let f (n) = 2 ·n2−6 ·n+4;

g(n) = 10 ·n+80.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

25

50

75

100

125

150

175

200

225

g(n)

f (n)

• To find the point of intersection, solve

2 ·n2−6 ·n+4= 10 ·n+80

• The positive solution is n= 11.34 (approximately).

• For n≥ 12, g(n)≤ f (n).

• In the notation of 1.7.3, no = 12 and c= 1.

• Note that f 6∈ O(g):

• Suppose that f (n)≤ c1 ·g(n) for all n≥ n1.

• Then 2 ·n2+(−6−10 ·n)+(4−80 · c1)≤ 0 for all n≥ n1.

• However, 2 · n2+(−6− 10 · n)+ (4− 80 · c1) is clearly positive

for large enough n.

TDBC91 slides, page 1.17, 20080831

• It is not always the case that the constant c may be chosen to be 1.

1.7.5 Example Let f (n) = 2 ·n2−6 ·n+4;

g(n) = 3 ·n2+6 ·n+8;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

g(n)
f (n)

2 · f (n)

• f (n)≤ g(n) for all n ∈N.

• 2 · f (n)−g(n) = (4 ·n2−12 ·n+8)− (3 ·n2+6 ·n+8)

= n2−18 ·n
which is ≥ 0 for n≥ 18.

• Thus, c= 2, no = 18 works, in the notation of 1.7.3.

• In this case, f ∈ O(g) also.

TDBC91 slides, page 1.18, 20080831

The following results strengthen the notion that whenever g∈O(f),
g is less complex than f .

1.7.6 Definitions

(a) Let ComplFn denote { f | f : N e.n.−→ R}. ComplFn is called the

class of basic complexity functions.

(b) For f ,g ∈ ComplFn, define g≤O f iff g ∈ O(f).

(c) For f ,g ∈ ComplFn, define g≡O f iff O(g) = O(f).

• Intuitively,≤O is an order relation on ComplFnwhich captures the

notion of one function defining a lesser complexity than another.

• However, ≤O is not a partial order, because loops of the form

f ≤O g≤O f may exist.

• To obtain a partial order, it is necessary to group the functions in

such loops into equivalence classes.

1.7.7 Proposition

(a) The relation≤O is a preorder; that is, it is reflexive and transitive.

In other words:

• For all f ∈ ComplFn, f ∈ O(f).

• For all f ,g,h ∈ ComplFn, if f ∈ O(g) and g ∈ O(h), then f ∈
O(h).

(b) The relation ≡O is an equivalence relation, and, furthermore,

f ≡O g iff f ≤O g and g≤O f . 2

TDBC91 slides, page 1.19, 20080831

Upon replacing ≤ with ≥ in (g(n)≤ c · f (n)), the “dual” Ω1(f) of

O(f) is obtained.

1.7.8 Definition Let f :N
e.n.−→R. Define

Ω1(f)= {g :N e.n.−→R | (∃no∈N)(∃c∈R>0)(∀n≥ no)(g(n)≥ c · f (n))}

If g ∈Ω1(f):

• It is said that “g is big-omega sub one of f ”.

• The intuition is that g is “larger” than f ; i.e., that g represents a

greater complexity.

1.7.9 Observation For any f ,g ∈ ComplFn,

g ∈ O(f) iff f ∈Ω1(g). 2

TDBC91 slides, page 1.20, 20080831

1.7.10 Definition For f ∈ ComplFn, define

f ∈ Θ1(g)⇔ f ∈ O(g) and f ∈Ω1(g).

If g ∈ Θ1(f):

• It is said that “g is big-theta sub one” of f ”.

• The intuition is that g, as a complexity measure, is “the same ” as

f .

1.7.11 Fact f ∈Θ1(g) iff f ≡O g. 2

1.7.12 Proposition: polynomials and complexity Let

f (n) = ∑m
i=0ai · ni and g(n) = ∑ℓ

i=0bi · ni, with am > 0 and bℓ > 0. In

other words, let f and g be polynomials in the single variable n, with

lead coefficient nonzero. Then

(a) f ∈ Θ1(g)⇔ m= ℓ.

(b) f ∈ O(g)⇔ m≤ ℓ.

(c) f ∈Ω1(g)⇔ m≥ ℓ. 2

TDBC91 slides, page 1.21, 20080831

There is an unfortunate drawback to the otherwise appealing nature

of Θ1 as a classification of complexity. The problem is best illustrated

by example.

• Consider the problem of testing an integer for primality (i.e., whether

or not it can be factored into a product of two or more smaller inte-

gers).

• This problem is very difficult in general, and is used as the basis of

most modern encryption algorithms.

• However, for even numbers, any algorithm can be made trivial, since

no even number greater than two can be prime.

• Thus, any reasonable algorithm for testing primality will not be even

Ω1(log(n)).

• Clearly, this is not a reasonable characterization of the time require-

ments of the algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

200

400

600

800

1000

1200

1400

1600

1800

TDBC91 slides, page 1.22, 20080831

1.7.13 Definition Let f :N
e.n.−→R. Define

Ω2(f) =

{g :N e.n.−→R | (∃c> 0)(∀m ∈N)(∃n ∈N)((n> m) ∧ (g(n)≥ c · f (n)))}

If g ∈Ω(f):

• It is said that “g is big-omega sub two of f ”.

• As with Ω1, The intuition is that g is “larger” than f ; i.e., that g

represents a greater complexity.

• The idea is that, up to constant multiple, g is bigger than f in-

finitely often.

• This characterization has the advantage that it recaptures the fact

that algorithms for problems such as primality testing have high

complexity.

• Unfortunately, it also has a strong disadvantage: the characteriza-

tion is not symmetric, and does not result in equivalence classes

of complexity functions.

TDBC91 slides, page 1.23, 20080831

The definition of Θ2 is analogous to that of Θ1.

1.7.14 Definition For f ∈ ComplFn, define

f ∈ Θ2(g)⇔ f ∈ O(g) and f ∈Ω2(g).

If g ∈ Θ2(f):

• It is said that “g is big-theta sub two” of f ”.

The following example shows that Θ2 is not symmetric.

1.7.15 Example Let f (n) =

{
1 if n is odd

n2 if n is even

g(n) = n2.
Then the following hold:

f ∈ O(g) f ∈Ω2(g) f ∈Θ2(g) f 6∈Ω1(g) f 6∈ Θ1(g)

g 6∈ O(f) g ∈Ω2(f) g 6∈Θ2(f) g ∈Ω1(f) g 6∈ Θ1(f).

To close this subsection, the relationship of some common com-

plexity classes is presented.

1.7.16 Proposition O(1) (O(log(n)) (O(n) ((n · log(n)) (

O(n2)(O(n3)(. . .(O(nk)(O(2n)(O(3n)(. . .(O(kn)(O(nn).

2

• In the above (denotes that the inclusion is proper.

TDBC91 slides, page 1.24, 20080831

1.8 Recurrence Relations

Recurrence relations bear the same relationship to discrete problems

(such as those which arise in algorithm analysis) as do differential

equations to continuous-time problems.

In this section, some basic principles, as are applicable to algo-

rithms analysis and design, are presented.

1.8.1 Motivating example Consider the following recursive pro-

gram for computing the standard Fibonacci sequence.

function fib(n :N)

fib ←case (n)

n= 0 : 0;

n= 1 : 1;

n> 1 : fib(n−1)+fib(n−2);

end case

Let T (n) denote the time required to compute fib(n). Then

T (0) = k1

T (1) = k2

T (n+2) = T (n+1)+T(n)+ k3

with the ki’s constants. These are an instance of linear recurrence

relations, the solution of which will now be examined in a general

setting.

TDBC91 slides, page 1.25, 20080831

1.8.2 Definition A homogeneous linear recurrence of order k (with

constant coefficients) is an equation of the form

ak ·T (n+ k)+ak−1 ·T (n+ k−1)+ . . .+a1 ·T (n+1)+a0 ·T (n) = 0

with each ai ∈R and ak 6= 0. More compactly, this recurrence may be

written as
k

∑
i=0

ai ·T (n+ i) = 0 (∗)

A solution to ∗ is a function s :N→R such that for all n ∈N,

k

∑
i=0

ai · s(n+ i) = 0

With the equation ∗ is associated the following characteristic polyno-

mial in the single variable x:

k

∑
i=0

ai · xi

1.8.3 Fundamental Theorem of Algebra Any polynomial of the

form ∑k
i=0ai ·xi with each ai ∈R and ak 6= 0 has a unique factorization

of the form

ak · (x−ξ1) · (x−ξ2) · . . . · (x−ξk)

with ξi ∈ C for each i, 1≤ i≤ k.

PROOF: Consult a good advanced text on algebra. 2

The ξi are called the roots of the polynomial.

TDBC91 slides, page 1.26, 20080831

1.8.4 Theorem: solution of recurrences with distinct roots Let

k

∑
i=0

ai ·T (n+ i) = 0

be a homogeneous linear recurrence of order k, and suppose further

that all k roots of its characteristic polynomial are distinct. Then any

solution s of this recurrence has the general form

s(n) =
k

∑
i=1

ci ·ξni

with each ci ∈C. Here ξi is the i
th root of the characteristic polynomial

∑k
i=0ai · xi.

PROOF: The proof of uniqueness is rather involved, and will not

be presented here. However, it is straightforward and instructive to

verify that s described above is indeed a solution. It suffices to note

the following:

• s(n) = ξnj is a solution for any root ξi of the characteristic polyno-

mial. (Just plug it in to the formula and reduce!)

• The linear sum of solutions of this form is also a solution because

the equation is linear. 2

TDBC91 slides, page 1.27, 20080831

1.8.5 Example Consider again the Fibonacci example of 1.8.1, and

assume for the moment that k3 = 0. The characteristic polynomial is

then

x2− x−1

whose roots are
1±
√

(−1)2+4

2
=

1±
√
5

2

Thus, the general form of the solutions to this recurrence is

s(n) = c1 ·
(

1+
√
5

2

)n

+ c2 ·
(

1−
√
5

2

)n

To determine the constants c1 and c2, the initial values T (0) = k1 and

T (1) = k2 are used. Thus:

c1+ c2 = k1

c1 ·
(

1+
√
5

2

)

+ c2 ·
(

1−
√
5

2

)

= k2

the solution of which is

c1 =

(

k2− k1 ·
(
1−
√
5

2

))

√
5

c2 =

(

−k2+ k1 ·
(
1+
√
5

2

))

√
5

TDBC91 slides, page 1.28, 20080831

If k3 6= 0, the following “shift and subtract” trick may be employed.

T (n+3) − T (n+2) − T (n+1) = k3

T (n+2) − T (n+1) − T (n) = k3

T (n+3) − 2 ·T (n+2) + T (n) = 0

The characteristic polynomial of the result is

x3−2 · x2+1= (x2− x−1) · (x−1)

Thus, the solutions must be of the form

s(n) = c1 ·
(

1+
√
5

2

)n

+ c2 ·
(

1−
√
5

2

)n

+ c3(1)
n

= c1 ·
(

1+
√
5

2

)n

+ c2 ·
(

1−
√
5

2

)n

+ c3

To solve for the three constants c1, c2, and c3, one further initial condi-

tion is needed, such as

T (2) = k1+ k2+ k3

The values of the ci’s can then be ground out as the solution of three

linear equations in three variables.

TDBC91 slides, page 1.29, 20080831

In 1.8.4, the condition that all roots of the characteristic polynomial

be distinct is mandated. Occasionally, cases in which two or more

roots have the same value arise. The following theorem provides the

means to handle such cases.

1.8.6 Theorem: solution of recurrences with repeated roots Let

k

∑
i=0

ai ·T (n+ i) = 0

be a homogeneous linear recurrence of order k, and let {ξ1,ξ2, . . . ,ξℓ}
be the set of roots of the corresponding characteristic polynomial∑k

i=1ai ·
xi. Suppose further that root ξi has multiplicity αi (i.e., ξi occurs αi

times). that all k roots of its characteristic polynomial are distinct.

Then any solution s of this recurrence has the general form

s(n) =
ℓ

∑
i=1

α j−1

∑
m=0

ci ·nm ·ξni

with each ci ∈C. Here ξi is the i
th root of the characteristic polynomial

∑k
i=0ai · xi.

PROOF: Omitted. 2

TDBC91 slides, page 1.30, 20080831

1.8.7 Example Consider the following recurrence:

T (n+6)+8 ·T(n+5)+19 ·T(n+4)−11 ·T(n+3)

−11 ·T (n+2)−20 ·T(n+1)−12 ·T(n) = 0

The characteristic polynomial is

x6+8 · x5+19 · x4−11 · x3−11 · x2−20 · x−12

= (x−3) · (x−2)2 · (x−1)3

Thus, solutions must be of the form

s(n) = c1 ·3n+ c2 ·2n+ c3 ·n ·2n+ c4+ c5 ·n+ c6 ·n2

TDBC91 slides, page 1.31, 20080831

1.9 Inhomogeneous Recurrences

The technique described a the end of 1.8.5 shows how to deal with an

inhomogeneous recurrence in which the additional term is a constant.

However, more general cases occur in practice, and so it is useful to

have more general techniques.

1.9.1 Theorem: solution of inhomogeneous recurrences Let

k

∑
i=0

ai ·T (n+ i) = bn · p(n)

be an inhomogeneous linear recurrence of order k in which b is a con-

stant and p(n) is a polynomial in n with real coefficients. The solutions

of this recurrence are defined by the roots of the polynomial

ρ · (x−b)d+1

in which ρ is the characteristic polynomial of the corresponding ho-

mogeneous recurrence and d is the degree of the polynomial p(n).

PROOF: Omitted. 2

1.9.2 Example For the inhomogeneous component of 1.8.5,

ρ = x2− x−1

bn · p(n) = k3

whence b = 1, p(n) = k3, and d = 0. Thus, the characteristic polyno-

mial is

(x2− x−1) · (x−1)

as before.

TDBC91 slides, page 1.32, 20080831

1.10 Geometric Recurrences

1.10.1 Example Consider a recurrence of the following form.

T (n)−2 ·T(n/2) = k ·n

in which k is a constant. As it stands, this recurrence is not linear.

However, it may be transformed into a linear one upon performing the

substitution n; 2m. The resulting recurrence is

T (2m)−2 ·T (2m−1) = k ·2m

Next, define T̂ (m) = T (2m). The recurrence may then be written as

T̂ (m)−2 · T̂(m−1) = k ·2m

which has the characteristic equation

(x−2) · (x−2)

and hence solutions of the form

c1 ·2m+ c2 ·m ·2m

However, n= 2m; i.e., m= log2(n), so for a power of two, the solutions

have the form

s(n) = c1 ·n+ c2 ·n · log2(n)

TDBC91 slides, page 1.33, 20080831

