
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 4: Dynamic Programming and Optimization

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

4. Dynamic Programming and Optimization

4.1 Basic Shortest-Path Problems on Graphs

4.1.1 General definitions for shortest-path problems for graphs

• Let G = (V,E.g) be a directed graph, and let

p : E→R
>0

be an associated cost function.

• Given a path P = 〈e1,e2, . . . ,ek〉, the length (or profit, or cost) of

P is

p(P) =
k

∑
i=1

p(ei)

• P is a shortest path from v to w if it is a path from v to w such

that, for any other path Q from v to w, p(P)≤ p(Q).

• Three distinct variations of this problem will be investigated.

Single source shortest path: Given a vertex v, find a shortest path

from v to w for each vertex w.

All-source shortest path: For each pair (v,w) of vertices, find a

shortest path from v to w.

Multistage graph optimization: For a given pair of vertices (the

source and sink, respectively) in a special kind of graph known

as a multistage graph, determine a shortest path from v to w.

TDBC91 slides, page 4.1, 20080928

4.1.2 The principle of optimality for shortest-path problems

• Roughly stated, the principle of optimality asserts that, in an op-

timal solution, any partial solution embedded in it must be an

optimal solution for the corresponding subproblem.

• Relative to the single-source shortest-path problem, this translates

as follows.

• If 〈v0,v1, . . . ,vk〉 is a shortest path from v = v0 to w = vk, then for

any pair (i, j) with 0 ≤ i ≤ j ≤ k, 〈vi, . . . ,v j〉 is a shortest path

from vi to v j.

4.1.3 Dijkstra’s algorithm for single-source shortest path

• Dijkstra’s single-source shortest-path algorithm combines the prin-

ciple of optimality with a “greedy style” selection process.

0

1

2 3

4
10

30

100

50
10

20

60

Source vertex = 0

Other vertices To vertex

Step allowed in path 1 2 3 4 Nearest

1 {0} 10 ∞ 30 100 1

2 {0,1} - 60 30 100 3

3 {0,1,3} - 50 - 90 2

4 {0,1,2,3} - - - 60 4

5 {0,1,2,3,4} - - - - -

TDBC91 slides, page 4.2, 20080928

4.1.4 Implementation of Dijkstra’s algorithm

Given: type vertex = {0,1, . . . ,n−1}; /∗0 = source vertex∗/
cost : array[vertex,vertex] of integer;

/∗ cost [i , j] = cost of edge from i to j ∗/
/∗ cost [i , j] = ∞ if no such edge exists∗/
/∗ cost [i , j] = 0 if i = j ∗/
/∗All costs must be nonnegative.∗/

Build: dist : array[vertex] of integer;

path : array[vertex] of vertex;

/∗dist [i] = cost of a minimal path from 0 to i ∗/
/∗path [i] = vertex preceding i in the least-cost path from 0 to i ∗/

1 pool ←{1,2, . . . ,n−1};
2 for i ∈ vertex do

3 〈 dist [i]← cost [0, i];

4 path [i]← 0;

5 〉;
6 while (pool 6= ∅) do
7 〈 i ←member of pool with dist[i] minimal;

8 pool ← pool \{i};
9 for j ∈ pool do

10 if dist [i]+ cost [i , j] < dist [j]

11 then 〈 dist [j]← dist [i]+ cost [i , j];

12 path [j]← i ;

13 〉
14 〉

TDBC91 slides, page 4.3, 20080928

• Dijkstra’s algorithm is not formally a greedy algorithm; therefore

a more direct proof of its completeness must be provided. The

correctness follows from the following lemma.

4.1.5 Lemma In the algorithm of 4.1.4, for each i ∈ {1,2, . . . ,n−
1}, dist[i] is the cost of a minimal path from 0 to i as soon as vertex i

is deleted from pool.

PROOF: The proof is by induction on the size of {0,1,2, . . . ,n− 1} \
pool.

Basis: For Card({0,1, . . . ,n−1}\pool) = 1, the assertion is obvious.

Step: Let k be such that 2 ≤ k ≤ n− 1 and suppose that the as-

sertion is true whenever Card({0,1, . . . ,n− 1} \ pool) < k. Let

i ∈ pool be the element selected at line 7 of the program, and let

〈0, . . . , ℓ, i〉 be an optimal path from 0 to i. Then ℓ 6∈ pool, (else

the algorithm would have picked ℓ before i). Now by the induc-

tive hypothesis, dist[ℓ] is the cost of a minimal path from 0 to ℓ.

Hence, after execution of the if statement beginning on line 10,

dist[i] = dist[ℓ]+ cost[ℓ, i]; thus dist[i] records the cost of a mini-

mal path from 0 to i. 2

4.1.6 Improved implementation and complexity of Dijkstra’s al-

gorithm

• If an adjacency list is used to represent the graph, the running

time will clearly be Θ(n2) in the average and worst case, in the

doubly-nested loop at lines 6-14.

• A better approach is to mimic the implementation of Prim’s algo-

rithm which employs an adjustable priority queue.

TDBC91 slides, page 4.4, 20080928

• The pseudocode below shows such an implementation.

• It is very similar to the implementation of Prim’s algorithm de-

scribed in 3.5.26.

• Upon completion, for each vertex v aside from the source, the

array previous will contain the identity of the vertex just before v

in the path from the source to v.

1 foreach v ∈ vertex set do

2 〈 cost to source[v]←∞;

3 in queue[v]← true;

4 〉
5 cost to source[source vertex]← 0;

6 decrease elt(M,source vertex,0);

7 while (not (is empty(M))) do

8 〈 next vertex← retrieve min(M);

9 in queue[next vertex]← false;

10 foreach x ∈ adj set [next vertex] do

11 if ((in queue[x.id] = true)

12 and (x.dist + cost to source[next vertex]

13 < cost to source[x.id]))

14 then 〈 cost to source[x.id]←
15 x.dist + cost to source[next vertex];

16 previous[x.id]← next vertex;

17 decrease elt(M,x.id ,

18 cost to source[x.dist]);

19 〉
20 〉

TDBC91 slides, page 4.5, 20080928

4.1.7 The complexity of the improved version of Dijsktra’s algo-

rithm Dijkstra’s algorithm may be realized with a worst-case run-

ning time of Θ(nE · log(nV)), an average-case running time of Θ(nV ·
log(nV)), and a best-case time of Θ(nE), with nE and nV denoting the

number denoting the number of edges and vertices in the graph, re-

spectively.

PROOF: Similar to that of 3.5.27. 2

TDBC91 slides, page 4.6, 20080928

4.1.8 Floyd’s algorithm for the all-source shortest path problem

• Assume that the graph has n vertices, is stored in an array cost, as

described in 4.1.4.

• For each k, 0 ≤ k ≤ n, define the array Ak[0..n− 1,0..n− 1] as

follows:

Ak[i, j] = cost of a minimal path from i to j

with intermediate vertices lying in the set [0..k−1].

• Note the following:

1. cost[i, j] = A0[i, j].

2. Ak+1[i, j] = min{Ak[i, j], Ak[i,k]+Ak[k, j]}.

3. The least-cost path from i to j is An[i, j].

TDBC91 slides, page 4.7, 20080928

• The declarations and pseudocode:

/∗ Data types: ∗/
type vertex : {0, . . . ,n−1};
type ext vertex : {−1,0, . . . ,n−1};
/∗ Constants and variables ∗/
cost : array[vertex,vertex] of real; /∗ Given ∗/
A : array[vertex,vertex] of real; /∗ To be computed ∗/
path : array[ext vertex,ext vertex] of vertex; /∗ To be computed ∗/
/∗ Program Body: ∗/
〈 A ← cost ;

foreach i ∈ vertex do path [i]←−1;
for k ← 0 to n do

for i ← 0 to n−1 do

for j ← 0 to n−1 do

if A [i ,k]+A [k , j] < A [i , j]

then 〈 A [i , j]← A [i ,k]+A [k , j];

path [i , j]← k ;

〉
〉
/∗ To extract the least-cost path from i to j : ∗/
procedure getpath(i , j : vertex) : string of vertex;

〈 if path [i , j] < 0

then return nil;

else return getpath(i ,path [i , j]) ·path [i , j] ·getpath(path [i , j], j)

〉

4.1.9 The complexity of Floyd’s algorithm Floyd’s algorithm for

the all-source shortest path problem has time complexity Θ(n3) in all

cases, with n the number of vertices in the graph. 2

TDBC91 slides, page 4.8, 20080928

4.1.10 The principle of optimality and dynamic programming

• The principle of optimality states:

• Any partial solution to a problem must be an optimal solu-

tion for the subproblem which it solves.

• Roughly, dynamic programming is a technique for solving opti-

mization problems which makes explicit use of the principle of

optimality.

• In contrast to the greedy method, there need not be a simple pre-

dictive strategy for determining which subproblem to solve.

• In Floyd’s algorithm, the subproblem which is solved optimally

is that of determining an optimal path i→ j which only passes

through the vertices in {0,1, . . . ,k−1}.

• The solution through {0,1, . . . ,k} is built upon this previous so-

lution.

• The problem of multistage graph optimization, which makes the

idea of dynamic programming transparent, is considered next.

TDBC91 slides, page 4.9, 20080928

4.2 Multistage Graph Optimization

4.2.1 The idea of a weighted multistage graph

• The idea of a multistage graph is embodied in the picture below.

Stage 1

(Source)

b

Stage 2

b

b

b

b

Stage 3

b

b

b

Stage 4

b

b

b

b

Stage 5

b

b

Stage 6

(Sink)

b

• Each edge has a nonnegative cost or profit associated with it.

Problem: Find a minimum cost (or maximum profit) path from the

source to the sink.

TDBC91 slides, page 4.10, 20080928

4.2.2 A motivating application of multistage graph optimization

Given:

• r projects, numbered 1,2, . . ., r;

• m units of resource to be allocated;

• p(i, j) = profit realized when j units of resource are applied

to project i;

• Assume that p(i,0) = 0; p(i, j)≥ 0 always.

Goal: Allocate resources so as to maximize profit; i.e., find an r-tuple

(x1,x2, . . . ,xr) ∈N
r such that:

r

∑
i=1

p(i,xi) is maximized, subject to:

r

∑
i=1

xi ≤ m

Note: p(i, j) is not assumed to be either:

• linear in j, or

• monotonic in j.

• This may easily be converted to a minimization problem, if so

desired.

TDBC91 slides, page 4.11, 20080928

• The design of the corresponding multistage graph is as follows:

• r projects⇒ r+1 stages

• Edges from stage i to stage i+ 1 correspond to resource al-

location to project i.

• m units of resource⇒ m+1 vertices at stage i, 2≤ i≤ r.

• There is one vertex at each stage for each possible quantity

of resource used.

• The edge weights are the profits p(i, j).

• Shown below is an example for r = 3 and m = 3.

b

b

b

b

b

b

b

b

b

b

p(1,3)

p(1,2)

p(1,1)
p(1

,0)

p(2,0)

p(2,1)

p(2,0)

p(2,0)
p(2,1)p(2,2)p(2,3)

p(3
,0)

max{p(3
,0), p(

3,1)}

3 used

2 used

1 used

0 used

• Notes:

• Only edges which use an amount of resource not exceeding

that which is still available are included.

• In the last step (into the sink), the optimal amount of re-

source is included for completion of the path.

TDBC91 slides, page 4.12, 20080928

4.2.3 The formal definition of a multistage graph

• A multistage graph is a pairM = (G,Π) in which:

(a) G = (V,E,g) is a directed graph with the property that there

is at most one edge connecting any two vertices.

• (b) Π is an ordered partition 〈V1,V2, . . . ,Vk〉 of V with k ≥ 2

such that:

(i) Card(V1) = Card(Vk) = 1.

(ii) Card(Vi)≥ 1 for 1≤ i≤ k.

(iii) For each e ∈ E, g(e) ∈ Vi×Vi+1 for some i, 1 ≤ i ≤
k−1.

(iv) For v∈V1, InDegree(v) = 0; OutDegree(v) = Card(V2).

(v) For v ∈ Vk, InDegree(v) = Card(Vk−1);

OutDegree(v) = 0.

(vi) For v ∈ {V2, . . . ,Vk−1}, InDegree(v) ≥ 1;

OutDegree(v)≥ 1.

• A weighted multistage graph is a multistage graph with non-

negative integers (or possibly nonnegative real numbers) as

weights on its edges.

Note: InDegree(v) (resp. OutDegree(v)) denotes the number of

edges which terminate (resp. begin) at vertex v.

TDBC91 slides, page 4.13, 20080928

4.2.4 The dynamic-programming solution to multistage graph

optimization

• A path from the source to the sink is specified as a sequence

〈v1,v2, . . . ,vk〉 of vertices with:

• v1 = source vertex;

• vk = sink vertex;

• vi is at stage i of the graph.

• The rôle of the principle of optimality in solving this problem is

embodied in the following:

• If 〈v1,v2, . . . ,vk〉 is an optimal path (i.e., yields maximum

profit) from source to sink, then for any subpath

〈vi,vi+1, . . . ,v j−1,v j〉

the profit along that path is maximal over all paths from vi to

v j.

• It is assumed initially that the graph is represented by an n× n

weight matrix, with n the number of vertices:

weight : array[n,n] of integer;

• It is also assumed that the vertices are ordered by stage; e.g.:

Stage 1 = source {1}
Stage 2 {2,3,4}
Stage 3 {5,6,7,8}
...

...

Stage k = sink {n}

TDBC91 slides, page 4.14, 20080928

1 /∗ Data types and structures: ∗/
2 type vertex = {1,2, . . . ,n};
3 type stage = {1,2, . . . ,k};

4

path : array[stage] of vertex;

profit : array[vertex] of integer;

decision : array[vertex] of integer;

5 /∗ path records the optimal path as a sequence of vertices. ∗/
6 /∗ profit [i] = profit along the optimal path from vertex i

7 to the sink. ∗/
8 /∗ decision[i] = the vertex following vertex i in the optimal path

9 to the sink. ∗/
10 /∗ Main procedure: ∗/
11 profit ← 0;

12 for cur vertex← n−1 downto 1 do

13 〈 next vertex← vertex with

14 weight [cur vertex,next vertex]+profit [next vertex]

15 maximized;

16 decision[cur vertex]← next veretex;

17 profit [cur vertex]←
18 weight [cur vertex,next vertex]+profit [next vertex];

19 〉
20 path [1]← 1;

21 path [k]← n;

22 for stage← 2 to k −1 do

23 path [stage]← decision[path [stage−1]];

TDBC91 slides, page 4.15, 20080928

4.2.5 The complexity of multistage graph optimization In all

cases, the complexity of the multistage graph optimization algorithm

described in 4.2.4 above is Θ(n2), with n denoting the total number of

vertices in the graph.

PROOF: The process of selecting next vertex at lines 13-14 requires

a search of the list of vertices, which takes Θ(n) time. Thus, the for

loop which encompasses lines 12-19 takes time Θ(n2). The rest of the

program runs in linear time. 2

4.2.6 The complexity of resource allocation Using the algorithm

of 4.2.4, the problem of allocating m units of resource over r projects,

as described in 4.2.2, requires time Θ((mr)2). 2

4.2.7 Improving the performance of multistage graph optimiza-

tion

• The performance may be improved substantially via the use of an

adjacency list, similar to that employed in the improved imple-

mentations of Prim’s algorithm 3.5.26 and of Dijkstra’s algorithm

4.1.6.

• The amortized complexity over all executions of the assignment

of lines 13-14 is Θ(E), with E denoting the total number of edges

in the graph.

• Since E ≥ k− 1, it follows that the overall complexity of this

improved algorithm is Θ(E).

• The details are not presented here.

TDBC91 slides, page 4.16, 20080928

4.3 Dynamic-Programming Solution of the Discrete

Knapsack Problem

4.3.1 Review of the Problem

Given:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive real num-

bers.

Find:

• (x1,x2, . . . ,xn) ∈ {0,1}
n such that:

(a) ∑
n
i=1 xi · vi is a maximum, subject to the constraint that

(b) ∑
n
i=1 xi ·wi ≤M.

Example application:

• Knapsack = computer.

• capacity M = total time available.

• objects = potential jobs.

• wi = time required to execute jobi.

• vi = income earned by running jobi.

• The goal is to maximize the profit.

TDBC91 slides, page 4.17, 20080928

4.3.2 The idea of the dynamic programming solution

• For Y ≤ M and 1 ≤ ℓ ≤ j ≤ n, let Knap(ℓ, j,Y) denote the sub-

problem of the above knapsack problem with

(i) knapsack capacity = Y ;

(ii) j− ℓ+1 objects {objℓ, . . . ,obj j}.

• The weights and profits of the objects are unaltered.

• The problem is thus to find

• (xℓ,xℓ+1, . . . ,x j) ∈ {0,1}n such that:

(a) ∑
j

i=ℓ xi · vi is a maximum, subject to the constraint that

(b) ∑
j

i=ℓ xi ·wi ≤ Y .

• Note that Knap(1,n,M) is the original problem.

• Let (y1,y2, . . . ,yn) ∈ {0,1}n be an optimal solution to the original

problem. Note that:

(a) If yn = 0, then (y1,y2, . . . ,yn−1) is an optimal solution for

Knap(1,n−1,M).

(b) If yn = 1, then (y1,y2, . . . ,yn−1) is an optimal solution for

Knap(1,n−1,M−wn).

• This idea may be continued via induction to obtain the following:

(c) For any k with 1 ≤ k ≤ n, (y1,y2, . . . ,yk) is an optimal solu-

tion for Knap(1,k,M−∑
n
i=k+1 yi ·wi).

• In the dynamic programming approach, instead of computing the

cost of each partial solution, attention is restricted to those whose

whose lead sequence (e.g.(y1,y2, . . . ,yk)) is optimal for some “tail”

(yk+1,yk+2 . . . ,yn).

TDBC91 slides, page 4.18, 20080928

4.3.3 Solution of an example

• The example problem introduced in 3.1.3 is solved here using

dynamic programming.

• For completeness, the data of the example are restated.

• LetM = 8; n= 4, and let vi and wi be as shown in the table below.

i 1 2 3 4

vi 1 2 5 6
wi 2 3 4 5

• The solution space is conveniently viewed as a decision tree, as

illustrated on the next slide.

TDBC91 slides, page 4.19, 20080928

(p,w)

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)x4 = 0

(6,5)x4 = 1

(5,4)x3 = 1
(5,4)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(8,8)

(7,7)x3 = 1
(7,7)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(7,7)

(6,6)x3 = 1
(6,6)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(9,10)

(8,9)x3 = 1
(8,9)

(14,14)

TDBC91 slides, page 4.20, 20080928

• The process builds partial solution vectors S0, S1, S2, S3, . . ., with

Si corresponding to the ith level in the decision tree (with the root

at level 0).

• More specifically:

• The notation

(

p

w

)

is used to denote a profit-weight pair.

• S0 =
(

0
0

)

.

• Si+1 = “merge” of Si with S
′
i+1, with

• S′i+1 = Si with

(

pi
wi

)

added to each pair.

• The merge operation removes suboptimal pairs.

• The following documents, in detail, the solution of the example.

Step 0: Fix S0 =
(

0
0

)

.

Step 1: Find S1.

• First candidate =

(

0
0

)

+
(

1
2

)

=
(

1
2

)

.

• Fill in the values from S0 with lesser weight, yielding S1 =
(

0
0

)

.

• Include the candidate, if admissible, yielding S1 =
(

0 1
0 2

)

.

TDBC91 slides, page 4.21, 20080928

Step 2: Find S2.

• First candidate =

(

0
0

)

+
(

2
3

)

=
(

2
3

)

.

• Fill in the values from S1 of lesser weight, yielding S2 =
(

0 1
0 2

)

.

• Include the candidate, if admissible, yielding S2 =
(

0 1 2
0 2 3

)

.

• Second candidate =

(

1
2

)

+
(

2
3

)

=
(

3
5

)

.

• Fill in the values from S1 of lesser weight (none new), yield-

ing S2 =
(

0 1 2
0 2 3

)

.

• Include the candidate, if admissible, yielding S2 =
(

0 1 2 3
0 2 3 5

)

.

TDBC91 slides, page 4.22, 20080928

Step 3: Find S3.

• First candidate =

(

0
0

)

+
(

5
4

)

=
(

5
4

)

.

• Fill in the values from S2 of lesser weight, yielding S3 =
(

0 1 2
0 2 3

)

.

• Include the candidate, if admissible, yielding S3 =
(

0 1 2 5
0 2 3 4

)

.

• The suboptimal pair

(

3
5

)

from S2 is purged, since

(

5
4

)

yields

more profit with less cost. (A pair

(

p

w

)

is suboptimal if

there is another pair

(

p′

w′

)

with either (p< p′ and w′≤w) or

(p≤ p′ and w′ < w.))

• Second candidate =

(

1
2

)

+
(

5
4

)

=
(

6
6

)

.

• Fill in the values from S2 of lesser weight (none new), yield-

ing S3 =
(

0 1 2 3 5
0 2 3 5 4

)

.

• Include the candidate, if admissible, yielding S3 =
(

0 1 2 5 6
0 2 3 4 6

)

.

• Third candidate =

(

2
3

)

+
(

5
4

)

=
(

7
7

)

.

• Fill in the values from S2 of lesser weight (none new), yield-

ing S3 =
(

0 1 2 5 6
0 2 3 4 6

)

.

• Include the candidate, if admissible, yielding S3 =
(

0 1 2 5 6 7
0 2 3 4 6 7

)

.

TDBC91 slides, page 4.23, 20080928

• Fourth candidate =

(

3
5

)

+
(

5
4

)

=
(

8
9

)

.

• Note that

(

3
5

)

was purged from S3, but it remains in S2, and

must be used to construct candidates for S3.

• Fill in the values from S2 of lesser weight (none new), yield-

ing S3 =
(

0 1 2 5 6 7
0 2 3 4 6 7

)

.

• Include the candidate, if admissible; however, it is not ad-

missible, so the value remains S3 =
(

0 1 2 5 6 7
0 2 3 4 6 7

)

.

TDBC91 slides, page 4.24, 20080928

Step 4: Find the value of x4.

• Although S4 could be compute in a manner similar to

that above, it is possible to find it directly.

• For x4 = 0, the best pair is

(

7
7

)

.

• For x4 = 1, find the

(

p

w

)

∈ S3 with the maximum p and

with w4+w = 5+w≤M = 8.

• The choice is

(

p

w

)

=
(

2
3

)

, which yields

(

8
8

)

. This is

better than

(

7
7

)

, so x4 = 1.

Step 5: Find the solution vector (x1,x2,x3,x4).

• It is already known that x4 = 1 with

(

8
8

)

representing

the total profit and weight.

• Thus, since v4 = 6 and w4 = 5,

(

8
8

)

−
(

6
5

)

=
(

2
3

)

must

be matched by (x1,x2,x3).

• Since w3 = 4, x3 = 0.

• Since

(

v2
w2

)

=
(

2
3

)

, x2 = 1, whence x1 = 0.

• Thus, (x1,x2,x3,x4) = (0,1,0,1).

• The final, pruned decision tree is shown on the next page.

TDBC91 slides, page 4.25, 20080928

(p,w)

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)x4 = 0

(6,5)x4 = 1

(5,4)x3 = 1
(5,4)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(8,8)

(7,7)x3 = 1
(7,7)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(7,7)

(6,6)x3 = 1
(6,6)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(9,10)

(8,9)x3 = 1
(8,9)

(14,14)

TDBC91 slides, page 4.26, 20080928

4.3.4 Skeletal representation of the algorithm

• Assume that there are n objects.

• The skeletal algorithm is as follows.

S 0 = {(0,0)};
for i ← 1 to n−1 do

〈 T ←new admissible pairs (p,w)

found by adding (vi ,wi) to Si−1;

Si ←merge-purge(Si−1,T);

〉
Select optimal pairs from Sn ;

Trace back to find (x1,x2, . . . ,xn);

• The major data structures are as follows:

type solution pair =record

profit : {0,1, . . . ,max profit};
weight : {0,1, . . . ,max weight};

end record;

constant max size = 2n−1−1; /∗ Max vertices in decision tree ∗/
s : array[1..max size] of sol pair;

start : array[0..n] of {0,1, . . . ,max size};

• start[i] identifies the starting point of |S|i in the array s:

S0 S1 S2 Sn

start[0] start[1] start[2] start[n]

. . .

• The full algorithm will not be presented here.

TDBC91 slides, page 4.27, 20080928

• A complexity analysis is nonetheless possible.

4.3.5 Complexity of dynamic programming applied to the dis-

crete knapsack problem

• The following apply in the worst case:

• The time required to produce Si is Θ(Card(Si−1)).

• In the worst case, all vertices of the decision tree are re-

tained, so Card(Si) = 2 ·Card(Si−1).

• Thus, the worst-case time to produce all of the Si’s, 0 ≤ i ≤
n−1 is

Θ(
n−1

∑
i=0

Si−1) = Θ(2n)

• In a typical case, however, many pairs are purged, and so the

performance may be much better.

• The space complexity is also Θ(2n).

TDBC91 slides, page 4.28, 20080928

4.3.6 Some heuristics for speedup

• There are a number of heuristics which may be employed to speed

up the solution of many instances of the discrete knapsack prob-

lem.

• Suppose that a lower bound L is given on the profit of an optimal

solution; i.e.,

(y1,y2, . . . ,yn) optimal ⇒
n

∑
i=1

yi · vi ≥ L

• For each k, 1≤ k ≤ n, define

PLeft(k) =
n

∑
j=k+1

vk

• The following heuristic may then be employed:

If

(

p

w

)

∈ Si and p+PLeft(i) < L, then purge
(

p

w

)

• There are a number of ways to obtain such an L:

• Use max{p |
(

p

w

)

∈ Si} as the bound L for the ith stage.

• Obtain a feasible solution using a greedy method, and use

the resulting profit as the bound L.

TDBC91 slides, page 4.29, 20080928

4.4 The Travelling Salesman Problem

4.4.1 Problem description

• The travelling-salesman problem, often abbreviated TSP, may be

described as follows.

Given: A directed graph G = (V,E,g), together with a weighting

function d : E→N.

• Think of d as giving a distance between vertices.

Define: A tour ofG is a simple cycle ofGwhich passes through each

vertex of G. The cost of a tour is the sum of the distances of its

edges.

Find: A tour of minimum cost.

• Note: By definition, a tour passes through each vertex exactly

once.

4.4.2 The combinatorics of the travelling salesman problem

Given: A directed graph G = (V,E,g), together with a weighting

function d : E→N.

Question: How many distinct tours of G are there?

Answer:

• First, assume that the graph is complete; i.e., that there is an

edge between any two vertices.

• Since a tour must pass through all vertices, the start vertex

may be chosen arbitrarily.

TDBC91 slides, page 4.30, 20080928

• The second vertex may be chosen in any of nV − 1 ways,

with nV denoting the number of vertices in the graph.

• The third vertex may be chosen in any of nV −2 ways.

• The kth vertex may be chosen in any of nv− (k+1) ways.

• Thus, there are

(nV −1) · (nV −2) · . . . ·2 ·1 = (nV −1)!

possible tours.

• Since n! is the number of permutations of n elements, the

TSP is often called a permutation problem.

• On the other hand, problems whose solution space is on the

order of 2n, such as the discrete knapsack problem, are often

called subset problems.

• Permutation problems often have worst-case complexitywhich

is even greater than that of subset problems, since

Θ(2n) (Θ(n!)

• This is easily seen by comparing the following sequences:

2n = 2 · 2 · 2· . . . · 2 · 2
n! = 1 · 2 · 3· . . . · n−1 · n

• Note, however, that a graph has (nV − 1)! possible tours iff

it is complete.

• In practice, the number of possible tours may be far less.

TDBC91 slides, page 4.31, 20080928

4.4.3 The principle of optimality applied to the travelling sales-

man problem

• Let 〈vσ(1),vσ(2), . . . ,vσ(n),vσ(1)〉 be the sequence of vertices fol-

lowed in an optimal tour.

• Then 〈vσ(1),vσ(2), . . . ,vσ(n)〉 must be a shortest path from vσ(1) to

vσ(n) which passes through each vertex exactly once.

• Invoking the principle of optimality, for any i, j, with 1≤ i≤ j≤
n, the path 〈vσ(i),vσ(i+1), . . . ,vσ(j)〉 must be optimal for all paths

beginning at vσ(i), ending at vσ(j), and passing through exactly the

intermediate vertices {vσ(i+1), . . . ,vσ(j−1)}.

• In general, for v,w ∈V and S⊆V \{v,w}, define

TSP(v,S,w)

to be the shortest path from v to w which passes through each ver-

tex in S exactly once, and through no other intermediate vertices.

• Define

Cost(v,S,w)

to be the cost of such a path.

• For u,v ∈ V , let d(u,v) denote the distance of the minimal edge

between u and v. Thus,

d(u,v) = Cost(u,∅,v)

• By the principle of optimality, for u ∈ S,

Cost(v,S,w) = min({d(v,u)+Cost(u,S\{u},w) | u ∈ S}) (*)

TDBC91 slides, page 4.32, 20080928

4.4.4 Example

1 2

3 4

10

5

156
20

8
108

12

9

9 13

Distance Matrix

To: 1 2 3 4

From: 1 0 10 15 20

2 5 0 9 10

3 6 13 0 12

4 8 8 9 0

• Choose vertex 1 as the terminal point (arbitrary choice).

• Process intermediate sets in order of increasing size.

• For intermediate set S = ∅:

Cost(2,∅,1) = d(2,1) = 5

Cost(3,∅,1) = d(3,1) = 6

Cost(4,∅,1) = d(4,1) = 8

• For Card(S) = 1:

Cost(2,{3},1) = d(2,3)+Cost(3,∅,1) = 15

Cost(2,{4},1) = d(2,4)+Cost(4,∅,1) = 18

Cost(3,{2},1) = d(3,2)+Cost(2,∅,1) = 18

Cost(3,{4},1) = d(3,4)+Cost(4,∅,1) = 20

Cost(4,{2},1) = d(4,2)+Cost(2,∅,1) = 13

Cost(4,{3},1) = d(4,3)+Cost(3,∅,1) = 15

TDBC91 slides, page 4.33, 20080928

• For Card(S) = 2:

Cost(2,{3,4},1)

= min({d(2,3)+Cost(3,{4},1), d(2,4)+Cost(4,{3},1)}

= min({{9+20},{10+15}}) = 25

Cost(3,{2,4},1)

= min({d(3,2)+Cost(2,{4},1), d(3,4)+Cost(4,{2},1)}

= min({{13+18},{12+13}}) = 25

Cost(4,{2,3},1)

= min({d(4,2)+Cost(2,{3},1), d(4,3)+Cost(3,{2},1)}

= min({{8+15},{9+18}}) = 23

• For Card(S) = 3, attention may be restricted to paths starting with

vertex 1, since the cycle will be completed at this point.

Cost(1,{2,3,4},1)
= min({d(1,2)+Cost(2,{3,4},1),

d(1,3)+Cost(3,{2,4},1),
d(1,4)+Cost(4,{2,3},1)})

= min(10+25, 15+25, 20+23) = 35

• In general, the rule (*) of 4.4.3 is applied repeatedly to subprob-

lems with increasing size of S.

TDBC91 slides, page 4.34, 20080928

• To see the size of this computation, proceed as follows.

• Recall that for k ≤ n, the binomial coefficient

(

n

k

)

=
n!

k! · (n− k)!

gives the number of distinct k-element subsets of a set of n ele-

ments.

• Thus, the total number of values of the form Cost(v,S,vt), which

must be computed with this method, with vt the terminal vertex

in the tour, is:

(n−1) ·
n−2

∑
k=0

(

n−2
k

)

+ 1

• However, by the binomial theorem:

n−2

∑
k=0

(

n−2
k

)

=
n−2

∑
k=0

(

(

n−2
k

)

·1k ·1n−2k
)

= (1+1)n−2 = 2n−2

• Thus, the total number of computations of the form Cost(v,S,vt)

is (n−1) ·2n−2+1.

• These require worst-case time Θ(n) to compute, hence the total

running time will be

Θ(n2 ·2n)

in the worst case.

• This is better than Θ((n− 1)!), but it shall soon be shown that

there are better algorithms.

TDBC91 slides, page 4.35, 20080928

• Note also that this approach requires Θ(n ·2n) space, since all val-
ues of the form Cost(v,S,vt) must be saved for a given cardinality

of S, in order to compute the paths for Card(S)+1.

• The associated path must also be saved.

• This is prohibitively expensive.

TDBC91 slides, page 4.36, 20080928

