Slides for a Course
 on
 the Analysis and Design of Algorithms

Chapter 4: Dynamic Programming and Optimization

Stephen J. Hegner
Department of Computing Science
Umeå University
Sweden
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

(C)2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

4. Dynamic Programming and Optimization

4.1 Basic Shortest-Path Problems on Graphs

4.1.1 General definitions for shortest-path problems for graphs

- Let $G=(V, E . g)$ be a directed graph, and let

$$
p: E \rightarrow \mathbb{R}^{>0}
$$

be an associated cost function.

- Given a path $P=\left\langle e_{1}, e_{2}, \ldots, e_{k}\right\rangle$, the length (or profit, or cost) of P is

$$
p(P)=\sum_{i=1}^{k} p\left(e_{i}\right)
$$

- P is a shortest path from v to w if it is a path from v to w such that, for any other path Q from v to $w, p(P) \leq p(Q)$.
- Three distinct variations of this problem will be investigated.

Single source shortest path: Given a vertex v, find a shortest path from v to w for each vertex w.

All-source shortest path: For each pair (v, w) of vertices, find a shortest path from v to w.
Multistage graph optimization: For a given pair of vertices (the source and sink, respectively) in a special kind of graph known as a multistage graph, determine a shortest path from v to w.

4.1.2 The principle of optimality for shortest-path problems

- Roughly stated, the principle of optimality asserts that, in an optimal solution, any partial solution embedded in it must be an optimal solution for the corresponding subproblem.
- Relative to the single-source shortest-path problem, this translates as follows.
- If $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a shortest path from $v=v_{0}$ to $w=v_{k}$, then for any pair (i, j) with $0 \leq i \leq j \leq k,\left\langle v_{i}, \ldots, v_{j}\right\rangle$ is a shortest path from v_{i} to v_{j}.

4.1.3 Dijkstra's algorithm for single-source shortest path

- Dijkstra's single-source shortest-path algorithm combines the principle of optimality with a "greedy style" selection process.

Source vertex $=0$

	Other vertices	To vertex				
Step	allowed in path	1	2	3	4	Nearest
1	$\{0\}$	10	∞	30	100	1
2	$\{0,1\}$	-	60	30	100	3
3	$\{0,1,3\}$	-	50	-	90	2
4	$\{0,1,2,3\}$	-	-	-	60	4
5	$\{0,1,2,3,4\}$	-	-	-	-	-

TDBC91 slides, page 4.2, 20080928

4.1.4 Implementation of Dijkstra's algorithm

Given: type vertex $=\{0,1, \ldots, n-1\} ; / * 0=$ source vertex $* /$ cost : array[vertex, vertex] of integer; $/ * \operatorname{cost}[i, j]=$ cost of edge from i to $j * /$ $/ * \operatorname{cost}[i, j]=\infty$ if no such edge exists $* /$ $/ * \operatorname{cost}[i, j]=0$ if $i=j * /$
/* All costs must be nonnegative. */
Build: dist: array[vertex] of integer; path : array[vertex] of vertex;
$/ * \operatorname{dist}[i]=$ cost of a minimal path from 0 to $i * /$
$/ *$ path $[i]=$ vertex preceding i in the least-cost path from 0 to $i * /$
pool $\leftarrow\{1,2, \ldots, n-1\}$;
for $i \in$ vertex do
$\langle\operatorname{dist}[i] \leftarrow \operatorname{cost}[0, i] ;$ path $[i] \leftarrow 0$;
>;
while $($ pool $\neq \emptyset)$ do
$\langle i \leftarrow$ member of pool with dist[i] minimal; pool $\leftarrow \mathrm{pool} \backslash\{i\}$;
for $j \in$ pool do
if $\operatorname{dist}[i]+\operatorname{cost}[i, j]<\operatorname{dist}[j]$ then $\langle\operatorname{dist}[j] \leftarrow \operatorname{dist}[i]+\operatorname{cost}[i, j]$; path $[j] \leftarrow i$;

TDBC91 slides, page 4.3, 20080928

- Dijkstra's algorithm is not formally a greedy algorithm; therefore a more direct proof of its completeness must be provided. The correctness follows from the following lemma.
4.1.5 Lemma In the algorithm of 4.1.4, for each $i \in\{1,2, \ldots, n-$ $1\}$, dist $[i]$ is the cost of a minimal path from 0 to i as soon as vertex i is deleted from pool.
Proof: The proof is by induction on the size of $\{0,1,2, \ldots, n-1\} \backslash$ pool.
Basis: For $\operatorname{Card}(\{0,1, \ldots, n-1\} \backslash$ pool $)=1$, the assertion is obvious. Step: Let k be such that $2 \leq k \leq n-1$ and suppose that the assertion is true whenever $\operatorname{Card}(\{0,1, \ldots, n-1\} \backslash$ pool $)<k$. Let $i \in$ pool be the element selected at line 7 of the program, and let $\langle 0, \ldots, \ell, i\rangle$ be an optimal path from 0 to i. Then $\ell \notin$ pool, (else the algorithm would have picked ℓ before i). Now by the inductive hypothesis, dist $[\ell]$ is the cost of a minimal path from 0 to ℓ. Hence, after execution of the if statement beginning on line 10 , $\operatorname{dist}[i]=\operatorname{dist}[\ell]+\operatorname{cost}[\ell, i]$; thus $\operatorname{dist}[i]$ records the cost of a minimal path from 0 to i.

4.1.6 Improved implementation and complexity of Dijkstra's algorithm

- If an adjacency list is used to represent the graph, the running time will clearly be $\Theta\left(n^{2}\right)$ in the average and worst case, in the doubly-nested loop at lines 6-14.
- A better approach is to mimic the implementation of Prim's algorithm which employs an adjustable priority queue.
- The pseudocode below shows such an implementation.
- It is very similar to the implementation of Prim's algorithm described in 3.5.26.
- Upon completion, for each vertex v aside from the source, the array previous will contain the identity of the vertex just before v in the path from the source to v.

1 foreach $v \in$ vertex_set do
$2\langle$ cost_to_source $[v] \leftarrow \infty$;
$3 \quad$ in_queue $[v] \leftarrow$ true;
cost_to_source $[$ source_vertex $] \leftarrow 0$;
decrease_elt $(M$, source_vertex, 0$)$;
while (not (is_empty $(M))$) do
< next_vertex \leftarrow retrieve_min (M);
in_queue [next_vertex] \leftarrow false;
foreach $x \in$ adj_set[next_vertex] do
if $(($ in_queue $[x . i d]=$ true $)$
and (x.dist + cost_to_source[next_vertex]
< cost_to_source[x.id]))
then \langle cost_to_source $[x . i d] \leftarrow$
x.dist + cost_to_source[next_vertex];
previous $[$ x.id] \leftarrow next_vertex;
decrease_elt(M, x.id,
cost_to_source $[x . \operatorname{dist}])$;
\rangle
\rangle

TDBC91 slides, page 4.5, 20080928

4.1.7 The complexity of the improved version of Dijsktra's algo-

 rithm Dijkstra's algorithm may be realized with a worst-case running time of $\Theta\left(n_{E} \cdot \log \left(n_{V}\right)\right)$, an average-case running time of $\Theta\left(n_{V}\right.$. $\left.\log \left(n_{V}\right)\right)$, and a best-case time of $\Theta\left(n_{E}\right)$, with n_{E} and n_{V} denoting the number denoting the number of edges and vertices in the graph, respectively.Proof: Similar to that of 3.5.27.

4.1.8 Floyd's algorithm for the all-source shortest path problem

- Assume that the graph has n vertices, is stored in an array cost, as described in 4.1.4.
- For each $k, 0 \leq k \leq n$, define the array $A_{k}[0 . . n-1,0 . . n-1]$ as follows:
$A_{k}[i, j]=$ cost of a minimal path from i to j with intermediate vertices lying in the set $[0 . . k-1]$.
- Note the following:

1. $\operatorname{cost}[i, j]=A_{0}[i, j]$.
2. $A_{k+1}[i, j]=\min \left\{A_{k}[i, j], A_{k}[i, k]+A_{k}[k, j]\right\}$.
3. The least-cost path from i to j is $A_{n}[i, j]$.

- The declarations and pseudocode:
/* Data types: */
type vertex: $\quad\{0, \ldots, n-1\}$;
type ext_vertex : $\{-1,0, \ldots, n-1\}$;
/* Constants and variables */
cost : array[vertex, vertex] of real; /* Given */
A : array[vertex, vertex] of real; /* To be computed $* /$
path : array[ext_vertex, ext_vertex] of vertex; /* To be computed */
/* Program Body: */
$\langle A \leftarrow$ cost;
foreach $i \in$ vertex do path $[i] \leftarrow-1$;
for $k \leftarrow 0$ to n do for $i \leftarrow 0$ to $n-1$ do

$$
\text { for } j \leftarrow 0 \text { to } n-1 \text { do }
$$

$$
\text { if } A[i, k]+A[k, j]<A[i, j]
$$

$$
\text { then }\langle A[i, j] \leftarrow A[i, k]+A[k, j]
$$

$$
\text { path }[i, j] \leftarrow k
$$

\rangle
\rangle
/* To extract the least-cost path from i to $j: ~ * /$
procedure getpath $(i, j:$ vertex $)$: string of vertex;
< if path $[i, j]<0$
then return nil;
else return getpath $(i, \operatorname{path}[i, j]) \cdot$ path $[i, j] \cdot \operatorname{getpath}(\operatorname{path}[i, j], j)$
\rangle
4.1.9 The complexity of Floyd's algorithm Floyd's algorithm for the all-source shortest path problem has time complexity $\Theta\left(n^{3}\right)$ in all cases, with n the number of vertices in the graph.

TDBC91 slides, page 4.8, 20080928

4.1.10 The principle of optimality and dynamic programming

- The principle of optimality states:
- Any partial solution to a problem must be an optimal solution for the subproblem which it solves.
- Roughly, dynamic programming is a technique for solving optimization problems which makes explicit use of the principle of optimality.
- In contrast to the greedy method, there need not be a simple predictive strategy for determining which subproblem to solve.
- In Floyd's algorithm, the subproblem which is solved optimally is that of determining an optimal path $i \rightarrow j$ which only passes through the vertices in $\{0,1, \ldots, k-1\}$.
- The solution through $\{0,1, \ldots, k\}$ is built upon this previous solution.
- The problem of multistage graph optimization, which makes the idea of dynamic programming transparent, is considered next.

4.2 Multistage Graph Optimization

4.2.1 The idea of a weighted multistage graph

- The idea of a multistage graph is embodied in the picture below.

Stage 1

(Source) \quad Stage 2 \begin{tabular}{l}
Stage 3

(Stage 4

 Stage $5 \quad$

Stage 6

(Sink)
\end{tabular}

- Each edge has a nonnegative cost or profit associated with it.

Problem: Find a minimum cost (or maximum profit) path from the source to the sink.

4.2.2 A motivating application of multistage graph optimization

Given:

- r projects, numbered $1,2, \ldots$, r;
- m units of resource to be allocated;
- $p(i, j)=$ profit realized when j units of resource are applied to project i;
- Assume that $p(i, 0)=0 ; p(i, j) \geq 0$ always.

Goal: Allocate resources so as to maximize profit; i.e., find an r-tuple $\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathbb{N}^{r}$ such that:

$$
\begin{aligned}
& \sum_{i=1}^{r} p\left(i, x_{i}\right) \text { is maximized, subject to: } \\
& \sum_{i=1}^{r} x_{i} \leq m
\end{aligned}
$$

Note: $p(i, j)$ is not assumed to be either:

- linear in j, or
- monotonic in j.
- This may easily be converted to a minimization problem, if so desired.
- The design of the corresponding multistage graph is as follows:
- r projects $\Rightarrow r+1$ stages
- Edges from stage i to stage $i+1$ correspond to resource allocation to project i.
- m units of resource $\Rightarrow m+1$ vertices at stage $i, 2 \leq i \leq r$.
- There is one vertex at each stage for each possible quantity of resource used.
- The edge weights are the profits $p(i, j)$.
- Shown below is an example for $r=3$ and $m=3$.

- Notes:
- Only edges which use an amount of resource not exceeding that which is still available are included.
- In the last step (into the sink), the optimal amount of resource is included for completion of the path.

4.2.3 The formal definition of a multistage graph

- A multistage graph is a pair $M=(G, \Pi)$ in which:
(a) $G=(V, E, g)$ is a directed graph with the property that there is at most one edge connecting any two vertices.
- (b) Π is an ordered partition $\left\langle V_{1}, V_{2}, \ldots, V_{k}\right\rangle$ of V with $k \geq 2$ such that:
(i) $\operatorname{Card}\left(V_{1}\right)=\operatorname{Card}\left(V_{k}\right)=1$.
(ii) $\operatorname{Card}\left(V_{i}\right) \geq 1$ for $1 \leq i \leq k$.
(iii) For each $e \in E, g(e) \in V_{i} \times V_{i+1}$ for some $i, 1 \leq i \leq$ $k-1$.
(iv) For $v \in V_{1}$, \ln Degree $(v)=0$; OutDegree $(v)=\operatorname{Card}\left(V_{2}\right)$.
(v) For $\quad v \in V_{k}, \quad \operatorname{InDegree}(v)=\operatorname{Card}\left(V_{k-1}\right)$; OutDegree $(v)=0$.
(vi) For $v \in\left\{V_{2}, \ldots, V_{k-1}\right\}, \quad \operatorname{In} \operatorname{Degree}(v) \geq 1$; OutDegree $(v) \geq 1$.
- A weighted multistage graph is a multistage graph with nonnegative integers (or possibly nonnegative real numbers) as weights on its edges.

Note: InDegree (v) (resp. OutDegree (v)) denotes the number of edges which terminate (resp. begin) at vertex v.

4.2.4 The dynamic-programming solution to multistage graph optimization

- A path from the source to the sink is specified as a sequence $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ of vertices with:
- $v_{1}=$ source vertex;
- $v_{k}=$ sink vertex;
- v_{i} is at stage i of the graph.
- The rôle of the principle of optimality in solving this problem is embodied in the following:
- If $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is an optimal path (i.e., yields maximum profit) from source to sink, then for any subpath

$$
\left\langle v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{j}\right\rangle
$$

the profit along that path is maximal over all paths from v_{i} to v_{j}.

- It is assumed initially that the graph is represented by an $n \times n$ weight matrix, with n the number of vertices:

$$
\text { weight : array }[n, n] \text { of integer; }
$$

- It is also assumed that the vertices are ordered by stage; e.g.:

Stage $1=$ source	$\{1\}$
Stage 2	$\{2,3,4\}$
Stage 3	$\{5,6,7,8\}$
\vdots	\vdots
Stage $k=$ sink	$\{n\}$

1 /* Data types and structures: */
2 type vertex $=\{1,2, \ldots, n\}$;
3 type stage $=\{1,2, \ldots, k\}$;
path : array[stage] of vertex;
4 profit: array[vertex] of integer;
decision : array[vertex] of integer;
5/* path records the optimal path as a sequence of vertices. */
$6 / * \operatorname{profit}[i]=$ profit along the optimal path from vertex i
7 to the sink. */
$8 / *$ decision $[i]=$ the vertex following vertex i in the optimal path
9 to the sink. */
10 /* Main procedure: */

```
profit \leftarrow < ;
for cur_vertex }\leftarrown-1\mathrm{ downto 1 do
```

 \(\langle\) next_vertex \(\leftarrow\) vertex with
 weight \([\) cur_vertex , next_vertex] + profit [next_vertex]
 maximized;
 decision[cur_vertex] \(\leftarrow\) next_veretex;
 profit[cur_vertex] \(\leftarrow\)
 weight \([\) cur_vertex, next_vertex] + profit \([\) next_vertex \(]\);
 path \([1] \leftarrow 1\);
 path \([k] \leftarrow n\);
 for stage \(\leftarrow 2\) to \(k-1\) do
 ${ }_{23} \quad$ path $[$ stage $] \leftarrow$ decision $[$ path $[$ stage -1$]]$;
4.2.5 The complexity of multistage graph optimization In all cases, the complexity of the multistage graph optimization algorithm described in 4.2.4 above is $\Theta\left(n^{2}\right)$, with n denoting the total number of vertices in the graph.

Proof: The process of selecting next_vertex at lines 13-14 requires a search of the list of vertices, which takes $\Theta(n)$ time. Thus, the for loop which encompasses lines 12-19 takes time $\Theta\left(n^{2}\right)$. The rest of the program runs in linear time.

4.2.6 The complexity of resource allocation Using the algorithm

 of 4.2.4, the problem of allocating m units of resource over r projects, as described in 4.2.2, requires time $\Theta\left((m r)^{2}\right)$. \square
4.2.7 Improving the performance of multistage graph optimization

- The performance may be improved substantially via the use of an adjacency list, similar to that employed in the improved implementations of Prim's algorithm 3.5.26 and of Dijkstra's algorithm 4.1.6.
- The amortized complexity over all executions of the assignment of lines $13-14$ is $\Theta(E)$, with E denoting the total number of edges in the graph.
- Since $E \geq k-1$, it follows that the overall complexity of this improved algorithm is $\Theta(E)$.
- The details are not presented here.

4.3 Dynamic-Programming Solution of the Discrete Knapsack Problem

4.3.1 Review of the Problem

Given:

- A knapsack with weight capacity M.
- n objects $\left\{\mathrm{obj}_{1}, \mathrm{obj}_{2}, \ldots, \mathrm{obj}_{n}\right\}$, each with a weight w_{i} and a value v_{i}.
- M, the w_{i} 's, and the v_{i} 's are all taken to be positive real numbers.

Find:

- $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ such that:
(a) $\sum_{i=1}^{n} x_{i} \cdot \mathrm{v}_{i}$ is a maximum, subject to the constraint that
(b) $\sum_{i=1}^{n} x_{i} \cdot \mathrm{w}_{i} \leq M$.

Example application:

- Knapsack = computer.
- capacity $\mathrm{M}=$ total time available.
- objects = potential jobs.
- $\mathrm{w}_{i}=$ time required to execute job_{i}.
- $\mathrm{v}_{i}=$ income earned by running job ${ }_{i}$.
- The goal is to maximize the profit.

4.3.2 The idea of the dynamic programming solution

- For $Y \leq M$ and $1 \leq \ell \leq j \leq n$, let $\operatorname{Knap}(\ell, j, Y)$ denote the subproblem of the above knapsack problem with
(i) knapsack capacity $=Y$;
(ii) $j-\ell+1$ objects $\left\{\right.$ obj $_{\ell}, \ldots$, obj $\left._{j}\right\}$.
- The weights and profits of the objects are unaltered.
- The problem is thus to find
- $\left(x_{\ell}, x_{\ell+1}, \ldots, x_{j}\right) \in\{0,1\}^{n}$ such that:
(a) $\sum_{i=\ell}^{j} x_{i} \cdot \mathrm{v}_{i}$ is a maximum, subject to the constraint that
(b) $\sum_{i=\ell}^{j} x_{i} \cdot \mathrm{w}_{i} \leq Y$.
- Note that $\operatorname{Knap}(1, n, M)$ is the original problem.
- Let $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in\{0,1\}^{n}$ be an optimal solution to the original problem. Note that:
(a) If $y_{n}=0$, then $\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ is an optimal solution for $\mathrm{Knap}(1, n-1, M)$.
(b) If $y_{n}=1$, then $\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ is an optimal solution for $\operatorname{Knap}\left(1, n-1, M-\mathrm{w}_{n}\right)$.
- This idea may be continued via induction to obtain the following:
(c) For any k with $1 \leq k \leq n,\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is an optimal solution for $\operatorname{Knap}\left(1, k, M-\sum_{i=k+1}^{n} y_{i} \cdot \mathrm{w}_{i}\right)$.
- In the dynamic programming approach, instead of computing the cost of each partial solution, attention is restricted to those whose whose lead sequence $\left(e . g .\left(y_{1}, y_{2}, \ldots, y_{k}\right)\right)$ is optimal for some "tail" $\left(y_{k+1}, y_{k+2} \ldots, y_{n}\right)$.

TDBC91 slides, page 4.18, 20080928

4.3.3 Solution of an example

- The example problem introduced in 3.1.3 is solved here using dynamic programming.
- For completeness, the data of the example are restated.
- Let $M=8 ; n=4$, and let v_{i} and w_{i} be as shown in the table below.

i	1	2	3	4
v_{i}	1	2	5	6
w_{i}	2	3	4	5

- The solution space is conveniently viewed as a decision tree, as illustrated on the next slide.

TDBC91 slides, page 4.20, 20080928

- The process builds partial solution vectors $S_{0}, S_{1}, S_{2}, S_{3}, \ldots$, with S_{i} corresponding to the $i^{\text {th }}$ level in the decision tree (with the root at level 0).
- More specifically:
- The notation $\binom{p}{w}$ is used to denote a profit-weight pair.
- $S_{0}=\binom{0}{0}$.
- $S_{i+1}=$ "merge" of S_{i} with S_{i+1}^{\prime}, with
- $S_{i+1}^{\prime}=S_{i}$ with $\binom{p_{i}}{w_{i}}$ added to each pair.
- The merge operation removes suboptimal pairs.
- The following documents, in detail, the solution of the example.

Step 0: Fix $S_{0}=\binom{0}{0}$.
Step 1: Find S_{1}.

- First candidate $=\binom{0}{0}+\binom{1}{2}=\binom{1}{2}$.
- Fill in the values from S_{0} with lesser weight, yielding $S_{1}=$ $\binom{0}{0}$.
- Include the candidate, if admissible, yielding $S_{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)$.

Step 2: Find S_{2}.

- First candidate $=\binom{0}{0}+\binom{2}{3}=\binom{2}{3}$.
- Fill in the values from S_{1} of lesser weight, yielding $S_{2}=$ $\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)$.
- Include the candidate, if admissible, yielding $S_{2}=\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 3\end{array}\right)$.
- Second candidate $=\binom{1}{2}+\binom{2}{3}=\binom{3}{5}$.
- Fill in the values from S_{1} of lesser weight (none new), yield$\operatorname{ing} S_{2}=\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 3\end{array}\right)$.
- Include the candidate, if admissible, yielding $S_{2}=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 5\end{array}\right)$.

Step 3: Find S_{3}.

- First candidate $=\binom{0}{0}+\binom{5}{4}=\binom{5}{4}$.
- Fill in the values from S_{2} of lesser weight, yielding $S_{3}=$ $\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 3\end{array}\right)$.
- Include the candidate, if admissible, yielding $S_{3}=\left(\begin{array}{llll}0 & 1 & 2 & 5 \\ 0 & 2 & 3 & 4\end{array}\right)$.
- The suboptimal pair $\binom{3}{5}$ from S_{2} is purged, since $\binom{5}{4}$ yields more profit with less cost. (A pair $\binom{p}{w}$ is suboptimal if there is another pair $\binom{p^{\prime}}{w^{\prime}}$ with either $\left(p<p^{\prime}\right.$ and $\left.w^{\prime} \leq w\right)$ or ($p \leq p^{\prime}$ and $\left.w^{\prime}<w.\right)$)
- Second candidate $=\binom{1}{2}+\binom{5}{4}=\binom{6}{6}$.
- Fill in the values from S_{2} of lesser weight (none new), yield$\operatorname{ing} S_{3}=\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 5 \\ 0 & 2 & 3 & 5 & 4\end{array}\right)$.
- Include the candidate, if admissible, yielding $S_{3}=\left(\begin{array}{lllll}0 & 1 & 2 & 5 & 6 \\ 0 & 2 & 3 & 4 & 6\end{array}\right)$.
- Third candidate $=\binom{2}{3}+\binom{5}{4}=\binom{7}{7}$.
- Fill in the values from S_{2} of lesser weight (none new), yield$\operatorname{ing} S_{3}=\left(\begin{array}{lllll}0 & 1 & 2 & 5 & 6 \\ 0 & 2 & 3 & 4 & 6\end{array}\right)$.
- Include the candidate, if admissible, yielding $S_{3}=\left(\begin{array}{llllll}0 & 1 & 2 & 5 & 6 & 7 \\ 0 & 2 & 3 & 4 & 6 & 7\end{array}\right)$.
- Fourth candidate $=\binom{3}{5}+\binom{5}{4}=\binom{8}{9}$.
- Note that $\binom{3}{5}$ was purged from S_{3}, but it remains in S_{2}, and must be used to construct candidates for S_{3}.
- Fill in the values from S_{2} of lesser weight (none new), yielding $S_{3}=\left(\begin{array}{llllll}0 & 1 & 2 & 5 & 6 & 7 \\ 0 & 2 & 3 & 4 & 6 & 7\end{array}\right)$.
- Include the candidate, if admissible; however, it is not admissible, so the value remains $S_{3}=\left(\begin{array}{llllll}0 & 1 & 2 & 5 & 6 & 7 \\ 0 & 2 & 3 & 4 & 6 & 7\end{array}\right)$.

Step 4: Find the value of x_{4}.

- Although S_{4} could be compute in a manner similar to that above, it is possible to find it directly.
- For $x_{4}=0$, the best pair is $\binom{7}{7}$.
- For $x_{4}=1$, find the $\binom{p}{w} \in S_{3}$ with the maximum p and with $\mathrm{w}_{4}+w=5+w \leq M=8$.
- The choice is $\binom{p}{w}=\binom{2}{3}$, which yields $\binom{8}{8}$. This is better than $\binom{7}{7}$, so $x_{4}=1$.
Step 5: Find the solution vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
- It is already known that $x_{4}=1$ with $\binom{8}{8}$ representing the total profit and weight.
- Thus, since $\mathrm{v}_{4}=6$ and $\mathrm{w}_{4}=5,\binom{8}{8}-\binom{6}{5}=\binom{2}{3}$ must be matched by $\left(x_{1}, x_{2}, x_{3}\right)$.
- Since $w_{3}=4, x_{3}=0$.
- Since $\binom{\mathrm{v}_{2}}{\mathrm{w}_{2}}=\binom{2}{3}, x_{2}=1$, whence $x_{1}=0$.
- Thus, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,1)$.
- The final, pruned decision tree is shown on the next page.

TDBC91 slides, page $4.26,20080928$

4.3.4 Skeletal representation of the algorithm

- Assume that there are n objects.
- The skeletal algorithm is as follows.
$S_{0}=\{(0,0)\} ;$
for $i \leftarrow 1$ to $n-1$ do
$\langle T \leftarrow$ new admissible pairs (p, w) found by adding $\left(\mathrm{v}_{\boldsymbol{i}}, \mathrm{w}_{\boldsymbol{i}}\right)$ to $S_{\boldsymbol{i}_{-1}}$;

$$
S_{i} \leftarrow \text { merge-purge }\left(S_{i-1}, T\right)
$$

\rangle
Select optimal pairs from S_{n};
Trace back to find $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$;

- The major data structures are as follows:
type solution_pair $=$ record
profit : $\{0,1, \ldots$, max_profit $\}$;
weight : $\{0,1, \ldots$, max_weight $\}$;
end record;
constant max_size $=2^{n-1}-1 ; / *$ Max vertices in decision tree $* /$
s : array[1..max_size] of sol_pair;
start : array $[0 . . n]$ of $\{0,1, \ldots$, max_size $\}$;
- $\operatorname{start}[i]$ identifies the starting point of $|S|_{i}$ in the array s :

- The full algorithm will not be presented here.

TDBC91 slides, page 4.27, 20080928

- A complexity analysis is nonetheless possible.

4.3.5 Complexity of dynamic programming applied to the discrete knapsack problem

- The following apply in the worst case:
- The time required to produce S_{i} is $\Theta\left(\operatorname{Card}\left(S_{i-1}\right)\right)$.
- In the worst case, all vertices of the decision tree are retained, so $\operatorname{Card}\left(S_{i}\right)=2 \cdot \operatorname{Card}\left(S_{i-1}\right)$.
- Thus, the worst-case time to produce all of the S_{i} 's, $0 \leq i \leq$ $n-1$ is

$$
\Theta\left(\sum_{i=0}^{n-1} S_{i-1}\right)=\Theta\left(\mathbf{2}^{n}\right)
$$

- In a typical case, however, many pairs are purged, and so the performance may be much better.
- The space complexity is also $\Theta\left(\mathbf{2}^{n}\right)$.

4.3.6 Some heuristics for speedup

- There are a number of heuristics which may be employed to speed up the solution of many instances of the discrete knapsack problem.
- Suppose that a lower bound L is given on the profit of an optimal solution; i.e.,

$$
\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { optimal } \Rightarrow \sum_{i=1}^{n} y_{i} \cdot \mathrm{v}_{i} \geq L
$$

- For each $k, 1 \leq k \leq n$, define

$$
\operatorname{PLeft}(k)=\sum_{j=k+1}^{n} \mathrm{v}_{k}
$$

- The following heuristic may then be employed:

$$
\text { If }\binom{p}{w} \in S_{i} \text { and } p+\mathrm{PLeft}(i)<L, \text { then purge }\binom{p}{w}
$$

- There are a number of ways to obtain such an L :
- Use $\max \left\{p \left\lvert\,\binom{ p}{w} \in S_{i}\right.\right\}$ as the bound L for the $i^{\text {th }}$ stage.
- Obtain a feasible solution using a greedy method, and use the resulting profit as the bound L.

4.4 The Travelling Salesman Problem

4.4.1 Problem description

- The travelling-salesman problem, often abbreviated TSP, may be described as follows.

Given: A directed graph $G=(V, E, g)$, together with a weighting function $d: E \rightarrow \mathbb{N}$.

- Think of d as giving a distance between vertices.

Define: A tour of G is a simple cycle of G which passes through each vertex of G. The cost of a tour is the sum of the distances of its edges.

Find: A tour of minimum cost.

- Note: By definition, a tour passes through each vertex exactly once.

4.4.2 The combinatorics of the travelling salesman problem

Given: A directed graph $G=(V, E, g)$, together with a weighting function $d: E \rightarrow \mathbb{N}$.

Question: How many distinct tours of G are there?

Answer:

- First, assume that the graph is complete; i.e., that there is an edge between any two vertices.
- Since a tour must pass through all vertices, the start vertex may be chosen arbitrarily.
- The second vertex may be chosen in any of $n_{V}-1$ ways, with n_{V} denoting the number of vertices in the graph.
- The third vertex may be chosen in any of $n_{V}-2$ ways.
- The $k^{t h}$ vertex may be chosen in any of $n_{v}-(k+1)$ ways.
- Thus, there are

$$
\left(n_{V}-1\right) \cdot\left(n_{V}-2\right) \cdot \ldots \cdot 2 \cdot 1=\left(n_{V}-1\right)!
$$

possible tours.

- Since n ! is the number of permutations of n elements, the TSP is often called a permutation problem.
- On the other hand, problems whose solution space is on the order of 2^{n}, such as the discrete knapsack problem, are often called subset problems.
- Permutation problems often have worst-case complexity which is even greater than that of subset problems, since

$$
\Theta\left(2^{n}\right) \subsetneq \Theta(n!)
$$

- This is easily seen by comparing the following sequences:

$$
\begin{aligned}
& 2^{n}=2 \cdot 2 \cdot 2 \cdot \ldots \cdot{ }_{2} \cdot 2 \\
& n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n-1 \cdot n
\end{aligned}
$$

- Note, however, that a graph has $\left(n_{V}-1\right)$! possible tours iff it is complete.
- In practice, the number of possible tours may be far less.

4.4.3 The principle of optimality applied to the travelling salesman problem

- Let $\left\langle v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}, v_{\sigma(1)}\right\rangle$ be the sequence of vertices followed in an optimal tour.
- Then $\left\langle v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right\rangle$ must be a shortest path from $v_{\sigma(1)}$ to $v_{\sigma(n)}$ which passes through each vertex exactly once.
- Invoking the principle of optimality, for any i, j, with $1 \leq i \leq j \leq$ n, the path $\left\langle v_{\sigma(i)}, v_{\sigma(i+1)}, \ldots, v_{\sigma(j)}\right\rangle$ must be optimal for all paths beginning at $v_{\sigma(i)}$, ending at $v_{\sigma(j)}$, and passing through exactly the intermediate vertices $\left\{v_{\sigma(i+1)}, \ldots, v_{\sigma(j-1)}\right\}$.
- In general, for $v, w \in V$ and $S \subseteq V \backslash\{v, w\}$, define

$$
\operatorname{TSP}(v, S, w)
$$

to be the shortest path from v to w which passes through each vertex in S exactly once, and through no other intermediate vertices.

- Define

$$
\operatorname{Cost}(v, S, w)
$$

to be the cost of such a path.

- For $u, v \in V$, let $d(u, v)$ denote the distance of the minimal edge between u and v. Thus,

$$
d(u, v)=\operatorname{Cost}(u, \emptyset, v)
$$

- By the principle of optimality, for $u \in S$,

$$
\begin{equation*}
\operatorname{Cost}(v, S, w)=\min (\{d(v, u)+\operatorname{Cost}(u, S \backslash\{u\}, w) \mid u \in S\}) \tag{*}
\end{equation*}
$$

4.4.4 Example

- Choose vertex 1 as the terminal point (arbitrary choice).
- Process intermediate sets in order of increasing size.
- For intermediate set $S=\emptyset$:

$$
\begin{aligned}
& \operatorname{Cost}(2, \emptyset, 1)=d(2,1)=5 \\
& \operatorname{Cost}(3, \emptyset, 1)=d(3,1)=6 \\
& \operatorname{Cost}(4, \emptyset, 1)=d(4,1)=8
\end{aligned}
$$

- For $\operatorname{Card}(S)=1$:

$$
\begin{aligned}
& \operatorname{Cost}(2,\{3\}, 1)=d(2,3)+\operatorname{Cost}(3, \emptyset, 1)=15 \\
& \operatorname{Cost}(2,\{4\}, 1)=d(2,4)+\operatorname{Cost}(4, \emptyset, 1)=18 \\
& \operatorname{Cost}(3,\{2\}, 1)=d(3,2)+\operatorname{Cost}(2, \emptyset, 1)=18 \\
& \operatorname{Cost}(3,\{4\}, 1)=d(3,4)+\operatorname{Cost}(4, \emptyset, 1)=20 \\
& \operatorname{Cost}(4,\{2\}, 1)=d(4,2)+\operatorname{Cost}(2, \emptyset, 1)=13 \\
& \operatorname{Cost}(4,\{3\}, 1)=d(4,3)+\operatorname{Cost}(3, \emptyset, 1)=15
\end{aligned}
$$

- For $\operatorname{Card}(S)=2$:

$$
\begin{aligned}
& \operatorname{Cost}(2,\{3,4\}, 1) \\
& =\min (\{d(2,3)+\operatorname{Cost}(3,\{4\}, 1), d(2,4)+\operatorname{Cost}(4,\{3\}, 1)\} \\
& =\min (\{\{9+20\},\{10+15\}\})=25 \\
& \operatorname{Cost}(3,\{2,4\}, 1) \\
& =\min (\{d(3,2)+\operatorname{Cost}(2,\{4\}, 1), d(3,4)+\operatorname{Cost}(4,\{2\}, 1)\} \\
& =\min (\{\{13+18\},\{12+13\}\})=25 \\
& \operatorname{Cost}(4,\{2,3\}, 1) \\
& =\min (\{d(4,2)+\operatorname{Cost}(2,\{3\}, 1), d(4,3)+\operatorname{Cost}(3,\{2\}, 1)\} \\
& =\min (\{\{8+15\},\{9+18\}\})=23
\end{aligned}
$$

- For $\operatorname{Card}(S)=3$, attention may be restricted to paths starting with vertex 1 , since the cycle will be completed at this point.

$$
\begin{aligned}
& \operatorname{Cost}(1,\{2,3,4\}, 1) \\
& =\min (\{d(1,2)+\operatorname{Cost}(2,\{3,4\}, 1), \\
& d(1,3)+\operatorname{Cost}(3,\{2,4\}, 1), \\
& d(1,4)+\operatorname{Cost}(4,\{2,3\}, 1)\}) \\
& =\min (10+25,15+25,20+23)=35
\end{aligned}
$$

- In general, the rule $\left(^{*}\right)$ of 4.4 .3 is applied repeatedly to subproblems with increasing size of S.
- To see the size of this computation, proceed as follows.
- Recall that for $k \leq n$, the binomial coefficient

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
$$

gives the number of distinct k-element subsets of a set of n elements.

- Thus, the total number of values of the form $\operatorname{Cost}\left(v, S, v_{t}\right)$, which must be computed with this method, with v_{t} the terminal vertex in the tour, is:

$$
(n-1) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k}+1
$$

- However, by the binomial theorem:

$$
\sum_{k=0}^{n-2}\binom{n-2}{k}=\sum_{k=0}^{n-2}\left(\binom{n-2}{k} \cdot 1^{k} \cdot 1^{n-2 k}\right)=(1+1)^{n-2}=2^{n-2}
$$

- Thus, the total number of computations of the form $\operatorname{Cost}\left(v, S, v_{t}\right)$ is $(n-1) \cdot 2^{n-2}+1$.
- These require worst-case time $\Theta(n)$ to compute, hence the total running time will be

$$
\Theta\left(n^{2} \cdot 2^{n}\right)
$$

in the worst case.

- This is better than $\Theta((n-1)!)$, but it shall soon be shown that there are better algorithms.
- Note also that this approach requires $\Theta\left(n \cdot 2^{n}\right)$ space, since all values of the form $\operatorname{Cost}\left(v, S, v_{t}\right)$ must be saved for a given cardinality of S, in order to compute the paths for $\operatorname{Card}(S)+1$.
- The associated path must also be saved.
- This is prohibitively expensive.

