
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 2: The Divide-and-Conquer Strategy

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

2. The Divide-and-Conquer Strategy

2.1 Mergesort

2.1.1 Description of the algorithm Given is an array a[1..n] of

integers. The algorithm sorts a into nondecreasing order using the

following strategy.

Step 1: Divide If the array is small enough, then sort it directly. Oth-

erwise, divide it into two parts of “equal” size:

a [1 .. ⌊n/2⌋] a [⌊n/2⌋+1 ..n] (1)

and and recursively apply the algorithm to these pieces.

Step 2: Merge the pieces Merge the two sorted pieces into one sorted

list.

• ⌊x⌋ denotes the floor of x; the largest integer which is no larger

than x.

• Any array of size 1 is trivially sorted. Thus, if “small enough” is

taken to be size 1, then no auxiliary sort program is needed.

divide merge

Smallsort is applied to the leaf nodes.

a[1..n]

a[1 .. ⌊n/2n⌋] a[⌊n/2n⌋+1 .. n]

TDBC91 slides, page 2.1, 20080917

procedure mergesort(ref a : array[1..n], low,high : 1..n)

/∗ switchpt is a global constant.∗/
〈 if (high − low ≤ switchpt)

then

smallsort(a, low,high);

else

〈 mid ← ⌊(low+high)/2⌋;
mergesort(a, low,mid);

mergesort(a,mid +1,high);

merge(a, low,mid ,high)

〉
〉

procedure merge(ref a : array[1..n]; low,mid ,high : [1..n])

〈 b : array[low..high]; /∗ local array∗/
p1 ,p2 ,p : integer; /∗ local variables∗/
p1 ← low; p2 ←mid +1; p← low;

while (p1 ≤mid and p2 ≤ high) do

〈 if (a[p1]≤ a[p2])

then 〈 b [p]← a[p1]; p1 ← p1 +1; 〉
else 〈 b [p]← a[p2]; p2 ← p2 +1; 〉

p← p +1;

〉
if (p1 ≤mid)

then a[p..high]← a[p1 ..mid];

a[low..p]← b [low..p];

〉

mergesort(a,1,n); /∗ to sort a[1..n]∗/

TDBC91 slides, page 2.2, 20080917

2.1.2 The complexity of mergesort First, assume that switchpt =

1. The relevant recurrence is then

T (n) = T (⌊n/2⌋)
︸ ︷︷ ︸

+ T (⌊(n+1)/2⌋)
︸ ︷︷ ︸

+ k ·n︸︷︷︸

sort a[low..mid] sort a[mid+1..high] merge

For n = 2m, this becomes

T (2m) = 2 ·T (2m−1)+ k ·2m

which by virtue of 1.10.1 has a solution of the form

T (n) = c1 ·n+ c2 ·n · log(n)

which is in Θ(n · log(n)) provided c2 6= 0. Since T (n1) ≤ T (n2) for

n1 ≤ n2, this complexity must hold for all n, and not just powers of

two. Thus:

• The time complexity of mergesort is Θ(n · log(n)).

Note further that:

• This time complexity is essentially independent of the initial or-

der of the array. It does not matter whether the array is already

sorted, in reverse order, in random order, or whatever.

• The space complexity is Θ(n) (obvious).

• If switchpt > 1, the asymptotic complexity remains the same.

(Just substitute n/switchpt for n in the analysis — Think of the

input as consisting of n/switchpt blocks of size switchpt).

• Mergesort is stable; that is, if the list to be sorted has duplicate

keys, the relative order of the records with such keys is preserved.

TDBC91 slides, page 2.3, 20080917

2.2 Binary Search

2.2.1 Description of the algorithm

Given: a : array[1..n] of integer; /∗Sorted ∗/
m : integer;

Find: i ∈ [1..n] such that a[i] = m if such an i exists,

else report failure.

The following is the “naı̈ve” strategy, which illustrates clearly the divide-

and-conquer nature of this algorithm.

procedure binsearch(a : array; low,high : [1..n]; m : integer)

〈 if ((a[low] > m) or (a[high] < m))

then fail ;

else 〈 mid ← ⌊(low +high)/2⌋;
if a[mid] = m

then return mid ;

else /∗Naı̈ve divide; one case always fails∗/
〈 binsearch(a, low,mid −1,m);

binsearch(a,mid +1,high ,m); 〉
〉

〉

2.2.2 Example

a = [1 2 6 8 14 16]

m = 14 [1 2 6 8 14 16]

[1 2 6]

failure

[8 14 16]

success

TDBC91 slides, page 2.4, 20080917

The following is the more reasonable strategy, which “hides” the

divide-and-conquer nature.

procedure binsearch(a : array; low,high : [1..n]; m : integer)

〈 if ((a[low] > m) or (a[high] < m))

then fail ;

else

〈 mid ← ⌊(low +high)/2⌋;
case mid

a[mid] = m : return mid;

a[mid] > m : binsearch(a, low,mid −1,m);

a[mid] < m : binsearch(a,mid +1,high ,m);

end case

〉
〉

Although the asymptotic complexities will be the same, the anal-

yses are slightly different. For simplicity, it is the above version of

binary search which will be analyzed.

TDBC91 slides, page 2.5, 20080917

The time complexity of binary search

For simplicity, in that which follows, it will be assumed that the list to

be searched does not contain duplicates.

2.2.3 Best- and worst-case complexity

Best case: In the best case, the target is found on the first try; the

complexity is thus Θ(1).

Worst case: In the worst case, the following recurrence relation holds:

T (n) = T (⌊n/2⌋)+ k

in which k is the overhead in the algorithm beyond the recursive

call to binsearch.

Substituting 2m for n, and writing T̂ (m) for T (2m), the following

is obtained:

T̂ (m) = T̂ (m−1)+ k

The characteristic polynomial of this recurrence is

(x−1) · (x−1)

and so the solutions have the form

T̂ (m) = c1 ·1
m+ c2 ·m ·1

m = c1+ c2 ·m

Thus,

T (n) = c1+ c2 · log(n)

with c1 and c2 constants. Thus, the worst-case time complexity is

Θ(log(n)).

TDBC91 slides, page 2.6, 20080917

The analysis of the average case is somewhat more complex. To

begin, the concept of a decision tree is presented.

2.2.4 Decision trees A decision tree represents the sequence of

calls which is made for a given data item. Let Dn denote the decision

tree for an n-element array. Shown below is D14.

[1..14]

[1..6]

[1..2]

∅ [2..2]

∅ ∅

[4..6]

[4..4]

∅ ∅

[6..6]

∅ ∅

[8..14]

[8..10]

[8..8]

∅ ∅

[10..10]

∅ ∅

[12..14]

[12..12]

∅ ∅

[14..14]

∅ ∅

Notation: Each ∅ denotes an “empty” node.

Note that:

• Each successful call terminates at an interior (“[p..q]”) node. (The

value found is the midpoint of [p..q].)

• Each unsuccessful call terminates at an exterior (“∅”) node.

Thus:

• The average number of calls for a successful search =

average length of a path from the root to an interior node + 1.

• The average number of calls for an unsuccessful search =

average length of a path from the root to an exterior node + 1.

TDBC91 slides, page 2.7, 20080917

2.2.5 Node counts and path lengths For a given binary tree R,

define the following:

• The number of internal nodes is denoted IntNode(R).

• The number of external nodes (or leaf nodes) is denoted LeafNode(R).

• The internal path length, denoted IPL(R), is the sum of the lengths

of all paths from the root node to an interior node.

• The external path length, denoted EPL(R), is the sum of the lengths

of all paths from the root node to a leaf node.

2.2.6 Example For the decision tree D14 of 2.2.4:

IntNode(D14) = 14

LeafNode(D14) = 15

IPL(D14) = 1 ·0+2 ·1+4 ·2+7 ·3= 31

EPL(D14) = 1 ·3+14 ·4= 59

2.2.7 Comment Note that

IntNode(Dn) = n

is always true for any n ∈N, just by definition. The fact that

LeafNode(Dn) = IntNode(Dn)+1

will be shown in 2.2.11 below. First, the relationship between EPL(Dn)

and IPL(Dn) is developed.

TDBC91 slides, page 2.8, 20080917

2.2.8 Lemma For any binary tree R whatever:

EPL(R) = IPL(R)+2 · IntNode(R)

PROOF: The proof is by induction on the size of IntNode(R). For

simplicity of notation, let n = IntNode(R).

Basis: This is trivial, since for n = 0, EPL(R) = IPL(R) = 0.

Inductive step: Suppose that the assertion is true for a given n. Let Rn+1

denote any binary tree with IntNode(Rn+1) = n+1. At least one of

these nodes a must have two “∅” children; i.e., the subtree with it

as root must be of the form
a
∅ ∅ . Replace this subtree with ∅; i.e.,

effect a transformation of the form
a
∅ ∅ ; ∅ . The resulting tree

R̃n+1 has n internal nodes, so EPL(R̃n+1) = IPL(R̃n+1)+2 ·n in view
of the induction hypothesis. However, Rn+1 is obtained from R̃n+1

by changing:

• one external node to an internal node; and

• adding two new external nodes.

Let k denote the path length from the root to the node labelled a.

Then, in total, in transforming from R̃n+1 to Rn+1:

• k has been added to IPL(R̃n+1);

• k has been subtracted from EPL(R̃n+1);

• 2 · (k+1) has been added to EPL(R̃n+1);

i.e.,

• IPL(Rn+1) = IPL(R̃n+1)+ k; and

• EPL(Rn+1) = EPL(R̃n+1)+ k+2;

which implies EPL(Rn+1) = IPL(Rn+1)+2 · (n+1), as required. 2

TDBC91 slides, page 2.9, 20080917

2.2.9 Notation Let Succ(n) (resp. UnSucc(n)) denote the average

number of calls to binsearch in a successful (resp. unsuccessful) search

of a list with n elements. In this context of searching an array a[1..n] of

n elements, it will always be assumed that the element m to be found

has the property that a[1] ≤ m ≤ a[n]. This keeps trivial cases from

corrupting the interesting cases of average time complexity.

The proof of the following is immediate.

2.2.10 Proposition For any n ∈N,

Succ(n) = 1+ IPL(Dn)/n

2

2.2.11 Lemma For any nonempty binary tree R,

LeafNode(R) = IntNode(R)+1

PROOF: Let n denote the number of interior nodes.

Basis: The basis is for n = 1; this case is obvious.

Inductive step: Assume that the statement is true for a given n> 1, and

let R be a binary tree with IntNode(R) = n+ 1. As argued in 2.2.8,

R must have a subtree of the form
a
∅ ∅ . Replace this tree with

∅; i.e., perform a transformation of the form
a
∅ ∅ ; ∅ , and call

the resulting tree R̃. R̃ must have n internal nodes, so the inductive

hypothesis may be applied to it. However, R is obtained from R̃

by increasing both the number of internal nodes and the number of

external nodes by one, whence the result. 2

TDBC91 slides, page 2.10, 20080917

2.2.12 Proposition For any n ∈N,

UnSucc(n) = 1+EPL(Dn)/(n+1)

2

2.2.13 Proposition For any n ∈N,

Succ(n) = (1+1/n) ·UnSucc(n)− (2+1/n)

PROOF: Succ(n) = 1+ IPL(Dn)/n

= 1+(EPL(Dn)−2 ·n)/n
= 1+((UnSucc(n)−1) · (n+1)−2 ·n)/n
= (1+1/n) ·UnSucc(n)− (2+1/n) 2

2.2.14 Theorem – average time complexity Let a[1..n] be a sorted

array containing n distinct integers, and let m ∈ Z have the property

that a[1]≤ m≤ a[n]. Then the search for m has the following average

time complexities.

Succ(n) = Θ(log(n))

UnSucc(n) = Θ(log(n))

PROOF: UnSucc(n) will always be Θ(log(n)), since an unsuccessful

search will always use log2(n) or log2(n+1) calls to reach a leaf node.

The complexity of Succ(n) then follows from 2.2.13. 2

TDBC91 slides, page 2.11, 20080917

2.3 Quicksort

2.3.1 Informal comparison of mergesort and quicksort To sort

a[low..high]:

Mergesort: 1. Divide a into a[low..α], a[α+1..high].

2. Sort the two pieces separately.

3. Merge the two sorted pieces into one.

Quicksort: 1. Rearrange a so that each element of a[low..α] is smaller

than each element of a[α+1..high].

2. Sort a[low..α], a[α+1..high] separately.

3. Note that no merging is necessary.

TDBC91 slides, page 2.12, 20080917

2.3.2 Example of quicksort Let

a = 44 55 12 42 94 06 18 67

The first step is to pick a “partition” point; this value must lie between

the least and greatest element. In this example, choose 43.

• Begin with pointers L and R which point to the leftmost and right-

most elements, respectively:

L R

44 55 12 42 94 06 18 67

• Move pointer L to the right until finding an element > 43, and

move pointer R to the left until finding an element < 43:

L R

44 55 12 42 94 06 18 67

• If L and R have not met, swap these two elements:

L R

18 55 12 42 94 06 44 67

• Repeat this process until pointers L and R cross over each other

or meet:

L R

18 06 12 42 94 55 44 67

LR

18 06 12 42 94 55 44 67

TDBC91 slides, page 2.13, 20080917

• The process now continues by sorting each of the two blocks sep-

arately.

• Note that no merging will be necessary, since every element in

the left block is smaller than every element in the right block.

TDBC91 slides, page 2.14, 20080917

2.3.3 Possible strategies for pivot selection

• The key step is the selection of the partition (or pivot) element.

• A strategy is sought which yields a division of the array into two

part of approximately equal size.

• Some possible strategies are the following:

1. Select a value at random from amongst the possible key val-

ues.

• It is often a good choice.

• The problem is that it may yield a value which is either

larger or smaller than all keys.

2. Select a random array element.

• It is often a good choice.

• The problem with a random value is avoided.

• An extreme value might be selected.

3. Select the leftmost element.

• It is often a good choice if the array is random.

• It is a very bad strategy is the array is even partially

sorted.

4. Compute the average of a few elements.

• This strategy is usually better than the above, and only

slightly slower.

5. Compute the average of all elements.

• This is a good strategy, but quite slow.

6. Compute the median of all elements.

• This will yield an optimal pivot element, but is too slow

to use in practice.

TDBC91 slides, page 2.15, 20080917

2.3.4 The general partition algorithm The following algorithm

assumes only that the pivot element is within the range of the elements

to be partitioned.

• This pivot element is computed by the procedure getpivot.

• The parameter divider identifies the position of the rightmost el-

ement of the left interval in the partition.

• The array must contain at least two elements; i.e., low < high.

1 procedure partition(ref a : array [1..n] of keytype;

2 low,high : 1..n;

3 ref divider : 1..n);

4 〈 ref left , right : 0 .. n +1;

5 part : keytype;

6 left ← low−1; right ← high +1; part ← getpivot(a, low,high);

7 while (left < right) do

8 〈 /∗BlockA∗/
9 left ← left +1; right ← right−1;

10 while (a[left] < part) do left ← left +1;

11 while (a[right]) > part) do right ← right−1;

12 if (left < right) then swap(a[left],a[right]);

13 〉
14 if (left = right = high) then right ← right−1;

15 divider← right ;

16 〉

TDBC91 slides, page 2.16, 20080917

2.3.5 Definition To establish the correctness of this partitioning al-

gorithm, some predicates are necessary.

(a) Let LegalPiv denote the predicate which asserts that

min({a[i] | low≤ i≤ high})≤ part≤max({a[i] | low≤ i≤ high})

(b) Let SwapBd denote the predicate which asserts that

(∀x)((x ∈ {a[i] | low≤ i < left})⇒ (x≤ part)) ∧

(∀x)((x ∈ {a[i] | right < i≤ high})⇒ (part≤ x))

(c) A predicate α is called an invariant of the program block B if,

whenever α is true at the start of B, it is also true upon completion

of B.

2.3.6 Lemma Assume that predicate LegalPiv is true upon entry to

block A of the procedure of 2.3.4. Then SwapBd is an invariant of block

A.

PROOF: First of all, observe that condition LegalPiv, together with the

fact that the movement of left and right ceases as soon as they meet

or cross, ensures that the indices left and right can never go “out of

bounds”; that is, it is always the case that left≤ high and right≥ low.

Next, suppose that SwapBd is true at the beginning of an execution

of block A. Then, it is clearly true after the execution of the two while

loops. The “swap” block also maintains SwapBd, because the condi-

tion SwapBd only specifies properties for elements strictly to the left of

left and strictly to the right of right, and these values are not changed

by the swap. 2

TDBC91 slides, page 2.17, 20080917

2.3.7 Theorem If LegalPiv is true upon entry to block A, then SwapBd

is an invariant of the entire while loop containing A. 2

2.3.8 Definition Let Divider denote the predicate

(∀x)((x ∈ {a[i] | low≤ i≤ divider})⇒ (x≤ part)) ∧

(∀x)((x ∈ {a[i] | divider+1≤ i≤ high})⇒ (part≤ x)) ∧

(low≤ divider < high)

2.3.9 Theorem – partition works correctly If getpivot provides

a value of part for which LegalPiv is true, then Divider is true upon

completion of procedure partition.

PROOF: In view of 2.3.7, it suffices to check that divider← right

assigns the correct value to divider.

• If left> right holds at lines 14-15 of 2.3.4, it must be the case that

a[x] = part for all x in the range left+1≤ x≤ right−1, so by the

invariance of SwapBd established in 2.3.6, it must be the case that

the choice of divider = right is correct.

• If left= right, then it must be the case that a[left] = a[right] = part.

â If low < left = right < high, then either divider = right or

divider = right−1 will work.

â If low = left = right, then only divider = right will work.

â If left= right= high, then only divider= right−1 will work,
since divider = high would result in no elements to the right

of divider. Thus, right must be decreased by one.

2

TDBC91 slides, page 2.18, 20080917

2.3.10 The full quicksort algorithm The full quicksort algorithm

just calls partition recursively.

procedure quicksort(ref a : array[1..n] of integer;

low,high : 1..n);

〈
divider : 1..n;

if (low < high) then 〈 partition(a, low,high ,divider);

quicksort(a, low,divider);

quicksort(a,divider +1,high);

〉
〉

The starting point is just

quicksort(a,1,n);

TDBC91 slides, page 2.19, 20080917

The time complexity of quicksort

2.3.11 Call trees Given a particular instance I of the array a[1..n]

and a fixed choice for the function getpivot, the call tree

CallTree(I,getpivot) is the binary tree which shows the recursive nest-

ing of calls to quicksort. Formally,

(a) The root is labelled (1,n).

(b) The node labelled (x,y), with x < y, has children as shown below

(x,y)

(x,z) (z+1,y)

with z the value for divider returned by the call

partition(a,x,y,divider)

(c) A node labelled (x,x) for any x has no descendants.

(d) If v is a node in such a tree, and the label for v is (x,y), then the

notation x = Low(v), y = High(v) will be used, so that (x,y) =

(Low(v),High(v)).

TDBC91 slides, page 2.20, 20080917

2.3.12 Example Shown below is a possible call tree for a fourteen-

element array.

(1,14)

(1,5)

(1,3)

(1,1) (2,3)

(2,2) (3,3)

(4,5)

(4,4) (5,5)

(6,14)

(6,6) (7,14)

(7,7) (8,14)

(8,9)

(8,8) (9,9)

(10,14)

(10,12)

(10,10) (11,12)

(11,11) (12,12)

(13,14)

(13,13) (14,14)

2.3.13 Conventions used in complexity analysis

• In a call tree such as shown above in 2.3.12, nodes of the form

(x,x) will be taken to be leaf nodes. These nodes have no ∅ de-
scendants, as is the case with the decision trees of 2.2.4. This

convention is critical to the definition of external path length, as

given in 2.2.5.

• It will always be assumed that the pivot selection routine

getpivot(a, low,high) runs in time O(high− low). This condition

is met by all alternatives mentioned in 2.3.3.

TDBC91 slides, page 2.21, 20080917

2.3.14 Lemma The time complexity for a call

partition(a, low,high,divider)) is Θ(high− low) in all cases. 2

2.3.15 Notation Let R be any binary tree whatever. For any node v

of R, let Depth(v) denote the length of the path from the root node to v.

Note that the root node has depth 0 (and not 1) under this definition.

2.3.16 Lemma Let I be an instance for the array a[1..n] of integers,

and let CallTree(I,getpivot) be the corresponding call tree for pivot

function getpivot. Then

∑
v∈Vertices(CallTree(I,getpivot))

(High(v)−Low(v)+1) = EPL(CallTree(I,getpivot))+n

PROOF:

∑
v∈Vertices(CallTree(I,getpivot))

(High(v)−Low(v)+1) =
n

∑
i=1

#(i)

=
n

∑
i=1

(Depth((i, i))+1)

=
n

∑
i=1

Depth((i, i))+n

= EPL(CallTree(I,getpivot))+n

In the first line #(k) denotes the number of times that the index k occurs

in a node labelled (x,y), in the sense that x≤ k≤ y. It is easy to see that

the sum ∑(High(v)−Low(v)+1) counts exactly such occurrences over

all i; there are exactly y− x+ 1 such occurrence in the node labelled

(x,y), whence the first equality. Next, the index k occurs exactly in

those nodes which lie along the path from the root to the node labelled

(k,k); there are Depth(k)+ 1 such nodes. This establishes the second

equality. The final two are trivial. 2

TDBC91 slides, page 2.22, 20080917

2.3.17 Theorem Let a[1..n] be an array of integers, and let I be an

instance of values for this array. The running time for quicksort on I is

Θ(EPL(CallTree(I,getpivot))), with CallTree(I,getpivot) the particular

call tree which the function partition yields.

PROOF: The proof follows immediately from 2.3.14 and 2.3.16. Note

that Θ(high − low) = Θ(high − low + 1) and that

Θ(EPL(CallTree(I,getpivot))) = Θ(EPL(CallTree(I,getpivot))+n), the

latter since EPL(CallTree(I,getpivot)) > n. 22

2.3.18 Definition – almost balanced LetR be any binary tree what-

ever. Call R almost balanced if for any two leaf nodes v1 and v2 of R,

|Depth(v1)−Depth(v2)| ≤ 1.

2.3.19 Corollary Let a[1..n] be an array of integers, and let I be

an instance of values for this array.

(a) The best-case running time for quicksort is Θ(n · log(n)).

(b) The worst-case running time for quicksort is Θ(n2).

PROOF: The best case occurs when CallTree(I,getpivot) is almost

balanced. It is easy to see that there is always a partitioning which

yields such a tree. In that case, there are n leaves, each with a depth of

approximately log(n), for a total external path length in Θ(n · log(n)).
The worst case occurs when each partition of an interval (x,y)

yields intervals (x,x) and (x+ 1,y). In that case, the external path

length is ∑
n
i=1 i = n · (n+1)/2 ∈Θ(n2). 2

TDBC91 slides, page 2.23, 20080917

Next, the question of average time complexity for quicksort is ex-

amined.

2.3.20 Conventions In the analysis of the time complexity of quick-

sort in the average case, the following assumptions are made:

• All values in the array a[1..n] are distinct.

• All configurations I are equally likely.

• The pivot element is chosen at random from amongst the values

stored in a[1..n].

2.3.21 The recurrence in the average case Let TA(n) denote the

average number of comparisons required to sort an n-element list with

quicksort. The following inequality then holds for n > 1:

TA(n) ≤ k1 ·n+
1

n−1
·

(
n−1

∑
i=1

(TA(i)+TA(n− i))

)

= k1 ·n+
2

n−1
·
n−1

∑
i=1

TA(i)

In the first line, the k1 · n term represents the amount of time required

to partition the array. The second term represents the amount of time

need to sort recursively each component of the partition, averaged over

all possibilities. The n− 1 represents the number of distinct sizes for

the two pieces of the partition; if the sizes are i and n− i respectively,

then the time to sort recursively these pieces is TA(i)+TA(n− i). For

n = 1, the time required is just some contant, which may be taken to

be k1. More precisely, k1 may be chosen to be large enough to satisfy

both conditions.

TDBC91 slides, page 2.24, 20080917

2.3.22 Lemma For the average case of quicksort,

• TA(1)≤ k1.

• TA(2)≤ 4 · k1.

• For n≥ 3, TA(n)≤ 4 · k1 ·n · log2(n−1).

PROOF:

Basis: The cases n = 1 and n = 2 are trivial.

Inductive step: Fix n ≥ 2, and assume that the statement is true for all

k with k ≤ n. Then, the argument on the next slide shows that

TA(n+1)≤ 4 ·n · log2(n)

2

2.3.23 Theorem Quicksort has time complexity Θ(n · log(n)) in the
average case, with n the size of the input array.

PROOF: It is O(n · log(n)) in view of the above lemma, but since the

best case is Θ(n · log(n))), the average case can be no better. 2

TDBC91 slides, page 2.25, 20080917

Grinding the math for 2.3.22:

TA(n+1)

≤ k1 · (n+1)+
2

n
·

n

∑
i=1

(TA(i))

= k1 · (n+1)+
2

n
·

(

TA(1)+TA(2)+
n

∑
i=3

TA(i)

)

= k1 · (n+1)+
2

n
·

(

TA(1)+TA(2)+
n

∑
i=3

(4 · k1 · (i−1) · log2(i−1))

)

= k1 ·

(

n+1+
10

n
+
8

n
·
n−1

∑
i=2

i · log2(i)

)

≤ k1 ·

(

n+1+
10

n
+

8

n
·
Z n

2
i · log2(i) ·di

)

= k1 ·

(

n+1+
10

n
+

8

n · loge(2)
·
Z n

2
i · loge(i) ·di

)

= k1 ·

(

n+1+
10

n
+

8

n · loge(2)
·

(
i2 · loge(i)

2
−

i2

4

) ∣
∣
∣
∣

n

2

)

= k1 ·

(

n+1+
10

n
+

8

n · loge(2)
·

(
n2 · loge(n)

2
−

n2

4
−
22 · loge(2)

2
+

22

4

))

= k1 ·

(

n+1+
10

n
+4 ·n · log2(n)−

2 ·n

loge(2)
−
16

n
−

8

n · loge(2)

)

= k1 ·

(

4 ·n · log2(n)+

(

n+1−
6

n
−

2 ·n

loge(2)
+

8

n · loge(2)

))

= k1 ·

(

4 ·n · log2(n)+

(

n ·

(

1−
2 ·n

loge(2)

)

−
6

n
+

8

n · loge(2)

)

︸ ︷︷ ︸

<0 for n≥3

)

≤ 4 · k1 · log2(n)

TDBC91 slides, page 2.26, 20080917

2.3.24 Some final observations regarding quicksort

• In practice, quicksort appears to be two to three times faster than

mergesort.

• Mergesort has the advantage that the time required to sort is rel-

atively independent of the initial arrangement of the list. This is

not the case with quicksort.

• Mergersort has the further advantage that it is stable (see 2.1.2),

while quicksort is not.

• The average time complexity is still Θ(n · log(n)) with duplicates
in the list, but the proof is more complex.

• As is the case with mergesort, the performance may be improved

by using a simpler sort for small lists.

• The space complexity is Θ(n) in all cases.

TDBC91 slides, page 2.27, 20080917

2.3.25 A simplified version of quicksort

• In the case that the pivot element is chosen as a value from the ar-

ray,the quicksort algorithm can be simplified somewhat, as shown

on the next slide.

• The procedure partition1 is given a fifth argument which identifies

the index in the array a of the pivot value.

• It then divides a[low..high] into three pieces.

â For x < divider, a[x]≤ a[pivindex].

â For x > divider, a[x]≥ a[pivindex].

â a[divider] = a[pivindex].

• The recursive sort ignores a[divider], since it is already in the cor-

rect position.

• Note that divider = low and divider = high are possible.

• The asymptotic complexities of this algorithm are the same as for

the previous one, and will not be analyzed separately.

• choose pivot is the pivot-selection algorithm, which returns an

index in [low..high].

TDBC91 slides, page 2.28, 20080917

procedure partition1(ref a : array [1..n] of keytype;

low,high : 1..n;

ref divider : 1..n;

pivindex : 1..n);

〈 ref left , right : 0 .. n +1;

part : keytype;

part ← a[low +pivindex−1];

/∗Temporarily store part in the leftmost position:∗/
swap(a[low],a[low +pivindex−1]); low← low +1;

left ← low−1; right ← high +1;

while (left < right) do

〈 /∗BlockA∗/
left ← left +1; right ← right−1;

while (a[left] < part) do left ← left +1;

while (a[right] < part) do right ← right−1;

if (left < right) then swap(a[left],a[right]);

〉
swap(a[low],a[right]); /∗Restore part to the correct position∗/
divider← right ;

〉

procedure quicksort1(ref a : array[1..n] of integer;

low,high : 1..n);

〈 divider,pivindex : 1..n;

if (low < high) then 〈 pivindex← choose pivot(a);

partition1(a, low,high ,divider,pivindex);

quicksort1(a, low,divider−1);

quicksort1(a,divider+1,high);

〉
〉

TDBC91 slides, page 2.29, 20080917

2.4 The General Divide-and-Conquer Strategy

2.4.1 The pseudocode The general divide-and-conquer strategy has

the following form.

procedure DC(inobj : object , outobj : object)

〈 solved : ref boolean;

in1 , in2 ,out1 ,out2 : object ;

presolve(inobj ,outobj ,solved);

if (not solved) then 〈 divide(inobj , in1 , in2);

DC(in1 ,out1); DC(in2 ,out2);

combine(out1 ,out2 ,outobj); 〉
〉

presolve: checks to see if the problem is simple and can be solved

directly.

• Sort a small list for mergesort, quicksort.

• Failed or found in binary search.

divide: takes a single problem instance and splits it into two subin-

stances.

• trivial in mergesort; partition in quicksort.

• divide interval in binary search.

combine: combines the results of two solutions into one.

• merge in mergesort; trivial in quicksort.

• trivial in binary search.

TDBC91 slides, page 2.30, 20080917

2.5 Order Statistics

2.5.1 Problem description The problem of order statisticsmay be

described as follows:

Given: • array a[1..n] of integer;

• k ∈ 1..n.

Find: The kth-smallest element a.

• A simple-minded solution is to sort a and then pick the kth ele-

ment.

• This does much more work than in actually necessary.

• A better solution is to proceed as in quicksort, but only continue

to sort the “useful” half of the interval at each step.

• It is easy to see that this results in the following time complexities:

Best case: Θ(n).

Worst case: Θ(n2).

Average case: Θ(n).

• The proof is very similar to that for quicksort.

• It is, however, possible to design a divide-and-conquer algorithm

which runs in time Θ(n) in the worst case. This algorithm is now

developed.

TDBC91 slides, page 2.31, 20080917

2.5.2 The idea of a Θ(n) worst-case algorithm for order statistics

• The general idea is to proceed as in quicksort, but sorting only the

“necessary” of the two partitions.

• The trick is to select the partition element in such a way that the

degenerate case leading to Θ(n2) complexity cannot occur.

• The pivot element is computed in such a way that a minimal per-

centage of the elements, 1/m, lies in each of the partitions.

a[1..n]

elements
≤ pivot

elements
> pivot

Each has
at least

1/m of elements

• The maximum depth of the tree is then ⌈logm/(m−1)(n)⌉.

• If the time at each level is bounded by Θ(list length), then with

r = m−1
m

and B = ⌈logm/(m−1)(n)⌉, the total running time will be:

T (n) = n ·
B

∑
i=0

ri

= n ·
1− rB+1

1− r
≤ n ·

1

1− r
= n · constant

TDBC91 slides, page 2.32, 20080917

2.5.3 The median-of-medians rule The median-of-medians rule

on the array a[1..n] proceeds as follows:

1. Select r, 1≤ r≤ n, with r odd. (Selection process discussed later.)

2. Build ⌊n/r⌋ groups of r elements each.

3. Discard the last n−⌊n/r⌋ · r elements.

4. For 1≤ i≤ r, Set mi←median of ith group.

5. Set mm←median({mi | 1≤ i≤ r}).

2.5.4 Facts

(a) At least ⌈⌊n/r⌋/2⌉ of the mi’s are ≤ mm.

(b) At least ⌈⌊n/r⌋/2⌉ of the mi’s are ≥ mm.

(c) At least ⌈r/2⌉ · ⌈⌊n/r⌋/2⌉ of the elements of a are ≤ mm.

(d) At least ⌈r/2⌉ · ⌈⌊n/r⌋/2⌉ of the elements of a are ≥ mm.

(e) At most n−⌈r/2⌉ · ⌈⌊n/r⌋/2⌉ of the elements of a are > mm.

(f) At most n−⌈r/2⌉ · ⌈⌊n/r⌋/2⌉ of the elements of a are < mm.

PROOF: ⌈⌊n/r⌋/2⌉ is half the number of groups, rounded up. From

this (a) and (b) follow immediately. (c) and (d) then follow from (a)

and (b), as do (e) and (f). 2

TDBC91 slides, page 2.33, 20080917

2.5.5 The high-level order-statistics algorithm The algorithm is

shown on the next page. The key points are as follows.

• The algorithm calls itself in two different ways for distinct pur-

poses.

â to compute the median of medians, by recursively finding

the median of a list (i.e., by finding the i/2nd element in an

i-element list;

â to mimic the relevant half of quicksort, using the median of

medians to define the dividing point.

• For this algorithm, the procedure partition1 of 2.3.25 is used.

TDBC91 slides, page 2.34, 20080917

1 /∗ Return the kth largest element in a[low..high] ∗/
2 function orderstat(a : ref array[1..n] of integer;

3 low,high ,k : 1..n) : integer;

4 〈 s,mm : integer;

5 r integer constant;

6 med : array[1..⌊(high − low+1)/r⌋] of integer;

7 s ← high − low+1;

8 if (⌊s/r⌋ ≤ 1)

9 then mm←median(a[low,high]);

10 else 〈
11 for i← 1 to ⌊s/r⌋ do
12 med [i]←median(a[low +(i−1) · ⌊r⌋
13 ..low +(i−1) · ⌊r⌋+(r−1)]);

14 mm← orderstat(med ,1,⌊s/r⌋,⌈⌊s/r⌋/2⌉);
15 〉
16 partition1(a, low,high ,divider,mm);

17 /∗mm = index to pivot value to be used∗/
18 case

19 divider = k : return a[divider];

20 divider > k : return orderstat(a, low,divider−1,k);

21 divider < k : return orderstat(a,divider+1,high ,

22 k −divider);

23 end case

24 〉

TDBC91 slides, page 2.35, 20080917

2.5.6 The recurrence defining the time complexity

• Let T (m) denote the worst-case time complexity for a call to or-

derstat with high− low+ 1 = m. A line-by-line analysis of the

complexity follows. Each of the ki is a constant.

Line 9: k0.

Lines 11-13: k1 · ⌊m/r⌋ ≤ k1 ·m

Line 14: T (⌊m/r⌋).

Line 16: k2 ·m.

Lines 18-23: T (max. no. elements in the larger part of the partition)≤
T (m−⌈r/2⌉ · ⌈⌊m/r⌋/2⌉). (Follows from 2.5.4 (e) and (f).)

• Thus the recurrence relation to be solved is:

T (m) ≤ k0+(k1+ k2) ·m+T(⌊m/r⌋)+T(m−⌈r/2⌉ · ⌈⌊m/r⌋/2⌉)

≤ k ·m+T (⌊m/r⌋)+T(m−⌈r/2⌉ · ⌈⌊m/r⌋/2⌉)

• It is assumed thatm≥ 1, and so k0 may be eliminated by choosing

the constant k large enough so that k0+(k1+k2) ·m≤ k ·m for all

m≥ 1.

• In general this is a difficult recurrence to solve. The trick is to

find a value for r which works.

TDBC91 slides, page 2.36, 20080917

2.5.7 Theorem Let a[1..n] be an n-element array of distinct inte-

gers. With r = 5, the worst-case time complexity of a call of the form

orderstat(a,1,n) of the order-statistics program of 2.5.5 is Θ(n).

PROOF:

⌈r/2⌉ · ⌈⌊m/5⌋/2⌉= 3 · ⌈⌊m/5⌋/2⌉ ≥ 3 · ⌊m/5⌋/2= 1.5 · ⌊m/5⌋

Thus, in view of 2.5.4 (e) and (f), at most

m−1.5 · ⌊m/5⌋ ≤ m−1.5 · (m/5−1)≤ 0.7 ·m+1.5

elements of a[low..high] will be > mm (resp. < mm).

For m≥ 50, 0.7 ·m+1.5≤ 3 ·m/4−1, so for m≥ 50,

T (m)≤ k ·m+T (⌊m/5⌋)+T(⌊3 ·m/4⌋)

It is possible to select k large enough that

T (m)≤ k ·m for m≤ 50

It then follows by induction that

T (m)≤ 20 · k ·m

for all m≥ 1. The basis step is obvious. For the inductive step, assume

that T (p)≤ 20 · k · p for all p < m. Then

T (m) ≤ k ·m+T (⌊m/5⌋)+T(⌊3 ·m/4⌋)

≤ k ·m+
1

5
·20 · k ·m+

3

4
·20 · k ·m

= 20 · k ·m

2

TDBC91 slides, page 2.37, 20080917

2.5.8 Arrays with duplicate values

• If the array a[1..n] contains duplicate values, the choice of r = 5

may not work.

• For example, suppose that 0.7 ·m+1.5 elements are ≤mm, with

the rest equal to mm.

• Let Te(m) denote the time for a call of the form

orderstat(a, low,divider−1,k). Then

Te(m)≤ T (0.7 ·m+1.5+
1

2
· (0.3 ·m−1.5))
︸ ︷︷ ︸

Assume that half
of the rest of the elements
fall into the left partition.

= T (0.85 ·m+0.75)

• A similar result hold for a call of the form

orderstat(a,divider+1,high,k).

• Thus, in the worst case, the following recurrence, which is super-

linear, holds:

T (m)≤ k ·m+T (⌊m/5⌋)+T(0.85 ·m)

• Since this is an inequality, it does not prove that the algorithm is

not Θ(n), but it does not substantiate that it is either.

TDBC91 slides, page 2.38, 20080917

• There are two ways to deal with this problem:

1. Choose a different value for r.

• The value r = 9 works, but the constant multipliers are

larger, which results in a slower algorithm.

2. Modify the partition algorithm to divide the set of values into

three parts:

= divider < divider > divider

• This modified partitioning may still be performed in linear

time.

• Consult the text by Horowitz, Sahni, and Rajasekaran for details

on how to implement these ideas.

The bottom line is the following.

2.5.9 Theorem There is a Θ(n) worst-case time algorithm for the

order-statistics problem, even in the case that the array contains du-

plicate elements. 2

TDBC91 slides, page 2.39, 20080917

2.5.10 Improving the worst-case time complexity of quicksort

• If getpivot in the program of 2.3.4 is implemented using a Θ(n)

order-statistics algorithm, the worst-case time complexity of quick-

sort becomes Θ(n · log(n)) because the call tree will always be

balanced.

• This solution is substantially slower than mergesort, in practice.

TDBC91 slides, page 2.40, 20080917

2.6 The Convex-Hull Problem

2.6.1 Description of the problem

Given: A finite set of points in a two-dimensional plane.

Find: The smallest convex polygon containing all of the points.

Visualization:

• The “plane” is a wooden board.

• Each point is a nail.

• The containing convex polygon is found by wrapping a rub-

ber band around the nails.

b

b

b

b

b

b

b

b

b

b

TDBC91 slides, page 2.41, 20080917

2.6.2 The direction of a turn In the development of algorithms for

the construction of convex hulls, it is useful to be able to answer the

following:

Question: Given a sequence of three points 〈p0, p1, p2〉, which of the
following does the line segment connecting them form?

left turn:
b
p0

b
p1

b
p2

right turn:
b
p0

b

p1

b
p2

straight line:
b
p0

b
p1

b
p2

TDBC91 slides, page 2.42, 20080917

2.6.3 Lemma –Determining the direction of a turn Let p0 = (x0,y0),

p1 = (x1,y1), and p2 = (x2,y2) be points in the plane, and define

Turn(p0, p1, p2) = (x1− x0) · (y2− y0)− (x2− x0) · (y1− y0)

Then 〈p0, p1, p2〉 forms

(a) a left turn if Turn(p0, p1, p2) > 0;

(b) a right turn if Turn(p0, p1, p2) < 0;

(a) a straight line if Turn(p0, p1, p2) = 0.

TDBC91 slides, page 2.43, 20080917

PROOF: First assume that (x0,y0) = (0,0), and that x1,y1,x2,y2 are all

nonnegative, and let p1 + p2 = (x1 + x2,y1 + y2). For (x0,y0) = (0,0),

Turn(p0, p1, p2) = x1 · y2− x2 · y1, and it is easy to see that this value is

the shaded area in the diagram below. Indeed,

b

b
p1

b

x1

b
p2

b

x2

b
p1+ p2

b

x1+ x2

by1

by2

Turn(p0, p1, p2) =

Area2((x2,0), p2, p1+ p2,(x1+ x2,0))

+ Area△((0,0), p2,(x2,0))

− Area△((0,0), p1,(x1,0))

− Area2((x1,0), p1, p1+ p2,(x1+ x2,0))

= (1
2
· x1 · y1+ x1 · y2)+(1

2
· x2 · y2)− (1

2
· x1 · y1)− (x2 · y1+ 1

2
· x2 · y2)

Here Area△(−) (resp. Area2(−)) represents the areas of the triangle

(resp. trapezoid) with vertices as indicated. As depicted, this area is

positive because 〈p0, p1, p2〉 defines a left turn. Reversing the rôles of

p1 and p2 shows that the value is negative for a right turn.

If p0 6= (0,0), just translate the whole problem to 〈q0,q1,q2〉, with
q0 = (0,0), q1 = (x1− x0,y1− y0), and q2 = (x2− x0,y2− y0), and use

the above result.

To be complete, it is also necessary to show that this approach still

works if some of the coordinates are negative, This is straightforward

and omitted. (In the convex-hull problems considered here, all coordi-

nates are nonnegative.) 2

TDBC91 slides, page 2.44, 20080917

2.6.4 The idea of the Graham-scan algorithm

• Graham scan is one of the most fundamental algorithms for the

construction of a convex hull.

• Even though it is not based upon divide-and-conquer, it may be

used as a component in such strategies.

• To begin, call the point with least y value p0.

• If there is a tie, from the points with least y value chose the one

with least x value as well.

• Order the rest of the points according to the angle from p0, as

shown below.

• For points of equal angle, only the one furthest from p0 need be

retained. The others may be discarded.

• In the example below, p3 may be discarded.

b

p0

b
p9

b
p7

b

p4

b

p1

b
p5

b

p3
b
p6

b
p8

b
p2

TDBC91 slides, page 2.45, 20080917

• Begin by connecting the first three points:

b

p0

b
p9

b
p7

b

p4

b

p1

b
p5

b

p3b
p6

b
p8

b
p2

• Next, connect the fourth point p3.

• Since 〈p1, p2, p3〉 forms a right turn, discard p2.

b

p0

b
p9

b
p7

b

p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

TDBC91 slides, page 2.46, 20080917

• Now connect p4.

• Since 〈p2, p3, p4〉 forms a right turn, discard p3.

• Note that p3 could also have been discarded initially, since it lies

on the line from p0 to p4.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

• Now connect p5.

• Since 〈p3, p4, p5〉 forms a left turn, Keep p4.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

TDBC91 slides, page 2.47, 20080917

• Now connect p6.

• Since 〈p4, p5, p6〉 forms a left turn, keep p5.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

• Now connect p7.

• Since 〈p5, p6, p7〉 forms a right turn, discard p6.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

TDBC91 slides, page 2.48, 20080917

• There is a detail which has been glossed over until now.

• When a right turn is detected, it is actually necessary to check the

previous three elements (which are left after the deletion) for a

right turn a well.

• Since 〈p4, p5, p7〉 forms a right turn, discard p5.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

• Since 〈p1, p4, p7〉 forms a left turn, the backward search for right

turns ends.

• Now connect p8.

• Since 〈p4, p7, p8〉 forms a left turn, keep p7.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

TDBC91 slides, page 2.49, 20080917

• Now connect p9.

• Since 〈p7, p8, p9〉 forms a right turn, discard p8.

• Note that this is necessary to check 〈p4, p7, p9〉 for a right turn as

well.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

• The construction is now complete.

• For graphical completeness, p9 may be connected to p0, but this

is not part of the algorithm.

b

p0

b
p9

b
p7

b p4

b

p1

b
p5

b

p3b
p6

b
p8

bp2

TDBC91 slides, page 2.50, 20080917

2.6.5 The high-level algorithm for Graham scan

1 procedure GrahamScan(P : array[0..n] of point ;

2 ref S : stack of point)

3 〈 /∗The convex hull of P will be returned in S.∗/
4 i , last : 3..n;

5 init(S);

6 /∗The next function does the following:∗/
7 /∗ It places the element with least y-coordinate in P [0].∗/
8 /∗ A tie is resolved with least x-coordinate.∗/
9 /∗ The rest of the array is sorted wrt angle with P [0].∗/
10 /∗ With equal angles,∗/
11 /∗ only the point furthest from P [0] is retained.∗/
12 /∗ last identifies the last index of P which is used.∗/
13 sort by angle and remove collinear(P , last);

14 push(P[0],S);

15 push(P[1],S);

16 push(P[2],S);

17 for i = 3 to last do

18 〈 while forms right angle(next to top(S), top(S),P [i])

19 do pop(S);

20 push(P [i],S);

21 〉
23 〉

• The sorting of the points in P may be done using any sorting al-

gorithm.

• Angle(pi) < Angle(p j) iff 〈p0, pi, p j〉 forms a left turn.

• pi and p j are collinear iff 〈p0, pi, p j〉 forms a straight line.

TDBC91 slides, page 2.51, 20080917

2.6.6 Proposition – the complexity of Graham scan Let S be a

set of n points in a two-dimensional plane. The average and worst-

case complexity of the Graham-scan algorithm of 2.6.5 for finding the

convex hull of S is Θ(n · log(n)).

PROOF: The main loop of the algorithm is executed only Θ(n) times.

The dominant item of computation is thus the sorting of the points. In

view of the discussion at the end of 2.6.5, the complexity is thus that

of sorting. Using mergesort or quicksort, this may accomplished in

Θ(n · log(n)) is worst- and average-case time. 2

TDBC91 slides, page 2.52, 20080917

2.6.7 Divide-and-conquer strategies for the convex-hull problem

• An overall formulation might be as follows:

procedure DC hull(S : set of point ,

ref H : convex hull);

〈 if small(S)

then H ← solve directly(S);

else 〈 divide(S ,S 1,S 2);

DC hull(S 1,hull 1);

DC hull(S 2,hull 2);

H ←merge hulls(hull 1,hull 2);

〉
〉

• Within this general formulation, there are two main alternatives:

The mergesort strategy:

• The procedure divide is trivial.

• All of the work is done in merge hulls.

The quicksort strategy:

• The merge hulls procedure is trivial.

• All of the work is done in divide.

• Quicksort-like strategies appear to be more complex than mergesort-

like ones.

• Here a simple mergesort-like strategy is presented.

TDBC91 slides, page 2.53, 20080917

2.6.8 A simple strategy for merging two convex hulls

• Given are two convex hulls, with least-y points p10 and p20, re-

spectively.

• The goal is to merge them into a single convex hull.

• Assume that the order information (relative to the respective base

points p10 and p20) is available.

b

p10

b

b

b
b

b

b

b
b

b
p20 b

b

b
b

b

b
b

• From the base point p10 of the hull with the lesser y value (hull

1) for its least-y point, find the extreme points e2r and e2ℓ of the

other hull (hull 2) which define the least and greatest angles.

b

p10

b

b

b
b

b

b

b
b

b
b e2r

b

b
b

be2ℓ

b
b

TDBC91 slides, page 2.54, 20080917

• The nodes “below” these extreme points in hull 2 cannot be part

of the combined hull, and may be discarded.

• Note that the remaining points in hull 2 have the same order rela-

tive to p10 as they did relative to their original base p20.

b

p10

b

b

b
b

b

b

b
b

b
b

b

b
b

b

b
b

• The remaining points are combined into a new hull with a modi-

fied Graham scan.

• In this modified scan, it is not necessary to sort the nodes from

scratch.

• It suffices to merge the two lists containing these points, since

each component is already sorted relative to p10.

b

p10

b

b

b
b

b

b

b
b

b
b

b

b
b

b

b
b

TDBC91 slides, page 2.55, 20080917

2.6.9 Complexity analysis of hull merging

• A full pseudocode description of convex-hull merging is tedious

because of the many picky details involved.

• Nonetheless, it is straightforward to characterize the asymptotic

complexity.

• Assume that the sizes of hull1 (resp. hull2) is n1 (resp. n2), and

that hull1 is the one with the smallest “least-y” element.

• Selecting the hull which has the “least-y” element is clearly

Θ(1), since the hulls are already sorted with their base points

in the first position of the respective arrays.

• Finding the extreme points e2ℓ and e2r may be performed in

time Θ(n2). The naı̈ve approach is simply to compare each

point of hull2 with p01.

• The process of merging the lists of points from the two hulls

takes Θ(n1+n2). This is essentially a standard comparison-

based merge.

• The Graham scan without the initial sort (lines 13-20 of

2.6.5), runs in time Θ(n1+n2).

• The total complexity is thus Θ(n1+n2).

• This complexity is valid in all cases (best, worst, average).

TDBC91 slides, page 2.56, 20080917

2.6.10 The total complexity of divide-and-conquer convex hull

• The relevant recurrence relation is the same as that for mergesort

2.1.2.

• The total complexity is thus Θ(n · log(n)) in all cases.

• In experimental measurements, this divide-and-conquer approach

did not outperform simple Graham scan.

2.6.11 The Floyd-Eddy heuristic

• There is a heuristic which may be used to improve the perfor-

mance (but not the asymptotic complexity) of many convex hull

algorithms.

• The Floyd-Eddy heuristic proceeds as follows.

b
b

b

b
b

b

b

b
b

b
b

b

b
b

b

b
b

• The four extreme points (least-x, greatest-x, least-y, greatest-y)

are identified, and connected to form a quadrilateral. Ties may be

resolved arbitrarily.

• Points inside of this box are eliminated from further considera-

tion.

• The time complexity is Θ(n).

TDBC91 slides, page 2.57, 20080917

