
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 7: Digital Representation of Signals

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

7. Digital Representation of Signals

7.1 Basic Concepts

7.1.1 Background and motivation

• In modern electronic systems, analog signals are often represented

by a set of samples.

• This is termed digitization of the signal.

Question: Under which conditions can the signal be reconstructed

from these samples, and how?

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

g(t)

t

• Such a reconstruction is (obviously) impossible in general, but

may be achieved under the certain assumptions regarding the prop-

erties of the original signal.

• The key assumption is that the original signal may be represented

as a linear combination of basis signals.

TDBC91 slides, page 7.1, 20081009

General form:

g(t) =
p

∑
k=0

ak · fk(t)

in which:

• The ak’s are constants.

• fk is the k
th basis signal.

Example: polynomial representation

fk(t) = tk

g(t) =
p

∑
k=0

ak · tk

Example: sinusoidal representation

• In this case, the basis signals are of the form

fk(t) = e2πi· f ·t

• i =
√
−1 is the “imaginary” unit of the complex numbers.

• f is a “base frequency” — the signal to be represented is

assumed to be periodic of this frequency.

• In effect, this amounts to a representation of the form

g(t) =
p

∑
k=0

(ak · cos(2π f · k · t)+bk · sin(2π f · k · t))

• Each of these representations, as well as methods of transla-

tion between them, will now be investigated.

TDBC91 slides, page 7.2, 20081009

7.2 Polynomial Representation

7.2.1 Fact – unique curve fitting with polynomials Given a se-

quence 〈(x1,y1), . . . (xn,yn)〉 of points with xi < xi+1 for 1≤ i≤ n−1,

there is a unique polynomial of degree at most n− 1 which passes

through each of these points.

PROOF: First, uniqueness is established. Let p1 and p2 each be poly-

nomials of degree at most n−1 with the further property that

p j(xi) = yi

for j ∈ {1,2} and i ∈ {1,2, . . . ,n}. Then

p2(xi)− p1(xi) = 0

for i ∈ {1,2, . . . ,n}. However, p2− p1 is also a polynomial of degree

at most n− 1, with roots {x1,x2, . . . ,xn}. If p2− p1 is not the zero

polynomial, then by the fundamental theorem of algebra (1.8.3), each

(x− xi) must be a factor of p2(x)− p1(x), so

(p2− p1)(x) = (x− x1) · (x− x2) · . . . · (x− xn) ·q(x)

for some nonzero polynomial q(x). Since the above polynomial is of

degree at least n, yet p2− p1 is of degree at most n−1, it follows that

p2− p1 = 0; i.e., p1 = p2.

To establish existence, it suffices to observe that the following poly-

nomial has the desired properties.

p(x) :=
n

∑
i=1

n

∏
j = 1
j 6= i

(x− x j)

(xi− x j)

· yi

2

TDBC91 slides, page 7.3, 20081009

7.2.2 LaGrange interpolation

The formula

p(x) :=
n

∑
i=1

n

∏
j = 1
j 6= i

(x− x j)

(xi− x j)

· yi (*)

introduced in the proof of 7.2.1 is called the LaGrange interpola-

tion of 〈(x1,y1), . . . (xn,yn)〉.
• Each summand of this formula involves Θ(n2) multiplications

to expand the numerator. [To expand the factored polynomial

into an unfactored one requires Θ(n2) multiplications of the form

x j · x j′.]
• Each denominator is a number. There is a one-time amortized

cost of Θ(n2) to compute all factors of the form (xi− x j), and

a time of Θ(n) for each denominator to perform the associated

multiplications.

• Thus, each summand requires Θ(n2) time, and so a naı̈ve algo-

rithm for computing the LaGrange interpolation of a polynomial

of degree n requires Θ(n3) time.

• There are two ways to improve upon this bound.

TDBC91 slides, page 7.4, 20081009

7.2.3 LaGrange interpolation via division

• In the formula * of 7.2.2, note that two distinct summands differ

in only one factor in the numerator, and one in the denominator.

• The idea is to take advantage of this similarity and avoid repeated

multiplications.

• The problem is that each factor is missing in at least one product.

• The solution proceeds in four steps:

(i) Compute the large product of the form

n

∏
j=1

(x− x j)

just once as an expanded polynomial of the form:

q(x) = an · xn+an−1 · xn−1+ . . .+a1 · x+a0

(ii) Divide this polynomial by (x− xi) to obtain

qi(x) =
n

∏
j = 1
j 6= i

(x− x j)

(iii) Compute all numbers of the form xi− x j for i 6= j.

(iv) Using the result of (iii), compute the numbers

ci = 1/(
n

∏
j = 1
j 6= i

(xi− x j))

one for each i.

TDBC91 slides, page 7.5, 20081009

(v) The final result is then

p(x) =
n

∑
i=1

ci ·qi(x)

• Steps (i), (iii), and (iv) are each easily seen to be realizable in time

O(n2).

• It is also possible to perform a single division of the form

q(x)/(x− x j)

in time Θ(n), as shown below.

• Therefore the entire operation may be performed in time Θ(n2).

7.2.4 Lemma – polynomial division Let r(x) be a polynomial in

x of degree n ≥ 1, and let s(x) be a polynomial of degree one which

is a factor of r(x). There exists a Θ(n) worst-case time algorithm for

computing r(x)/s(x).

PROOF OUTLINE: It is easiest to see how things work by running

through an example. One simply performs long division, as one would

with numbers. Each of the n steps of the division takes constant time.

x2 − 3x + 2

x − 3) x3 − 6x2 + 11x − 6

x3 − 3x2

− 3x2 + 11x

− 3x2 + 9x

2x − 6

2x − 6

2

TDBC91 slides, page 7.6, 20081009

7.2.5 LaGrange interpolation via stepwise interpolation

• Let S = 〈(x1,y1), . . . ,(xn,yn)〉 be a nonempty sequence of n pairs

of real numbers, let m ≤ n, and let p be a polynomial of degree

m−1 with the property that

p(xi) = yi

for 1≤ i≤ m−1. Define the polynomial

RFit(p,S,m)(x) := (ym− p(xm)) ·
m−1
∏
j=1

(x− x j)

(xm− x j)
+ p(x) (*)

7.2.6 Lemma Conditions as in 7.2.5 above, the polynomialRFit(p,S,m)

satisfies

RFit(p,S,m)(xi) = yi

for all i, 1 ≤ i ≤ m. In particular, RFit(p,S,n) passes through every

point of S.

PROOF: For 1≤ i≤m−1, i.e., for x= xi, the term (x−x j)with x j = xi

in the large product will be zero, and so the entire left summand is zero.

The entire value will therefore be the right summand, which has value

p(xi).

For i = m, i.e., for x = xm, the large (m−1)-fold product evaluates

to one, and so the value is (ym− p(xm)) ·1+ p(xm) = ym. 2

7.2.7 Newtonian interpolation

• The realization of an algorithm which uses the formula (*) of

7.2.5 is straightforward in principle.

• The induction is “primed” by choosing the initial polyomial to be

p(x) = y1.

TDBC91 slides, page 7.7, 20081009

• However, to understand the complexity, it is necessary to identify

two data types and three critical operations.

Arbitrary polynomials: The data type Poly consists of all poly-

nomials in a single variable, which is usually taken to be x.

Polynomials of degree one: The data type Poly1 consists of just

those polynomials in Poly which have degree one and lead

coefficient one; i.e., those polynomials which are of the form

x+a, with a ∈R.

Polynomial evaluation: The operation

PolyEval : Poly×R→R

evaluates a polynomial at a real number, returning a real

number.

Polynomial addition: The operation

PolyAdd : Poly×Poly→ Poly

adds two polynomials together, returning a polynomial.

Limited polynomial multiplication: The operation

PolyMult1 : Poly×Poly1→ Poly

takes an arbitrary polynomial and polynomial of degree one,

and returns their product.

Scalar polynomial multiplication: The operation

PolyMultReal : Poly×R→ Poly

takes an arbitrary polynomial and a real number, and returns

the result of multiplying each coefficient of the polynomial

by the real number.

TDBC91 slides, page 7.8, 20081009

• As the first step in building an algorithm for polynomial interpo-

lation based upon the rules of 7.2.5, define RFitAux(S, i) to be the

expansion (multiplied out) of the following intermediate polyno-

mial.

(x− x1) · (x− x2) · . . . · (x− xi)

• Note that

RFitAux(S, i) = PolyMult1(RFitAux(S, i−1),(x− xi))

• Next, note that RFit(p,S,m) may be expressed somewhat infor-

mally by the following formula.

RFit(p,S,m) =

(ym− p(xm)) · RFitAux(S,m−1)

PolyEval(RFitAux(S,m−1),xm)
+RFit(p,S,m−1)

• To make things precise for an algorithm, all of the polynomial
operations must be expressed explicitly.

RFit(p,S,m) =

PolyAdd

(

PolyMultReal
(

RFitAux(S,m−1),
ym−PolyEval(p,xm)

PolyEval(RFitAux(S,m−1),xm)

)

,

RFit(p,S,m−1)

)

(NI)

• This equation represents the basis of Newtonian interpolation.

• It is applied iteratively to obtain the interpolating polynomial.

• The complexity will now be examined.

TDBC91 slides, page 7.9, 20081009

7.2.8 Horner’s rule

• The function PolyEval is best realized by Horner’s rule.

• The idea is easily illustrated via example.

• Consider the polynomial 2x3+3x2+5x+1.

2x3+3x2+5x+1 = x · (2x2+3x+5)+1

= x · (x · (2x+3)+5)+1

= x · (x · (x · (x · (2)+3)+5)+1

• To evaluate this polynomial at x= 4, use an “inside-out” approach

on the last representation in the sequence:

◦ Evaluate (2) = 2;

◦ Evaluate x · (2)+3 = 11;

◦ Evaluate x · (11)+5 = 49;

◦ Evaluate x · (49)+1 = 197.

• Pseudocode for this algorithm is as follows:

function PolyEval(p : polynomial, a : real) : real;

/∗ Function to evaluate p(a) ∗/
/∗ Note: coefficient(∑(ai ·xi), i) = ai ∗/
s← coefficient(p,degree(p));

for i ← degree(p)−1 downto 0 do

s ← s ∗ a + coefficient(p, i);

return s;

TDBC91 slides, page 7.10, 20081009

7.2.9 The complexity of Newtonian interpolation

• Horner’s rule (7.2.8) runs in time Θ(n), with n the degree of the

polynomial.

• The function PolyAdd simply adds coefficients together, power-

by-power, and so may easily be realized to run in time Θ(n), with

n the maximum of the degrees of the two polynomials.

• The function PolyMult1 may be realized with 2 ·nmultiplications,

where n is the degree of the larger polynomial. Thus, it may be

realized in time Θ(n).

• The function PolyMultReal may be realized in time Θ(n), with n

the degree of the polynomial, since it just multiplies each coeffi-

cient of the polynomial by a constant.

• It follows that one iteration of the assignment (NI) of 7.2.7 will

run in time Θ(n).

• Since this computation must be iterated for m from 2 to n, it fol-

lows that the entire process of Newtonian interpolation requires

Θ(n2) time.

TDBC91 slides, page 7.11, 20081009

7.2.10 The Vandermonde matrix

• The matrix equation

y1

y2
...

yn

=

1 x1 x21 · · ·xn−11

1 x2 x22 · · ·xn−12
...

1 xn x2n · · ·xn−1n

·

a0

a1
...

an−1

characterizes a polynomial

p(x) =
n

∑
i=1

ai · xi

which passes through the points in {(x1,y1),(x2,y2), . . . ,(xn,yn)}.
• Note that the square matrix in the middle has the form

(

C0 C1 C2 · · · Cn−1) with C =

x1

x2
...

xn

andCi meaning that each member of C is raised to the ith power.

• Such a structure is called a Vandermonde matrix, and has deter-

minant

∏
1≤ j<k≤n

(xk− x j)

and so is invertible (since the xi’s are all distinct).

• Solving systems of linear equations takes O(n3) time, and so this

is not the best approach for computing an interpolating polyno-

mial.

• The Vandermonde-matrix perspective will be useful in the study

of sinusoidal representations, however.

TDBC91 slides, page 7.12, 20081009

7.3 Sinusoidal Representation

7.3.1 Complex numbers and roots of unity

• Following standard mathematical notation, the symbol i will be

used in the remainder of this chapter to denote
√
−1.

Note: Electrical engineers usually use j instead, since in their do-

main i has already been conscripted to denote current.

• The symbol e is also reserved for the rest of this section to denote

the basis of the natural logarithms: ∑
∞
i=11/k!

• The identity

eiθ = cos(θ)+ i · sin(θ)

is well known.

• From it and the Pythagorean equation, it follows that for any real

number θ, eiθ has magnitude one.

• In the complex plane, eiθ may be visualized as a unit vector at

angle θ (in radians) from the real axis:

imaginary

realθ

TDBC91 slides, page 7.13, 20081009

7.3.2 Roots of unity

(a) A complex number c with the property that cn = 1 is called an nth

root of unity.

(b) A complex nth root of unity c for which ck 6= 1 for 0 < k < n is

called a principal (or primitive) nth root of unity.

7.3.3 Properties of principal nth roots of unity

(a) If k and n are relatively prime positive integers with k < n, then

e2πik/n is a principal nth root of unity.

(b) For any principal nth root of unity ρ,

n−1
∑
k=0

ρk =
n

∑
k=1

ρk = 0.

TDBC91 slides, page 7.14, 20081009

PROOF OUTLINE:

• Part (a) is immediate from the fact that e2πik/nm = 1 iff (2πik/n) ·m
is a multiple of 2π, which is true iff (m · k/n) is an integer.
• Part (b) is most easily seen by visualizing the vector addition of

the summands. The diagram below shows this situation for n =

12.

e2πi·0/360

e2πi·30/360

e2πi·60/360
e2πi·90/360

e2πi·120/360

e2πi·150/360

e2πi·180/360

e2πi·210/360

e2πi·240/360
e2πi·270/360

e2πi·300/360

e2πi·330/360

2

7.3.4 Notation for principal nth roots of unity

• ρn = e2πi/n

• ρ−n = e2πi(n−1)/n

TDBC91 slides, page 7.15, 20081009

7.4 The Discrete Fourier Transform

7.4.1 The problem of polynomial multiplication

• In signal- and image-processing applications, the operation of

multiplying two polynomials arises frequently.

• This operation is often termed convolution, and is denoted by ∗.
• More precisely, let

p1(x) =
n1−1
∑
k=0

ak · xk p2(x) =
n2−1
∑
k=0

bk · xk

• Then

p1 ∗ p2 =
n1+n2−2

∑
k=0

∑
r+s=k

ar ·bs · xr+s

• The “naı̈ve” algorithm for computing the convolution of two poly-

nomials requires time Θ(n1 ·n2), or Θ(n2) if both polynomials are

of degree n.

• Using the discrete Fourier transform plus a divide-and-conquer

strategy, it will be shown that this time may be reduced to

Θ(n · log(n)).

TDBC91 slides, page 7.16, 20081009

7.4.2 An overview of the discrete Fourier transform

• Operationally, the discrete Fourier transform may be viewed as a

mapping from polynomials to polynomials.

• If

p =
n−1
∑
k=0

ak · xk

and m≥ n, then the discrete Fourier transform of p of degree m

Fm(p) =
m−1
∑
k=0

Fm(p,k) · xk

is a complex polynomial of degree at most n−1.

• The coefficients Fm(p,k) are in general complex numbers, even

though all of the ak’s are real.

• This transform has the following desirable properties:

1. It is invertible; that is, there is a mapping F−1m (called the

inverse discrete Fourier transform) with the property that

F−1m (Fm(p)) = Fm(F−1m (p)) = p

2. The convolution p ∗ q of two polynomials corresponds to

pointwise multiplication of the corresponding coefficients of

the discrete Fourier transform. If

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

then

Fm(p1 ∗ p2) =
2n−2
∑
k=0

Fm(p1,k) ·Fm(p2,k) · xk

TDBC91 slides, page 7.17, 20081009

• To compute p ∗ q, the solid path indicated in the following dia-

gram is followed:

(p,q) p∗q = F−12n−2(F2n−2(p)⊙F2n−2(p))

(F2n−2(p),F2n−2(q)) F2n−2(p)⊙F2n−2(q)

Θ(n · log(n)) Θ(n · log(n))

Θ(n)

• In the above ⊙ denotes pointwise multiplication.

• It will now be shown in detail how these computations are real-

ized using an implementation of the discrete Fourier transform

known as the fast Fourier transform.

TDBC91 slides, page 7.18, 20081009

7.4.3 The discrete Fourier transform

• Let

p(x) =
n−1
∑
k=0

ak · xk

be a polynomial of degree at most n−1, and let m≥ n.

(a) The mth-degree discrete Fourier transform (DFT for short) of p

is given by

Fm(p) =
m−1
∑
k=0

Fm(p,k) · xk

with

Fm(p,k) = p(ρk
m) = p(e2πik/m)

• Thus,

Fm(p,k) =
n−1
∑
ℓ=0

aℓ · e2πikℓ/m =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m

7.4.4 Notation

• The polynomial p, as given above, may be represented by the

sequence

〈a0,a1,a2, . . . ,an−1〉

• The mth-degree DFT may then be viewed as the sequence

〈Fm(p,0),Fm(p,1),Fm(p,2), . . . ,Fm(p,m−1)〉

• This notation will be used frequently in that which follows.

TDBC91 slides, page 7.19, 20081009

7.4.5 Matrix representation

• There is a convenient matrix representation of the DFT:

1 1 1 1 · · · 1

1 ρm ρ2
m ρ3

m · · · ρm−1
m

1 ρ2
m ρ4

m ρ6
m · · · ρ

2(m−1)
m

1 ρ3
m ρ6

m ρ9
m · · · ρ

3(m−1)
m

...

...

...

...

1 ρm−1
m ρ

2(m−1)
m ρ

3(m−1)
m · · · ρ

(m−1)2
m

·

a0

a1

a2

a3
...

an−1

0
...

0

=

Fm(p,0)

Fm(p,1)

Fm(p,2)

Fm(p,3)
...
...
...
...

Fm(p,m−1)

• This representation leads naturally to to the construction of the

inverse DFT.

7.4.6 Lemma The above square matrix has the following inverse:

1

m
·

1 1 1 1 · · · 1

1 ρ−m ρ2
−m ρ3

−m · · · ρm−1
−m

1 ρ2
−m ρ4

−m ρ6
−m · · · ρ

2(m−1)
−m

1 ρ3
−m ρ6

−m ρ9
−m · · · ρ

3(m−1)
−m

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 ρm−1
−m ρ

2(m−1)
−m ρ

3(m−1)
−m · · · ρ

(m−1)2
−m

2

TDBC91 slides, page 7.20, 20081009

7.4.7 The inverse discrete Fourier transform

• Let

p(x) =
n−1
∑
k=0

ak · xk

be a polynomial of degree at most n−1, and let m≥ n.

(a) The mth-degree inverse discrete Fourier transform (inverse DFT

for short) of p is given by

F−1m (p) =
m−1
∑
k=0

F−1m (p,k) · xk

with

F−1m (p,k) =
1

m
· p(ρk

−m) =
1

m
· p(e−2πik/m)

• Thus,

F−1m (p,k) =
1

m
·
n−1
∑
ℓ=0

aℓ · e−2πikℓ/m =
1

m
·
n−1
∑
ℓ=0

aℓ ·ρkℓ
−m

7.4.8 Notation

• In analogy to 7.4.4, if the polynomial p may be represented by

the sequence

〈a0,a1,a2, . . . ,an−1〉
then the mth-degree inverse DFT may be viewed as the sequence

〈F−1m (p,0),F−1m (p,1),F−1m (p,2), . . . ,F−1m (p,m−1)〉

• This notation will be used frequently in that which follows.

TDBC91 slides, page 7.21, 20081009

7.4.9 Matrix representation of the inverse DFT

• Using 7.4.6, and in analogy to 7.4.5, there is a convenient matrix

representation of the inverse DFT:

1

m
·

1 1 1 1 · · · 1

1 ρ−m ρ2
−m ρ3

−m · · · ρm−1
−m

1 ρ2
−m ρ4

−m ρ6
−m · · · ρ

2(m−1)
−m

1 ρ3
−m ρ6

−m ρ9
−m · · · ρ

3(m−1)
−m

...

...

...

...

1 ρm−1
−m ρ

2(m−1)
−m ρ

3(m−1)
−m · · · ρ

(m−1)2
−m

·

a0

a1

a2

a3
...

an−1

0
...

0

=

F−1m (p,0)

F−1m (p,1)

F−1m (p,2)

F−1m (p,3)
...
...
...
...

F−1m (p,m−1)

7.4.10 Proposition – the inverse DFT is really an inverse

• For any polynomial p of degree at most n−1, and any m≥ n,

F−1m (Fm(p)) = Fm(F−1m (p)) = p

PROOF: This follows immediately from the matrix representa-

tions of 7.4.5, 7.4.6 and 7.4.9. 2

TDBC91 slides, page 7.22, 20081009

7.4.11 Further notation

(a) The symbol ⊙ will be used to denote pointwise multiplication.

Thus, if

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

Then

p1⊙ p2 =
n−2
∑
k=0

ak ·bk · xk

(b) For any complex number α and any positive integer n, define the

matrix

M(α,n) =

1 1 1 1 · · · 1

1 α α2 α3 · · · αm−1

1 α2 α4 α6 · · · α2(m−1)

1 α3 α6 α9 · · · α3(m−1)

...

...

...

...

1 αm−1 α2(m−1) α3(m−1) · · · α(m−1)2

• Note that the matrix which represents the mth degree DFT is

M(ρm,m)

while that which represents the mth-degree inverse DFT is

1

m
·M(ρ−m,m)

TDBC91 slides, page 7.23, 20081009

• The problem of showing that

Fm(p∗q) = Fm(p)⊙Fm(q)

will now be addressed.

7.4.12 Proposition Let

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

be two polynomials of degree at most n−1, and let

q =
n−2
∑
k=0

ck · xk := p1 ∗ p2 =
n1+n2−2

∑
k=0

∑
r+s=k

ar ·bs · xr+s

Then

c0

c1

c2
...
...
...
...
...
...
...

c2n-2

=

a0 0 0 0 · · · 0 an-1 an-2 an-3 · · · a1

a1 a0 0 0 · · · 0 0 an-1 an-2 · · · a2

a2 a1 a0 0 · · · 0 0 0 an-1 · · · a2
...

...
...

...
...

...
...

...
...

an-2 an-3 an-4 an-5 · · · 0 0 0 · · · 0 an-1

an-1 an-2 an-3 an-4 · · · 0 0 0 · · · 0 0

0 an-1 an-2 an-3 · · · a0 0 0 · · · 0 0

0 0 an-1 an-2 · · · a1 a0 0 · · · 0 0

0 0 0 an-1 · · · a2 a1 a0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · an-1 an-2 an-3 · · · a1 a0

·

b0

b1

b2
...
...

bn-1

0
...
...
...

0

PROOF: Straightforward verification. 2

TDBC91 slides, page 7.24, 20081009

7.4.13 Some useful matrix and vector notation Let

V =

v0

v1

v2
...

vℓ−1
vℓ

Define

RotDn(V) =

vℓ

v0

v1
...

vℓ−2
vℓ−1

and

Circ(V) =

v0 vℓ vℓ−1 · · ·v1
v1 v0 vℓ · · ·v2
v2 v1 v0 · · ·v3
...
...
...
...
...

vℓ−1 vℓ−2 vℓ−3 · · · vℓ

vℓ vℓ−1 vℓ−2 · · · v0

=
(

v RotDn(V) RotDn2(V) · · · RotDnℓ−1(V)
)

TDBC91 slides, page 7.25, 20081009

Now let m≥ n, and for

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

define the following two vectors of m rows each, noting in particular

that the last m−n entries of each are 0.

V(p1,m) =

a0

a1
...

an−1
0

0
...

0

V(p2,m) =

b0

b1
...

bn−1
0

0
...

0

7.4.14 Observation The matrix equation of 7.4.12 may be rewrit-

ten as

c0

c1

c2
...

c2n−2

= Circ(V(p1,2n−1) · V(p2,2n−1)

2

TDBC91 slides, page 7.26, 20081009

7.4.15 Lemma Let p = ∑
n
k=0 be a polynomial of degree at most

n−1. Then, for any integer m≥ n,

M(ρm,m) ·Circ(V(p,m)) · 1
m
·M(ρ−m,m))

is the diagonal matrix

F∆
m(p) :=

Fm(p,0) 0 0 0 · · · 0

0 Fm(p,1) 0 0 · · · 0

0 0 Fm(p,2) 0 · · · 0
...

...
...

...
...

...

0 0 0 0 0 Fm(p,m−1)

PROOF: The (ℓ, j)th entry of M(ρm,m) ·Circ(V(p,m)) is

m−1
∑
k=0

ρℓ·k
m · ā(m+k− j)mod(m) with āk =

{

ak if k ≤ n−1

0 if k ≥ n

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(k− j)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(k− j)mod(m)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(m+k− j)mod(m)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·k
m · āk = ρℓ· j

m ·
m−1
∑
k=0

ρℓ·k
m ·ak = ρℓ· j

m ·Fm(p, ℓ)

Thus,

M(ρm,m) ·Circ(V(p,m)) = F∆
m(p) ·M(ρm,m)

Since 1/m ·M(ρ−m,m) is the inverse of M(ρm,m), the result follows.

2

TDBC91 slides, page 7.27, 20081009

• Finally, it is possible to prove the main characterization theorem.

7.4.16 Theorem – translation between convolution and pointwise

multiplication Let

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

be two polynomials of degree at most n−1. Then

p1 ∗ p2 = F−12n−1(F2n−1(V(p1,2n−1))⊙F2n−1(V(p2,2n−1)))

PROOF: Denote the coefficients of p1 ∗ p2 as follows:

p∗q =
2n−2
∑
k=0

ck · xk

The following further notation is also useful.

C :=

c0

c1
...

cn

F
l
2n−1(p2) :=

F2n−1(p2,0)
F2n−1(p2,1)

...

F2n−1(p2,2n−2)

H = M(ρ2n−1,2n−1) H−1 =
1

m
·M(ρ−2n+1,2n−1)

TDBC91 slides, page 7.28, 20081009

Now

C = Circ(V(p1,2n−1)) · V(p2,2n−1) [by 7.4.14]

= (H−1 ·H) ·Circ(V(p1,2n−1)) · (H−1 ·H) · V(p2,2n−1)

= H−1 · (H ·Circ(V(p1,2n−1)) ·H−1) · (H · V(p2,2n−1))

= H−1 ·F∆
2n−1 · (H · V(p2,2n−1)) [by 7.4.15]

= H−1 ·F∆
2n−1 ·Fl(p2) [Just the FFT!]

= H−1 ·

F2n−1(p1,0) ·F2n−1(p2,0)
F2n−1(p1,1) ·F2n−1(p2,1)

...

F2n−1(p1,2n−2) ·F2n−1(p2,2n−2)

= F−12n−1(F2n−1(V(p1,2n−1))⊙F2n−1(V(p2,2n−1)))

2

TDBC91 slides, page 7.29, 20081009

7.5 The Fast Fourier Transform

7.5.1 Motivation

• For the DFT to be useful in the implementation of polynomial

multiplication, it is necessary to have a fast algorithm for com-

puting both the DFT and its inverse.

• The “naı̈ve” algorithm (matrix multiplication) is Θ(n2), with

n−1 the degree of each polynomial.

• This is the same complexity as that of direct polynomial mul-

tiplication, and offers no particular advantage for solving such

problems.

• The fast Fourier transform (FFT) is a divide-and-conquer solu-

tion for the computation of the DFT and its inverse, and runs in

time Θ(n · log(n)).
• The idea is as follows:

p =
n−1
∑
k=0

ak · xk = a polynomial

Define:

peven(x) =
n−1
∑
k=0
k even

ak · xk/2 podd(x) =
n−1
∑
k=0
k odd

ak · x(k−1)/2

• Note that

p(x) = peven(x
2)+ podd(x

2)∗ x

• Use a divide-and-conquer algorithm to compute the DFT’s of

peven(x) and podd(x), and then to combine the results.

TDBC91 slides, page 7.30, 20081009

7.5.2 Proposition Let p= ∑
n−1
k=0 ak ·xk be a polynomial of degree at

most n−1, and let m be an even number with m≥ n. Then:

(a) For all k, 0 < k < m/2,

Fm(p,k) = Fm/2(peven,k)+Fm/2(podd,k) ·ρk
m

(b) For all k, m/2≤ k < m,

Fm(p,k) = Fm/2(peven,k)−Fm/2(podd,k) ·ρk
m

PROOF: First let k < m/2. Then

Fm/2(peven,k) =
n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ/2
m/2 =

n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ
m

Fm/2(podd,k) =
n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)/2
m/2 =

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)
m

since ρm/2 = ρ2
m. This establishes part (a), since

Fm(p,k) =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m =

n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ
m +

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)
m ·ρk

m

= Fm/2(peven,k)+Fm/2(podd,k) ·ρk
m

The key to establishing part (b) is to note that for m/2≤ k < m,

ρk−m/2
m = ρk

m ·ρ−m/2
m =

{

ρk
m if k is even

−ρk
m if k is odd

since

ρ−m/2
m =

{

1 if m is even

−1 if m is odd

TDBC91 slides, page 7.31, 20081009

Thus

Fm(p,k) =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m =

n−1
∑
ℓ=0

aℓ ·ρℓ(k−m/2))
m ·ρℓm/2

m

=
n−1
∑
ℓ=0

ℓ even

aℓ ·ρℓ(k−m/2)
m +

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρℓ(k−m/2)
m

= Fm/2(peven,k)−Fm/2(podd,k) ·ρk
m

2

7.5.3 Remarks

• Note that m must be even for the above result to hold, since m/2

must be an integer.

• Since this result will be applied recursively, m must in fact be a

power of two.

• This is not a significant restriction, since m can always be chosen

to be the smallest power of two which is larger than the sum of

the degrees of the two polynomials.

TDBC91 slides, page 7.32, 20081009

7.5.4 The pseudocode for the FFT

• In the algorithm below, it is assumed that the input polynomial is

represented as a vector, as described in 7.4.4 and 7.4.8.

• The intermediate variables fft even and fft odd are also of this

type.

• Note that this algorithm must work with complex numbers, even

if the coefficients of the input polynomial are real.

• The complexity is clearly Θ(n · log(n)), with n the size of the

input vector.

• This is easily seen by writing down the recurrence relation, which

is similar to that for mergesort.

function FFT(a : vector) : vector;

n← length(a)

if (n = 1)

then return a

else

〈 fft even← FFT(even part(a));

fft odd ← FFT(odd part(a));

〉
shift ← 1;

for s ← 0 to n/2−1 do

〈 result [s]← fft even[s]+ fft odd [s]∗ shift ;
result [s +n/2]← fft even[s]− fft odd [s]∗ shift ;
shift ← shift ∗ e2πi/n ;

〉
return result ;

TDBC91 slides, page 7.33, 20081009

7.5.5 Further notes on the FFT

• Θ(n · log(n)) algorithms which significantly better constant mul-

tipliers are possible.

• Chips and chipsets which perform FFT’s are widely used.

â Such chips/chipsets are characterized by:

◦ number of points (n in the algorithm)

◦ resolution per point

â The cutting edge: ST/Philips STV0300:

◦ Intended use: digital television.

◦ Up to 8192 points (213).

◦ Resolution per point is 2× 12 bits (24 bits total for a

complex value) for up to 2048 points and 2× 10 bits

for up to 8192 points.

◦ Processing time for an 8192-point FFT: 410 µsec.

◦ Projected cost in bulk: less than $50.

â Typical stock components: 64 to 256 points, at resolutions

per point of up to 2×18.

• The FFT algorithmmakes it easy to combine such chips for larger

n.

• Multidimensional DFT’s (and hence FFT’s) are important in ap-

plications such as image processing.

TDBC91 slides, page 7.34, 20081009

