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Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.



7. Digital Representation of Signals

7.1 Basic Concepts

7.1.1 Background and motivation

• In modern electronic systems, analog signals are often represented

by a set of samples.

• This is termed digitization of the signal.

Question: Under which conditions can the signal be reconstructed

from these samples, and how?
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• Such a reconstruction is (obviously) impossible in general, but

may be achieved under the certain assumptions regarding the prop-

erties of the original signal.

• The key assumption is that the original signal may be represented

as a linear combination of basis signals.
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General form:

g(t) =
p

∑
k=0

ak · fk(t)

in which:

• The ak’s are constants.

• fk is the k
th basis signal.

Example: polynomial representation

fk(t) = tk

g(t) =
p

∑
k=0

ak · tk

Example: sinusoidal representation

• In this case, the basis signals are of the form

fk(t) = e2πi· f ·t

• i =
√
−1 is the “imaginary” unit of the complex numbers.

• f is a “base frequency” — the signal to be represented is

assumed to be periodic of this frequency.

• In effect, this amounts to a representation of the form

g(t) =
p

∑
k=0

(ak · cos(2π f · k · t)+bk · sin(2π f · k · t))

• Each of these representations, as well as methods of transla-

tion between them, will now be investigated.
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7.2 Polynomial Representation

7.2.1 Fact – unique curve fitting with polynomials Given a se-

quence 〈(x1,y1), . . . (xn,yn)〉 of points with xi < xi+1 for 1≤ i≤ n−1,

there is a unique polynomial of degree at most n− 1 which passes

through each of these points.

PROOF: First, uniqueness is established. Let p1 and p2 each be poly-

nomials of degree at most n−1 with the further property that

p j(xi) = yi

for j ∈ {1,2} and i ∈ {1,2, . . . ,n}. Then

p2(xi)− p1(xi) = 0

for i ∈ {1,2, . . . ,n}. However, p2− p1 is also a polynomial of degree

at most n− 1, with roots {x1,x2, . . . ,xn}. If p2− p1 is not the zero

polynomial, then by the fundamental theorem of algebra (1.8.3), each

(x− xi) must be a factor of p2(x)− p1(x), so

(p2− p1)(x) = (x− x1) · (x− x2) · . . . · (x− xn) ·q(x)

for some nonzero polynomial q(x). Since the above polynomial is of

degree at least n, yet p2− p1 is of degree at most n−1, it follows that

p2− p1 = 0; i.e., p1 = p2.

To establish existence, it suffices to observe that the following poly-

nomial has the desired properties.

p(x) :=
n

∑
i=1









n

∏
j = 1
j 6= i

(x− x j)

(xi− x j)









· yi

2
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7.2.2 LaGrange interpolation

The formula

p(x) :=
n

∑
i=1









n

∏
j = 1
j 6= i

(x− x j)

(xi− x j)









· yi (*)

introduced in the proof of 7.2.1 is called the LaGrange interpola-

tion of 〈(x1,y1), . . . (xn,yn)〉.
• Each summand of this formula involves Θ(n2) multiplications

to expand the numerator. [To expand the factored polynomial

into an unfactored one requires Θ(n2) multiplications of the form

x j · x j′.]
• Each denominator is a number. There is a one-time amortized

cost of Θ(n2) to compute all factors of the form (xi− x j), and

a time of Θ(n) for each denominator to perform the associated

multiplications.

• Thus, each summand requires Θ(n2) time, and so a naı̈ve algo-

rithm for computing the LaGrange interpolation of a polynomial

of degree n requires Θ(n3) time.

• There are two ways to improve upon this bound.
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7.2.3 LaGrange interpolation via division

• In the formula * of 7.2.2, note that two distinct summands differ

in only one factor in the numerator, and one in the denominator.

• The idea is to take advantage of this similarity and avoid repeated

multiplications.

• The problem is that each factor is missing in at least one product.

• The solution proceeds in four steps:

(i) Compute the large product of the form

n

∏
j=1

(x− x j)

just once as an expanded polynomial of the form:

q(x) = an · xn+an−1 · xn−1+ . . .+a1 · x+a0

(ii) Divide this polynomial by (x− xi) to obtain

qi(x) =
n

∏
j = 1
j 6= i

(x− x j)

(iii) Compute all numbers of the form xi− x j for i 6= j.

(iv) Using the result of (iii), compute the numbers

ci = 1/(
n

∏
j = 1
j 6= i

(xi− x j))

one for each i.
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(v) The final result is then

p(x) =
n

∑
i=1

ci ·qi(x)

• Steps (i), (iii), and (iv) are each easily seen to be realizable in time

O(n2).

• It is also possible to perform a single division of the form

q(x)/(x− x j)

in time Θ(n), as shown below.

• Therefore the entire operation may be performed in time Θ(n2).

7.2.4 Lemma – polynomial division Let r(x) be a polynomial in

x of degree n ≥ 1, and let s(x) be a polynomial of degree one which

is a factor of r(x). There exists a Θ(n) worst-case time algorithm for

computing r(x)/s(x).

PROOF OUTLINE: It is easiest to see how things work by running

through an example. One simply performs long division, as one would

with numbers. Each of the n steps of the division takes constant time.

x2 − 3x + 2

x − 3 ) x3 − 6x2 + 11x − 6

x3 − 3x2

− 3x2 + 11x

− 3x2 + 9x

2x − 6

2x − 6

2
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7.2.5 LaGrange interpolation via stepwise interpolation

• Let S = 〈(x1,y1), . . . ,(xn,yn)〉 be a nonempty sequence of n pairs

of real numbers, let m ≤ n, and let p be a polynomial of degree

m−1 with the property that

p(xi) = yi

for 1≤ i≤ m−1. Define the polynomial

RFit(p,S,m)(x) := (ym− p(xm)) ·
m−1
∏
j=1

(x− x j)

(xm− x j)
+ p(x) (*)

7.2.6 Lemma Conditions as in 7.2.5 above, the polynomialRFit(p,S,m)

satisfies

RFit(p,S,m)(xi) = yi

for all i, 1 ≤ i ≤ m. In particular, RFit(p,S,n) passes through every

point of S.

PROOF: For 1≤ i≤m−1, i.e., for x= xi, the term (x−x j)with x j = xi

in the large product will be zero, and so the entire left summand is zero.

The entire value will therefore be the right summand, which has value

p(xi).

For i = m, i.e., for x = xm, the large (m−1)-fold product evaluates

to one, and so the value is (ym− p(xm)) ·1+ p(xm) = ym. 2

7.2.7 Newtonian interpolation

• The realization of an algorithm which uses the formula (*) of

7.2.5 is straightforward in principle.

• The induction is “primed” by choosing the initial polyomial to be

p(x) = y1.
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• However, to understand the complexity, it is necessary to identify

two data types and three critical operations.

Arbitrary polynomials: The data type Poly consists of all poly-

nomials in a single variable, which is usually taken to be x.

Polynomials of degree one: The data type Poly1 consists of just

those polynomials in Poly which have degree one and lead

coefficient one; i.e., those polynomials which are of the form

x+a, with a ∈R.

Polynomial evaluation: The operation

PolyEval : Poly×R→R

evaluates a polynomial at a real number, returning a real

number.

Polynomial addition: The operation

PolyAdd : Poly×Poly→ Poly

adds two polynomials together, returning a polynomial.

Limited polynomial multiplication: The operation

PolyMult1 : Poly×Poly1→ Poly

takes an arbitrary polynomial and polynomial of degree one,

and returns their product.

Scalar polynomial multiplication: The operation

PolyMultReal : Poly×R→ Poly

takes an arbitrary polynomial and a real number, and returns

the result of multiplying each coefficient of the polynomial

by the real number.
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• As the first step in building an algorithm for polynomial interpo-

lation based upon the rules of 7.2.5, define RFitAux(S, i) to be the

expansion (multiplied out) of the following intermediate polyno-

mial.

(x− x1) · (x− x2) · . . . · (x− xi)

• Note that

RFitAux(S, i) = PolyMult1(RFitAux(S, i−1),(x− xi))

• Next, note that RFit(p,S,m) may be expressed somewhat infor-

mally by the following formula.

RFit(p,S,m) =

(ym− p(xm)) · RFitAux(S,m−1)

PolyEval(RFitAux(S,m−1),xm)
+RFit(p,S,m−1)

• To make things precise for an algorithm, all of the polynomial
operations must be expressed explicitly.

RFit(p,S,m) =

PolyAdd

(

PolyMultReal
(

RFitAux(S,m−1),
ym−PolyEval(p,xm)

PolyEval(RFitAux(S,m−1),xm)

)

,

RFit(p,S,m−1)

)

(NI)

• This equation represents the basis of Newtonian interpolation.

• It is applied iteratively to obtain the interpolating polynomial.

• The complexity will now be examined.
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7.2.8 Horner’s rule

• The function PolyEval is best realized by Horner’s rule.

• The idea is easily illustrated via example.

• Consider the polynomial 2x3+3x2+5x+1.

2x3+3x2+5x+1 = x · (2x2+3x+5)+1

= x · (x · (2x+3)+5)+1

= x · (x · (x · (x · (2)+3)+5)+1

• To evaluate this polynomial at x= 4, use an “inside-out” approach

on the last representation in the sequence:

◦ Evaluate (2) = 2;

◦ Evaluate x · (2)+3 = 11;

◦ Evaluate x · (11)+5 = 49;

◦ Evaluate x · (49)+1 = 197.

• Pseudocode for this algorithm is as follows:

function PolyEval(p : polynomial, a : real) : real;

/∗ Function to evaluate p(a) ∗/
/∗ Note: coefficient(∑(ai ·xi ), i) = ai ∗/
s← coefficient(p,degree(p));

for i ← degree(p)−1 downto 0 do

s ← s ∗ a + coefficient(p, i);

return s;
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7.2.9 The complexity of Newtonian interpolation

• Horner’s rule (7.2.8) runs in time Θ(n), with n the degree of the

polynomial.

• The function PolyAdd simply adds coefficients together, power-

by-power, and so may easily be realized to run in time Θ(n), with

n the maximum of the degrees of the two polynomials.

• The function PolyMult1 may be realized with 2 ·nmultiplications,

where n is the degree of the larger polynomial. Thus, it may be

realized in time Θ(n).

• The function PolyMultReal may be realized in time Θ(n), with n

the degree of the polynomial, since it just multiplies each coeffi-

cient of the polynomial by a constant.

• It follows that one iteration of the assignment (NI) of 7.2.7 will

run in time Θ(n).

• Since this computation must be iterated for m from 2 to n, it fol-

lows that the entire process of Newtonian interpolation requires

Θ(n2) time.
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7.2.10 The Vandermonde matrix

• The matrix equation










y1

y2
...

yn











=











1 x1 x21 · · ·xn−11

1 x2 x22 · · ·xn−12
... ... ... ...

1 xn x2n · · ·xn−1n











·











a0

a1
...

an−1











characterizes a polynomial

p(x) =
n

∑
i=1

ai · xi

which passes through the points in {(x1,y1),(x2,y2), . . . ,(xn,yn)}.
• Note that the square matrix in the middle has the form

(

C0 C1 C2 · · · Cn−1) with C =











x1

x2
...

xn











andCi meaning that each member of C is raised to the ith power.

• Such a structure is called a Vandermonde matrix, and has deter-

minant

∏
1≤ j<k≤n

(xk− x j)

and so is invertible (since the xi’s are all distinct).

• Solving systems of linear equations takes O(n3) time, and so this

is not the best approach for computing an interpolating polyno-

mial.

• The Vandermonde-matrix perspective will be useful in the study

of sinusoidal representations, however.
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7.3 Sinusoidal Representation

7.3.1 Complex numbers and roots of unity

• Following standard mathematical notation, the symbol i will be

used in the remainder of this chapter to denote
√
−1.

Note: Electrical engineers usually use j instead, since in their do-

main i has already been conscripted to denote current.

• The symbol e is also reserved for the rest of this section to denote

the basis of the natural logarithms: ∑
∞
i=11/k!

• The identity

eiθ = cos(θ)+ i · sin(θ)

is well known.

• From it and the Pythagorean equation, it follows that for any real

number θ, eiθ has magnitude one.

• In the complex plane, eiθ may be visualized as a unit vector at

angle θ (in radians) from the real axis:

imaginary

realθ
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7.3.2 Roots of unity

(a) A complex number c with the property that cn = 1 is called an nth

root of unity.

(b) A complex nth root of unity c for which ck 6= 1 for 0 < k < n is

called a principal (or primitive) nth root of unity.

7.3.3 Properties of principal nth roots of unity

(a) If k and n are relatively prime positive integers with k < n, then

e2πik/n is a principal nth root of unity.

(b) For any principal nth root of unity ρ,

n−1
∑
k=0

ρk =
n

∑
k=1

ρk = 0.
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PROOF OUTLINE:

• Part (a) is immediate from the fact that e2πik/nm = 1 iff (2πik/n) ·m
is a multiple of 2π, which is true iff (m · k/n) is an integer.
• Part (b) is most easily seen by visualizing the vector addition of

the summands. The diagram below shows this situation for n =

12.

e2πi·0/360

e2πi·30/360

e2πi·60/360
e2πi·90/360

e2πi·120/360

e2πi·150/360

e2πi·180/360

e2πi·210/360

e2πi·240/360
e2πi·270/360

e2πi·300/360

e2πi·330/360

2

7.3.4 Notation for principal nth roots of unity

• ρn = e2πi/n

• ρ−n = e2πi(n−1)/n
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7.4 The Discrete Fourier Transform

7.4.1 The problem of polynomial multiplication

• In signal- and image-processing applications, the operation of

multiplying two polynomials arises frequently.

• This operation is often termed convolution, and is denoted by ∗.
• More precisely, let

p1(x) =
n1−1
∑
k=0

ak · xk p2(x) =
n2−1
∑
k=0

bk · xk

• Then

p1 ∗ p2 =
n1+n2−2

∑
k=0

∑
r+s=k

ar ·bs · xr+s

• The “naı̈ve” algorithm for computing the convolution of two poly-

nomials requires time Θ(n1 ·n2), or Θ(n2) if both polynomials are

of degree n.

• Using the discrete Fourier transform plus a divide-and-conquer

strategy, it will be shown that this time may be reduced to

Θ(n · log(n)).
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7.4.2 An overview of the discrete Fourier transform

• Operationally, the discrete Fourier transform may be viewed as a

mapping from polynomials to polynomials.

• If

p =
n−1
∑
k=0

ak · xk

and m≥ n, then the discrete Fourier transform of p of degree m

Fm(p) =
m−1
∑
k=0

Fm(p,k) · xk

is a complex polynomial of degree at most n−1.

• The coefficients Fm(p,k) are in general complex numbers, even

though all of the ak’s are real.

• This transform has the following desirable properties:

1. It is invertible; that is, there is a mapping F−1m (called the

inverse discrete Fourier transform) with the property that

F−1m (Fm(p)) = Fm(F−1m (p)) = p

2. The convolution p ∗ q of two polynomials corresponds to

pointwise multiplication of the corresponding coefficients of

the discrete Fourier transform. If

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

then

Fm(p1 ∗ p2) =
2n−2
∑
k=0

Fm(p1,k) ·Fm(p2,k) · xk
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• To compute p ∗ q, the solid path indicated in the following dia-

gram is followed:

(p,q) p∗q = F−12n−2(F2n−2(p)⊙F2n−2(p))

(F2n−2(p),F2n−2(q)) F2n−2(p)⊙F2n−2(q)

Θ(n · log(n)) Θ(n · log(n))

Θ(n)

• In the above ⊙ denotes pointwise multiplication.

• It will now be shown in detail how these computations are real-

ized using an implementation of the discrete Fourier transform

known as the fast Fourier transform.
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7.4.3 The discrete Fourier transform

• Let

p(x) =
n−1
∑
k=0

ak · xk

be a polynomial of degree at most n−1, and let m≥ n.

(a) The mth-degree discrete Fourier transform (DFT for short) of p

is given by

Fm(p) =
m−1
∑
k=0

Fm(p,k) · xk

with

Fm(p,k) = p(ρk
m) = p(e2πik/m)

• Thus,

Fm(p,k) =
n−1
∑
ℓ=0

aℓ · e2πikℓ/m =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m

7.4.4 Notation

• The polynomial p, as given above, may be represented by the

sequence

〈a0,a1,a2, . . . ,an−1〉

• The mth-degree DFT may then be viewed as the sequence

〈Fm(p,0),Fm(p,1),Fm(p,2), . . . ,Fm(p,m−1)〉

• This notation will be used frequently in that which follows.
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7.4.5 Matrix representation

• There is a convenient matrix representation of the DFT:






































1 1 1 1 · · · 1

1 ρm ρ2
m ρ3

m · · · ρm−1
m

1 ρ2
m ρ4

m ρ6
m · · · ρ

2(m−1)
m

1 ρ3
m ρ6

m ρ9
m · · · ρ

3(m−1)
m

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

1 ρm−1
m ρ

2(m−1)
m ρ

3(m−1)
m · · · ρ

(m−1)2
m







































·







































a0

a1

a2

a3
...

an−1

0
...

0







































=







































Fm(p,0)

Fm(p,1)

Fm(p,2)

Fm(p,3)
...
...
...
...

Fm(p,m−1)







































• This representation leads naturally to to the construction of the

inverse DFT.

7.4.6 Lemma The above square matrix has the following inverse:

1

m
·







































1 1 1 1 · · · 1

1 ρ−m ρ2
−m ρ3

−m · · · ρm−1
−m

1 ρ2
−m ρ4

−m ρ6
−m · · · ρ

2(m−1)
−m

1 ρ3
−m ρ6

−m ρ9
−m · · · ρ

3(m−1)
−m

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 ρm−1
−m ρ

2(m−1)
−m ρ

3(m−1)
−m · · · ρ

(m−1)2
−m







































2
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7.4.7 The inverse discrete Fourier transform

• Let

p(x) =
n−1
∑
k=0

ak · xk

be a polynomial of degree at most n−1, and let m≥ n.

(a) The mth-degree inverse discrete Fourier transform (inverse DFT

for short) of p is given by

F−1m (p) =
m−1
∑
k=0

F−1m (p,k) · xk

with

F−1m (p,k) =
1

m
· p(ρk

−m) =
1

m
· p(e−2πik/m)

• Thus,

F−1m (p,k) =
1

m
·
n−1
∑
ℓ=0

aℓ · e−2πikℓ/m =
1

m
·
n−1
∑
ℓ=0

aℓ ·ρkℓ
−m

7.4.8 Notation

• In analogy to 7.4.4, if the polynomial p may be represented by

the sequence

〈a0,a1,a2, . . . ,an−1〉
then the mth-degree inverse DFT may be viewed as the sequence

〈F−1m (p,0),F−1m (p,1),F−1m (p,2), . . . ,F−1m (p,m−1)〉

• This notation will be used frequently in that which follows.
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7.4.9 Matrix representation of the inverse DFT

• Using 7.4.6, and in analogy to 7.4.5, there is a convenient matrix

representation of the inverse DFT:

1

m
·







































1 1 1 1 · · · 1

1 ρ−m ρ2
−m ρ3

−m · · · ρm−1
−m

1 ρ2
−m ρ4

−m ρ6
−m · · · ρ

2(m−1)
−m

1 ρ3
−m ρ6

−m ρ9
−m · · · ρ

3(m−1)
−m

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

1 ρm−1
−m ρ

2(m−1)
−m ρ

3(m−1)
−m · · · ρ

(m−1)2
−m







































·







































a0

a1

a2

a3
...

an−1

0
...

0







































=







































F−1m (p,0)

F−1m (p,1)

F−1m (p,2)

F−1m (p,3)
...
...
...
...

F−1m (p,m−1)







































7.4.10 Proposition – the inverse DFT is really an inverse

• For any polynomial p of degree at most n−1, and any m≥ n,

F−1m (Fm(p)) = Fm(F−1m (p)) = p

PROOF: This follows immediately from the matrix representa-

tions of 7.4.5, 7.4.6 and 7.4.9. 2

TDBC91 slides, page 7.22, 20081009



7.4.11 Further notation

(a) The symbol ⊙ will be used to denote pointwise multiplication.

Thus, if

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

Then

p1⊙ p2 =
n−2
∑
k=0

ak ·bk · xk

(b) For any complex number α and any positive integer n, define the

matrix

M(α,n) =







































1 1 1 1 · · · 1

1 α α2 α3 · · · αm−1

1 α2 α4 α6 · · · α2(m−1)

1 α3 α6 α9 · · · α3(m−1)

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

1 αm−1 α2(m−1) α3(m−1) · · · α(m−1)2







































• Note that the matrix which represents the mth degree DFT is

M(ρm,m)

while that which represents the mth-degree inverse DFT is

1

m
·M(ρ−m,m)
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• The problem of showing that

Fm(p∗q) = Fm(p)⊙Fm(q)

will now be addressed.

7.4.12 Proposition Let

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

be two polynomials of degree at most n−1, and let

q =
n−2
∑
k=0

ck · xk := p1 ∗ p2 =
n1+n2−2

∑
k=0

∑
r+s=k

ar ·bs · xr+s

Then












































c0

c1

c2
...
...
...
...
...
...
...

c2n-2













































=













































a0 0 0 0 · · · 0 an-1 an-2 an-3 · · · a1

a1 a0 0 0 · · · 0 0 an-1 an-2 · · · a2

a2 a1 a0 0 · · · 0 0 0 an-1 · · · a2
...

...
...

...
...

...
...

...
...

an-2 an-3 an-4 an-5 · · · 0 0 0 · · · 0 an-1

an-1 an-2 an-3 an-4 · · · 0 0 0 · · · 0 0

0 an-1 an-2 an-3 · · · a0 0 0 · · · 0 0

0 0 an-1 an-2 · · · a1 a0 0 · · · 0 0

0 0 0 an-1 · · · a2 a1 a0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · an-1 an-2 an-3 · · · a1 a0













































·













































b0

b1

b2
...
...

bn-1

0
...
...
...

0













































PROOF: Straightforward verification. 2

TDBC91 slides, page 7.24, 20081009



7.4.13 Some useful matrix and vector notation Let

V =



















v0

v1

v2
...

vℓ−1
vℓ



















Define

RotDn(V ) =



















vℓ

v0

v1
...

vℓ−2
vℓ−1



















and

Circ(V ) =



































v0 vℓ vℓ−1 · · ·v1
v1 v0 vℓ · · ·v2
v2 v1 v0 · · ·v3
...
...
...
...
...

vℓ−1 vℓ−2 vℓ−3 · · · vℓ

vℓ vℓ−1 vℓ−2 · · · v0



































=
(

v RotDn(V ) RotDn2(V ) · · · RotDnℓ−1(V )
)
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Now let m≥ n, and for

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

define the following two vectors of m rows each, noting in particular

that the last m−n entries of each are 0.

V(p1,m) =



























a0

a1
...

an−1
0

0
...

0



























V(p2,m) =



























b0

b1
...

bn−1
0

0
...

0



























7.4.14 Observation The matrix equation of 7.4.12 may be rewrit-

ten as














c0

c1

c2
...

c2n−2















= Circ(V(p1,2n−1) · V(p2,2n−1)

2
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7.4.15 Lemma Let p = ∑
n
k=0 be a polynomial of degree at most

n−1. Then, for any integer m≥ n,

M(ρm,m) ·Circ(V(p,m)) · 1
m
·M(ρ−m,m))

is the diagonal matrix

F∆
m(p) :=















Fm(p,0) 0 0 0 · · · 0

0 Fm(p,1) 0 0 · · · 0

0 0 Fm(p,2) 0 · · · 0
...

...
...

...
...

...

0 0 0 0 0 Fm(p,m−1)















PROOF: The (ℓ, j)th entry of M(ρm,m) ·Circ(V(p,m)) is

m−1
∑
k=0

ρℓ·k
m · ā(m+k− j)mod(m) with āk =

{

ak if k ≤ n−1

0 if k ≥ n

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(k− j)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(k− j)mod(m)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·(m+k− j)mod(m)
m · ā(m+k− j)mod(m)

= ρℓ· j
m ·

m−1
∑
k=0

ρℓ·k
m · āk = ρℓ· j

m ·
m−1
∑
k=0

ρℓ·k
m ·ak = ρℓ· j

m ·Fm(p, ℓ)

Thus,

M(ρm,m) ·Circ(V(p,m)) = F∆
m(p) ·M(ρm,m)

Since 1/m ·M(ρ−m,m) is the inverse of M(ρm,m), the result follows.

2
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• Finally, it is possible to prove the main characterization theorem.

7.4.16 Theorem – translation between convolution and pointwise

multiplication Let

p1(x) =
n−1
∑
k=0

ak · xk p2(x) =
n−1
∑
k=0

bk · xk

be two polynomials of degree at most n−1. Then

p1 ∗ p2 = F−12n−1(F2n−1(V(p1,2n−1))⊙F2n−1(V(p2,2n−1)))

PROOF: Denote the coefficients of p1 ∗ p2 as follows:

p∗q =
2n−2
∑
k=0

ck · xk

The following further notation is also useful.

C :=











c0

c1
...

cn











F
l
2n−1(p2) :=











F2n−1(p2,0)
F2n−1(p2,1)

...

F2n−1(p2,2n−2)











H = M(ρ2n−1,2n−1) H−1 =
1

m
·M(ρ−2n+1,2n−1)
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Now

C = Circ(V(p1,2n−1)) · V(p2,2n−1) [by 7.4.14]

= (H−1 ·H) ·Circ(V(p1,2n−1)) · (H−1 ·H) · V(p2,2n−1)

= H−1 · (H ·Circ(V(p1,2n−1)) ·H−1) · (H · V(p2,2n−1))

= H−1 ·F∆
2n−1 · (H · V(p2,2n−1)) [by 7.4.15]

= H−1 ·F∆
2n−1 ·Fl(p2) [Just the FFT!]

= H−1 ·











F2n−1(p1,0) ·F2n−1(p2,0)
F2n−1(p1,1) ·F2n−1(p2,1)

...

F2n−1(p1,2n−2) ·F2n−1(p2,2n−2)











= F−12n−1(F2n−1(V(p1,2n−1))⊙F2n−1(V(p2,2n−1)))

2
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7.5 The Fast Fourier Transform

7.5.1 Motivation

• For the DFT to be useful in the implementation of polynomial

multiplication, it is necessary to have a fast algorithm for com-

puting both the DFT and its inverse.

• The “naı̈ve” algorithm (matrix multiplication) is Θ(n2), with

n−1 the degree of each polynomial.

• This is the same complexity as that of direct polynomial mul-

tiplication, and offers no particular advantage for solving such

problems.

• The fast Fourier transform (FFT) is a divide-and-conquer solu-

tion for the computation of the DFT and its inverse, and runs in

time Θ(n · log(n)).
• The idea is as follows:

p =
n−1
∑
k=0

ak · xk = a polynomial

Define:

peven(x) =
n−1
∑
k=0
k even

ak · xk/2 podd(x) =
n−1
∑
k=0
k odd

ak · x(k−1)/2

• Note that

p(x) = peven(x
2)+ podd(x

2)∗ x

• Use a divide-and-conquer algorithm to compute the DFT’s of

peven(x) and podd(x), and then to combine the results.
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7.5.2 Proposition Let p= ∑
n−1
k=0 ak ·xk be a polynomial of degree at

most n−1, and let m be an even number with m≥ n. Then:

(a) For all k, 0 < k < m/2,

Fm(p,k) = Fm/2(peven,k)+Fm/2(podd,k) ·ρk
m

(b) For all k, m/2≤ k < m,

Fm(p,k) = Fm/2(peven,k)−Fm/2(podd,k) ·ρk
m

PROOF: First let k < m/2. Then

Fm/2(peven,k) =
n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ/2
m/2 =

n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ
m

Fm/2(podd,k) =
n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)/2
m/2 =

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)
m

since ρm/2 = ρ2
m. This establishes part (a), since

Fm(p,k) =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m =

n−1
∑
ℓ=0

ℓ even

aℓ ·ρkℓ
m +

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρk(ℓ−1)
m ·ρk

m

= Fm/2(peven,k)+Fm/2(podd,k) ·ρk
m

The key to establishing part (b) is to note that for m/2≤ k < m,

ρk−m/2
m = ρk

m ·ρ−m/2
m =

{

ρk
m if k is even

−ρk
m if k is odd

since

ρ−m/2
m =

{

1 if m is even

−1 if m is odd
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Thus

Fm(p,k) =
n−1
∑
ℓ=0

aℓ ·ρkℓ
m =

n−1
∑
ℓ=0

aℓ ·ρℓ(k−m/2))
m ·ρℓm/2

m

=
n−1
∑
ℓ=0

ℓ even

aℓ ·ρℓ(k−m/2)
m +

n−1
∑
ℓ=0
ℓ odd

aℓ ·ρℓ(k−m/2)
m

= Fm/2(peven,k)−Fm/2(podd,k) ·ρk
m

2

7.5.3 Remarks

• Note that m must be even for the above result to hold, since m/2

must be an integer.

• Since this result will be applied recursively, m must in fact be a

power of two.

• This is not a significant restriction, since m can always be chosen

to be the smallest power of two which is larger than the sum of

the degrees of the two polynomials.
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7.5.4 The pseudocode for the FFT

• In the algorithm below, it is assumed that the input polynomial is

represented as a vector, as described in 7.4.4 and 7.4.8.

• The intermediate variables fft even and fft odd are also of this

type.

• Note that this algorithm must work with complex numbers, even

if the coefficients of the input polynomial are real.

• The complexity is clearly Θ(n · log(n)), with n the size of the

input vector.

• This is easily seen by writing down the recurrence relation, which

is similar to that for mergesort.

function FFT(a : vector) : vector;

n← length(a)

if (n = 1)

then return a

else

〈 fft even← FFT(even part(a));

fft odd ← FFT(odd part(a));

〉
shift ← 1;

for s ← 0 to n/2−1 do

〈 result [s]← fft even[s]+ fft odd [s]∗ shift ;
result [s +n/2]← fft even[s]− fft odd [s]∗ shift ;
shift ← shift ∗ e2πi/n ;

〉
return result ;
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7.5.5 Further notes on the FFT

• Θ(n · log(n)) algorithms which significantly better constant mul-

tipliers are possible.

• Chips and chipsets which perform FFT’s are widely used.

â Such chips/chipsets are characterized by:

◦ number of points (n in the algorithm)

◦ resolution per point

â The cutting edge: ST/Philips STV0300:

◦ Intended use: digital television.

◦ Up to 8192 points (213).

◦ Resolution per point is 2× 12 bits (24 bits total for a

complex value) for up to 2048 points and 2× 10 bits

for up to 8192 points.

◦ Processing time for an 8192-point FFT: 410 µsec.

◦ Projected cost in bulk: less than $50.

â Typical stock components: 64 to 256 points, at resolutions

per point of up to 2×18.

• The FFT algorithmmakes it easy to combine such chips for larger

n.

• Multidimensional DFT’s (and hence FFT’s) are important in ap-

plications such as image processing.
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