
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 9: The Complexity Classes P andNP

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.



9. The Complexity Classes P and NP

9.1 Abstract Problems and Reductions

9.1.1 Background

• In this chapter, the question of how the inherent complexity of

problem A is compared to that of problem B is investigated.

• To keep things focused, attention will be restricted to decision

problems; that is, problems which have a yes/no answer.

• Because of the nature of this sort of question, it is necessary to

begin by developing some relatively abstract background.

9.1.2 Abstract decision problems An abstract decision problem

is an ordered pair P= (I,ρ) in which

(a) I is a set of problem instances.

(b) The function

ρ : I → {0,1}

assigns to each problem instance a truth value, with 0 representing

false and 1 representing true.

TDBC91 slides, page 9.1, 20081020



9.1.3 Reductions Let P1 = (I1,ρ1) and P2 = (I2,ρ2) be abstract de-

cision problems. A reduction of P1 to P2 is a function

e : I1 → I2

with the property that the following diagram commutes.

I1 {0,1}

I2

ρ1

ρ2

e

• To formalize the notion of computing the solution of an abstract

decision problem, a special subclass, known as language prob-

lems is introduced.

9.1.4 Language problems

(a) For a finite set Σ, Σ∗ denotes the set of all finite strings of elements

of Σ.

(b) An abstract decision problem P= (I,ρ) is called a language de-

cision problem if I ⊆ Σ∗ for some finite set Σ.

• In the above context, Σ is often called an alphabet.

• To address the problem of computational solution of abstract lan-

guage problems, a very abstract notion of a computer – the Turing

machine – is introduced.

TDBC91 slides, page 9.2, 20081020



9.2 The Deterministic Turing Machine

9.2.1 Basic definition: deterministic Turing machines

(a) A deterministic Turing machine (DTM) is a seven-tuple

M = (Q,Σ,Γ,#,δ,q0,F)

in which

Q = a finite set of states

Σ = a finite input alphabet

Γ = a finite tape alphabet with Σ ⊆ Γ

# ∈ Γ\Σ = the blank symbol

δ : Q×Γ → Q×Γ×{R,L,N}

= the state-transition function (a partial function)

q0 ∈ Q = the initial state

F ⊆ Q = the accepting states

· · ·

tape head

finite-state
control & store

Almost all squares
contain #

infinite

Interpretation of δ:

Q × Γ Q × Γ × {R,L,N}

current
state

contents of
current

tape square

next state new value
of current
tape square

direction
to move
tape head

TDBC91 slides, page 9.3, 20081020



(b) An instantaneous description (ID) for M is a quadruple

(α1,a,α2,q) ∈ Γ∗×Γ×Γ∗×Q

· · ·

state=q

a # # #

rightmost
nonblank

︷ ︸︸ ︷ ︷ ︸︸ ︷
α1 α2

(c) The set of all ID’s forM is denoted DM.

• Note that only finitely many tape squares may contain other than

# in an ID.

TDBC91 slides, page 9.4, 20081020



9.2.2 The next-ID function for a DTM LetM = (Q,Σ,Γ,#,δ,q0,F)

be a deterministic Turing machine. The next-ID function for M is the

partial function

δ̂M :DM →DM

defined by the following rules. For

D= (〈a1, . . . ,am〉,a,〈b1, . . . ,bn〉,q) ∈ DM

(i) If δ(q,a) = (q′,a′,L) (move tape head left), then

δ̂M(D) =

{

(〈a1, . . . ,am−1〉,am,〈a′,b1, . . . ,bn〉,q′) if m≥ 1

undefined if m= 0

(ii) If δ(q,a) = (q′,a′,R) (move tape head right), then

δ̂M(D) =

{

(〈a1, . . . ,am,a
′〉,b1,〈b2, . . . ,bn〉,q

′) if n≥ 1

(〈a1, . . . ,am,a
′〉,#,ε,q′) if n= 0

• In the above ε is the empty string.

(iii) If δ(q,a) = (q′,a′,N) (stationary tape head), then

δ̂M(D) = (〈a1, . . . ,am〉,a
′,〈b1, . . . ,bn〉,q

′)

(iv) If δ(q,a) is undefined, so too is δ̂M(D).

TDBC91 slides, page 9.5, 20081020



9.2.3 The global transition function for a DTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a deterministic Turing machine.

(a) For each n ∈N, define the partial function

δ̂nM :DM →DM

inductively as follows.

δ̂0M(D) = D for all D ∈ DM

δ̂n+1
M (D) =

{

δ̂M(δ̂
n
M(D)) if δ̂nM(D) is defined;

undefined if δ̂nM(D) is not defined.

(b) Define the partial function

δ̂∗M :DM →DM

by

δ̂∗M(D)=

{

δ̂nM(D) if δ̂nM(D) is defined but δ̂n+1
M (D) is not defined;

undefined if δ̂nM(D) is defined. for all n ∈N

• δ̂∗M is called the global transition function forM.

(c) The machine M is said to halt in configuration D′ from starting

configuration D if δ̂∗M(D) =D′. In that case, D′ is called a halting

configuration forM.

TDBC91 slides, page 9.6, 20081020



9.2.4 The notion of acceptance for a DTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a deterministic Turing machine.

(a) For each w = 〈a1,a2, . . . ,an〉 ∈ Σ∗, the input configuration for w,

denoted I(M,w), is defined as follows.

I(M,w) =

{

(ε,a1,〈a2, . . . ,an〉,q0) if n≥ 1

(ε,#,ε,q0) if n= 0

· · ·

state=q0

a1 a2 · · · · · · · · · · · · an # # # # # # # # #

(b) The language L(M) accepted by M is the set of all w ∈ Σ∗ such

that

(i) δ̂∗M(I(M,w)) is defined (say δ̂∗M(I(M,w)) = (α1,a,α2,q)),

with

(ii) q ∈ F .

(c) M is a decider if δ̂∗M(I(M,w)) is defined for every w ∈ Σ∗. In this

case, it is called a decider for L(M).

• Note that if M is a decider, then δ̂∗M(I(w)) is always defined.

• The only question for acceptance is whether or not the final state

q is in F .

TDBC91 slides, page 9.7, 20081020



9.2.5 The notion of a computation for a DTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a deterministic Turing machine.

• Informally, a computation is just a sequence of legal configura-

tions, starting with an initial configuration and terminating with a

halting configuration.

(a) The symbol ⊢M is used to denote a single step in the computation

of a Turing machine. Thus,

D1 ⊢M D2 means that D2 = δ̂M(D1)

(b) Formally, a finite computation ofM is a finite sequence

〈D0,D1, . . . ,Dn〉

with the following properties:

(i) D0 is an input configuration of the form I(M,w) for some

w ∈ Σ∗.

(ii) Dn is a halting configuration forM.

(iii) D0 ⊢M D1 ⊢M . . . ⊢M Dn.

• Note in particular that Dn = δ̂∗M(D0).

TDBC91 slides, page 9.8, 20081020



9.2.6 The function computed by a DTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a deterministic Turing machine.

(a) For any

D= (〈a1, . . . ,am〉,a,〈b1, . . . ,bn〉,q) ∈ DM

define TapeVal1(D) to be the longest initial substring of

〈a1, . . . ,an,a,b1, . . . ,bn〉 which does not contain a #.

• Note that if a1 = #, then TapeVal1(D) = ε.

(b) For w ∈ Σ∗, The partial function

fM : Σ∗ → Σ∗

computed byM is defined by

fM(w) =

{

TapeVal1(δ̂
∗
M(I(M,w))) if δ̂∗M(I(M,w)) is defined;

undefined otherwise.

• In words, the partial function computed byM takes input string w

represented as the initial configuration I(M,w).

• The result is defined iff the machine halts.

• In the case that it does halt, fM(w) is read as the string starting at

the leftmost position on the tape, and continuing until the first #

is encountered.

• Neither the final state nor the final position of the tape head is

used in determining this value.

TDBC91 slides, page 9.9, 20081020



9.2.7 Computable functions Let Σ be a finite alphabet

(a) A partial function

f : Σ∗ → Σ∗

is computable if there is some Turing machine

M = (Q,Σ,Γ,#,δ,q0,F) with f = fM.

• Note that partial here means that the function need not be defined

for all values of Σ∗, but it may be.

• A total function is a special case of a partial function.

9.2.8 Turing machines and universal computation

• Recall from the very first part of these notes that Church’s the-

sis posits that there is an ideal upper bound on the power of all

programming devices.

• It is well known that (deterministic) Turing machines lie in this

group of “universal” computing devices.

• Thus, a Turing machine can compute whatever any other comput-

ing device can.

• Note that the Turing model seems to require that the algorithm be

“burned into” the hardware, but this is not in fact necessary.

• A Turing machine can be designed which is a universal inter-

preter (or, at least, an interpreter for your favorite programming

language).

TDBC91 slides, page 9.10, 20081020



9.3 The Nondeterministic Turing Machine

9.3.1 Basic definition: nondeterministic Turing machines

(a) Formally, a nondeterministic Turing machine (NDTM)

M = (Q,Σ,Γ,#,δ,q0,F) follows exactly the same definition as

that of a deterministic Turing machine of 9.2.1, save that the state-

transition function is now a total function of the form

δ : Q×Γ → 2Q×Γ×{R,L,N}

• It is difficult to give an NDTM a good “physical” model.

• It is more of a mathematical abstraction, albeit a useful one.

• The idea is that each element of δ(q,a) gives a possible next move

for the machine.

• In its operation, the machine selects one of these moves in some

unspecified and unrepeatable way.

• It is easy to see that this notion subsumes that of a deterministic

Turing machine.

• Given a DTM M = (Q,Σ,Γ,#,δ,q0,F), define the associated

NDTM asM = (Q,Σ,Γ,#,δ′,q0,F), with

δ′(q,a) =

{

{δ(q,a)} if δ(q,a) is defined;

∅ if δ(q,a) is not defined.

TDBC91 slides, page 9.11, 20081020



9.3.2 The next-ID function for an NDTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a nondeterministic Turing machine. The

next-ID function forM is the total function

δ̂M :DM → 2DM

defined by the following rules. For

D= (〈a1, . . . ,am〉,a,〈b1, . . . ,bn〉,q) ∈ DM

D′ ∈ δ̂M(D) iff one of the following conditions is satisfied:

(i) m≥ 1, (q′,a′,L) ∈ δ(q,a), and

D′ = (〈a1, . . . ,am−1〉,am,〈a
′,b1, . . . ,bn〉,q

′)

(ii) n≥ 1, (q′,a′,R) ∈ δ(q,a), and

D′ = (〈a1, . . . ,am,a
′〉,b1,〈b2, . . . ,bn〉,q

′)

(ii′) n= 0, (q′,a′,R) ∈ δ(q,a), and

D′ = (〈a1, . . . ,am,a
′〉,#,ε,q′)

(iii) (q′,a′,N) ∈ δ(q,a) and

D′ = (〈a1, . . . ,am〉,a
′,〈b1, . . . ,bn〉,q

′)

TDBC91 slides, page 9.12, 20081020



9.3.3 The global transition function for an NDTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a nondeterministic Turing machine.

(a) For each n ∈N, define the partial function

δ̂nM :DM → 2DM

inductively as follows.

δ̂0M(D) = {D} for all D ∈ DM

δ̂n+1
M (D) =

⋃

D′∈δ̂nM(D)

δ̂M(D
′)

(b) Define the partial function

δ̂∗M :DM → 2DM

by

δ̂∗M(D) =
⋃

n∈N

{δ̂nM(D) | δ̂n+1
M (D) = ∅}

• δ̂∗M is called the global transition function forM.

(c) The machine M is said to halt in configuration D′ from starting

configuration D if D′ ∈ δ̂∗M(D).

TDBC91 slides, page 9.13, 20081020



9.3.4 The notion of acceptance for an NDTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a nondeterministic Turing machine.

• (a) The notion of input configuration is defined exactly as in 9.2.4;

i.e.,

(a) For each w = 〈a1,a2, . . . ,an〉 ∈ Σ∗, the input configuration for w,

denoted I(M,w), is defined as follows.

I(M,w) =

{

(ε,a1,〈a2, . . . ,an〉,q0) if n≥ 1

(ε,#,ε,q0) if n= 0

(b) The language L(M) accepted by M is the set of all w ∈ Σ∗ such

that there is D′ = (α1,a,α2,q) ∈ δ̂∗M(I(M,w)) with the property

that q ∈ F .

• The extension of the notion of a decider to the NDTM context re-

lies upon the distinction between finite and infinite computations,

and will be presented in 9.3.5(d) below.

• Note that the definition of acceptance for an NDTM is inherently

asymmetric.

• For w ∈ Σ∗ to be accepted by M, it suffices to find one nonde-

terministic computation with initial configuration I(M,w) which

halts in an accepting state.

• For w ∈ Σ∗ to be rejected byM, it must be shown that every non-

deterministic computation with initial configuration I(M,w) fails

to halt in an accepting state.

TDBC91 slides, page 9.14, 20081020



9.3.5 The notion of a computation for an NDTM Let

M = (Q,Σ,Γ,#,δ,q0,F) be a nondeterministic Turing machine.

(a) As in the case of a DTM, the symbol ⊢M is used to denote a single

step in the computation of a Turing machine. Thus,

D1 ⊢M D2 means that D2 ∈ δ̂M(D1)

(b) Formally, a finite computation ofM is a finite sequence

〈D0,D1, . . . ,Dn〉

with the following properties:

(i) D0 is of the form I(M,w) for some w ∈ Σ∗.

(ii) Dn is a halting configuration forM.

(iii) D0 ⊢M D1 ⊢M . . . ⊢M Dn.

• Note in particular that Dn ∈ δ̂∗M(D0).

(c) An infinite computation ofM is an infinite sequence of the form

〈D0,D1,D2, . . .〉

with the following properties:

(i) D0 is of the form I(M,w) for some w ∈ Σ∗.

(ii) For all n ∈N, Dn ⊢M Dn+1.

(d) M is a decider if it does not have any infinite computations. It is

then called a decider for L(M).

• It is easy to see that this notion of decider is consistent with that

of 9.2.4(c) for DTM’s.

TDBC91 slides, page 9.15, 20081020



9.3.6 Computing a function with an NDTM

• While it is possible to define some notions of an NDTM comput-

ing a function, they are complex and, in any case, irrelevant to the

current context.

• They will not be expanded here.

• Therefore, in these notes, computable functions will always be

computed on deterministic Turing machines.

• Accepters and deciders may of course be nondeterministic.

TDBC91 slides, page 9.16, 20081020



9.4 The Classes P andNP

9.4.1 Length and complexity LetM = (Q,Σ,Γ,#,δ,q0,F) be ei-

ther a deterministic or else a nondeterministic Turing machine which

is a decider.

(a) The length of an input configuration I(M,w) is just the length

Length(w) of the string w.

(b) The length of a finite computation

〈D0,D1, . . . ,Dn〉

is n, the number of steps in the computation.

(c) Let A⊆ Σ∗, and let

g :N→N

be any function on the natural numbers. M is said to have com-

plexity Ō(g) on A if, for any w ∈ A, the length of every computa-

tion with initial configuration I(M,w) is no more than

g(Length(w))).

• Note that this definition does not employ an “up to constant mul-

tiple notion,” as does the usual O(g) notion.

TDBC91 slides, page 9.17, 20081020



9.4.2 Polynomial-time computations

(a) Let M = (Q,Σ,Γ,#,δ,q0,F) be a Turing machine, either de-

terministic or nondeterministic, and let A ⊆ Σ∗. M is said to be

polynomial on A if there is a polynomial

p : N → N

n 7→
k

∑
i=0

ak ·n
k (ai ∈N)

such thatM has complexity Ō(p) on A.

(b) Given a finite alphabet Σ and a subset A⊆ Σ∗, a computable func-

tion

f : Σ∗ → Σ∗

is said to be polynomial on A if there is a deterministic Turing ma-

chineM = (Q,Σ,Γ,#,δ,q0,F) with f = fM which is polynomial

on A.

(c) A language decision problem P= (I,ρ) with I ⊆ Σ∗ is determin-

istic polynomial (resp. nondeterministic polynomial) if there is a

DTM (resp. NTDM)M = (Q,Σ,Γ,#,δ,q0,F) such that:

(i) M is a decider; and

(ii) M is polynomial on {I(M,w) | w ∈ I}.

TDBC91 slides, page 9.18, 20081020



9.4.3 Definitions of P andNP

(a) P denotes the class of all deterministic polynomial language prob-

lems.

(b) NP denotes the class of all nondeterministic polynomial lan-

guage problems.

• Clearly P ⊆NP .

• The question of whether or not

P =NP

holds is perhaps the most famous outstanding problem in the

foundations of computer science.

(c) Problems which are known to lie in P are often termed tractable.

(d) Problems which lie outside of P are often termed intractable.

• Thus, the question of whether or not

P =NP

holds is the same as that of asking whether or not there exist prob-

lems in NP which are intractable.

TDBC91 slides, page 9.19, 20081020



9.4.4 Justification for the Turing machine model

Question: Why is the Turingmachine model used in the development

of comparative problem complexity, instead of a higher level model,

such as an imperative programming language?

Formulation of nondeterminism: There is a straightforward and “nat-

ural” formulation of nondeterminism within this model, which

seems less artificial than in other models.

Expression of the actual size of computations: When comparing the

complexities of different algorithms operating on distinct prob-

lems, it is extremely important not to make assumptions about

the length of time required to perform certain operations, which

may bias the comparison.

Data size: A similar comment applies to the measurement of the ac-

tual size of data.

Example: Consider the representation of and operations on integers.

• The usual assumption in a programming language is that inte-

gers are of a fixed size, and basic operations require constant

time.

• This assumption is only valid if there is a fixed upper bound on

the size of integers used in the input and in the computation.

• This assumption is not universally valid across all algorithms.

Polynomial equivalence to other models: It is possible (although gen-

erally tedious) to show that a typical computational model (such

as an imperative programming language) may be implemented on

a DTM in such a way the each basic (i.e., constant-time) operation

in the language runs in polynomial time on the DTM.

TDBC91 slides, page 9.20, 20081020



9.5 Abstract Problems and Reductions

9.5.1 Abstract problems with length and their encodings

(a) An abstract problem with length is a triple P = (I,ρ,L) in which

(P,ρ) is an abstract problem and

L : I →N

is a function, called the length function for P.

(b) An encoding scheme with respect to the alphabet Σ for the ab-

stract problem with length P = (I,ρ,L) is a triple (A,ρ′,e) in

which (A,ρ′) in which

(i) (A,ρ′) is a language decision problem; and

(ii) e is a reduction of P to (A,ρ):

I {0,1}

A⊆ Σ∗

ρ

ρ′
e

(c) The encoding scheme is polynomial if there are integers m,k≥ 0

with the property that for each i ∈ I,

Length(e(i))≤ k ·L(i)m

TDBC91 slides, page 9.21, 20081020



9.5.2 Structured strings and reasonable encodings

Problem: The length of an input can be made abnormally long by:

(i) padding with irrelevant junk; and/or

(ii) using a cumbersome encoding scheme (e.g., encode num-

bers in unary).

Problem: A very clever encoding scheme may be employed to real-

ize “fast” algorithms (e.g., for multiplication algorithms, encode

numbers as their prime factors).

• In each case, the formal computational complexity obtained will

not be a true representation of the complexity of the problem.

• To obtain uniform results across diverse problems, it is required

that problem encodings abide by certain constraints.

(a) The structured strings are defined recursively as follows.

(i) Any string of 0’s and 1’s (possibly preceded by a minus sign)

is a structured string which represents the appropriate num-

ber in binary.

(ii) If σ is a structured string, so too is [σ]. This string represents

the name σ.

(iii) If σ1,σ2, . . . ,σn are structured strings, then so too is

〈σ1,σ2, . . . ,σn〉. This string represents the corresponding n-

tuple.

• This is enough to encode most problems of interest.

(b) A reasonable encoding of an abstract problem with length P =

(I,ρ,L) is a polynomial encoding scheme (A,ρ′,e) for P in which

e(i) is a structured string for each i ∈ I.

TDBC91 slides, page 9.22, 20081020



9.5.3 Working convention

• From now on, the theory will be developed with respect to lan-

guage decision problems.

• It will be assumed that any underlying abstract problem possesses

a reasonable encoding, as defined in 9.5.2.

TDBC91 slides, page 9.23, 20081020



9.6 Tractable Reductions and Their Properties

9.6.1 Computable and tractable reductions Context:

• Σ is a finite alphabet.

• P1 = (I1,ρ1), P2 = (I2,ρ2) are language problems.

• Σ is a finite alphabet, with I1, I2 ⊆ Σ∗.

• e is a reduction of P1 to P2.

I1 {0,1}

I2

ρ1

ρ2

e

(a) e is called a computable reduction (resp. a polynomial reduction

or tractable reduction) if there is a computable function (resp. a

computable function which is polynomial on I1)

f : Σ∗ → Σ∗

with the property that

f (σ) = e(σ) for all σ ∈ I1.

(b) Write

P1 ∝ P2

just in case there is a polynomial reduction from P1 to P2. In this

case, it is also said that P1 polynomially reduces to P2.

TDBC91 slides, page 9.24, 20081020



9.6.2 Proposition – preservation of complexity under tractable

reduction Let P1 = (I1,ρ1) and P2 = (I2,ρ2) be language problems,

and suppose that P1 ∝ P2.

I1 {0,1}

I2

ρ1

ρ2

f

(a) If P2 is deterministic polynomial, then so too is P1.

(b) If P2 is nondeterministic polynomial, then so too is P1.

PROOF: It suffices to note that the solution of P1 may be realized by

first translating it to P2 (in deterministic polynomial time), and then to

solve the corresponding instance of P2 (in deterministic or nondeter-

ministic polynomial time, as the case may be). 2

TDBC91 slides, page 9.25, 20081020



9.7 Cook’s Theorem – The Existence ofNP-Complete

Problems

9.7.1 NP-complete problems

(a) A problem P ∈ NP is said to be NP-complete if, for any P′ ∈
NP ,

P′ ∝ P.

(b) The class of all NP-complete problems is denotedNPC.

• In effect, the NP-complete problems are the “hardest” problems

in NP .

• The seminal theorem of Cook demonstrates the existence of such

a problem; namely, the satisfiability of Boolean expressions.

• For all NP-complete problems, the best known deterministic al-

gorithms run in worst-case time which is exponential; i.e., O(qn),

with q> 1.

• For a few problems, algorithms with q substantially smaller than

2 are known, but even these algorithms are not very efficient.

• If even one of these NP-complete problems could be solved in

deterministic polynomial time, then they could all be so solved.

TDBC91 slides, page 9.26, 20081020



9.7.2 Boolean expressions In that which follows, let X = {x1,x2, . . . ,xn}
be a finite set of variables.

(a) A truth assignment to X is a mapping

h : X →{0,1}

xi is said to be true for h if h(xi) = 1, and false for h if h(xi) = 0.

(b) The Boolean expressions over X , denoted BE(X), are defined as

follows.

(i) X ⊆ BE(X).

(ii) If ϕ1,ϕ2 ∈ BE(X), then so too are (ϕ1∨ϕ2) and (ϕ1∧ϕ2).

(iii) If ϕ ∈ BE(X), then so too is (¬ϕ).

(c) A truth assignment h is extended to a function

h̄ : BE(X)→{0,1}

as follows. Let ϕ ∈ BE(X).

(i) If ϕ = xi ∈ X , then h̄(ϕ) = h(ϕ).

(ii) If ϕ = (ϕ1∨ϕ2) for some ϕ1,ϕ2 ∈ BE(X), then

h(ϕ) =max({h̄(ϕ1), h̄(ϕ2)})

(iii) If ϕ = (ϕ1∧ϕ2) for some ϕ1,ϕ2 ∈ BE(X), then

h(ϕ) =min({h̄(ϕ1), h̄(ϕ2)})

(iv) If ϕ = (¬ϕ) for some ϕ ∈ BE(X), then

h(ϕ) = 1− h̄(ϕ)

TDBC91 slides, page 9.27, 20081020



9.7.3 The problem SAT– satisfiability of Boolean expressions Let

X = {x1,x2, . . . ,xn} be a finite set of variables, and let ϕ ∈ BE(X).

(a) The satisfiability problem for ϕ is that of determining whether

there exists a truth assignment

h : X →{0,1}

with the property that h̄(ϕ) = 1. Formally, the problem SAT is

defined as:

SAT = (BE(X),ρSAT)

with

ρSAT : ϕ 7→ sup({h̄(ϕ) | h is a truth assignment for BE(X)})

(b) The size of an instance of SAT is the length of the string needed

to represent the associated formula.

TDBC91 slides, page 9.28, 20081020



9.7.4 Theorem –SAT isNP-complete The problemSAT is inNPC;
that is, SAT is NP-complete.

PROOF: First of all, it will be shown that SAT ∈ NP . There are two

key steps which the deciding NDTM must perform:

(gen) Nondeterministically generate a test truth assignment g.

(test) (Deterministically) test the truth assignment on the input for-

mula ϕ.

• It is straightforward, but extremely tedious, to describe these steps

in detail for a Turing machine.

• Therefore, only a high-level explanation will be provided.

• First of all, it is clear that step (test) may be performed in (deter-

ministic) polynomial time.

• A more detailed description of step (gen) is given on the next

slide.

TDBC91 slides, page 9.29, 20081020



(gen1) Parse the input expression and determine the number of

variables. Write this number to the right of the expression,

on the tape.

(gen2) If the variable count is zero, go on to the test phase. Oth-

erwise proceed.

(gen3) Move to the right of the tape, to the position where the

test sequence will be written.

(gen4) Enter a “generate bit” state. From this state, the next

state is fixed. However, there are two possible choices for the

value of the tape square, 0 and 1. The next configuration is

nondeterministically chosen, so that either a 0 or 1 is written

onto the tape.

(gen5) Enter a (deterministic) subroutine which sends the tape

head back to the position of the variable count.

(gen6) Decrement the variable count by one and go to (gen2).

• It is straightforward to see that this program for (gen2) may be

performed in polynomial time.

• Note that step is (gen4) is inherently nondeterministic; is is not

possible on a DTM.

• It is important to recall that for an NDTM to accept, it is sufficient

that it halt in an accepting state for some sequence of moves.

• Thus, since every possible truth assignment is generated by some

sequence of moves, it is guaranteed to accept if at least one of

these assignments satisfies the formula.

TDBC91 slides, page 9.30, 20081020



Next, the proof of completeness is presented.

• Let P = (I,ρ) ∈ NP .

• The strategy is to provide a construction κ which takes an instance

w ∈ I, and produces a Boolean expression ϕw which is satisfiable

iff ρ(w) = 1.

• It must furthermore be shown that this construction may be per-

formed in (deterministic) polynomial time.

• The diagram below illustrates the main entities in the reduction.

I {0,1}

BE(X)

ρ

ρSAT

w

• X is a an appropriate set of variables; its size is dependent upon I

but not upon any particular instance of I.

TDBC91 slides, page 9.31, 20081020



• Let M = (Q,Σ,Γ,#,δ,q0,F) be an NDTM which solves P in

polynomial time.

• It is useful to modify M, to yield M′ = (Q′,Σ,Γ,#,δ′,q0,F
′), as

follows.

• The new machine M′ has only one accepting state, which

will be denoted by qa.

• To accomplish this, define F ′ = {qa}, and for each q in the F
of the old machine, and each x ∈ Γ with δ(q,x) = ∅, define

δ′(q,x) = {(qa,x,N)}

• Note that qa can only be entered if the old machine would

have halted in an accepting state.

• Also, instead of halting in an accepting state, M′ loops for-

ever, leaving the state, head position, and tape unchanged.

• To accomplish this, for each x ∈ Γ, define

δ′(qa,x) = {(qa,x,N)}

• Under this convention, it is necessary to redefine halting as

looping endlessly in state qa.

• This does not contradict the unsolvability of the halting prob-

lem; looping in the same configuration is trivial to detect.

• Note also that the complexity of operations onM′ is the same

as that of M, up to the insignificant addition of a small con-

stant.

TDBC91 slides, page 9.32, 20081020



• Now, let p be a polynomial which bounds the complexity of M;

i.e., for w ∈ I and D a computation ofM,

Length(D)≤ p(Length(w))

• If M′ is used instead of M, then D may be taken to be an infinite

computation, and the test condition for acceptance becomes that

of asking whether or not

Dp(n) = (?,?,?,qa)

HereDp(n) is the p(n)+1st element ofD, and (?,?,?,x) represents

any configuration of M′ for which the state is qa.

TDBC91 slides, page 9.33, 20081020



• A Boolean expression, depending upon the input w, will now be

constructed.

• This expression will have the property that it is satisfiable iff M′

accepts w.

• For convenience, assume that the following naming conventions

are followed:

(i) The tape cells are numbered 1,2,3, . . ., beginning with the

leftmost.

(ii) The states are named q1,q2, . . . ,qs, with s representing the

accepting state.

(iii) Time is measured in unit steps, beginning with 0.

• To begin, three families of propositions are introduced.

C(i, j, t) = 1 ⇔ tape cell i contains symbol j at time t.

S(k, t) = 1 ⇔ M′ is in state qk at time t.

H(i, t) = 1 ⇔ the tape head is scanning cell i at time t.

• It is important to keep in mind that these are regarded as proposi-

tions, and not as first-order predicates which take arguments.

• The following constraints exist on the parameters.

• 1≤ i≤ p(Length(w)) (The size is bounded by the time used.)

• 1≤ j ≤ m= Card(Γ) (the number of tape symbols.)

• 1≤ k ≤ s= Card(Q′) (the number of states)

• 0≤ t ≤ p(Length(w))

TDBC91 slides, page 9.34, 20081020



• There are:

• Θ(p(Length(w))2) propositions of the formC(i, j, t).

• Θ(p(Length(w))) propositions of the form S(k, t).

• Θ(p(Length(w))2) propositions of the form H(i, t).

• Therefore, there are Θ(p(Length(w))2) propositions total.

• Next, a Boolean expression on r propositional variables is intro-

duced, which asserts that exactly one of the variables is true:

U(x1, . . . ,xr)
def
=

(
r∨

i=1

xi

)

∧

(
∧

1≤i< j≤r

(¬(xi∧x j))

)

• Observe that U(x1, . . . ,xr) may be written using at most k′ · r2

symbols, for some constant k′.

• Using the familiesU(−), C(−), S(−), and H(−), a Boolean ex-

pression

X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ X7

will be constructed which is true iff M accepts w.

• It will furthermore be shown that each Xi may be constructed in

(deterministic) polynomial time.

TDBC91 slides, page 9.35, 20081020



1. X1 asserts that, at each point in time, the tape head is scanning

exactly one cell.

X t
1

def
= U(H(1, t),H(2, t), . . .,H(p(Length(w)), t))

X1
def
=

p(Length(w))∧

t=0

X t
1

• Length(X1) ∈ Θ(p(Length(w))3)

2. X2 asserts that, at each point in time, each tape cell contains ex-

actly one symbol. (Only the cells from 1 through p(Length(w))

are considered.

X
i,t
2

def
= U(C(i,1, t),C(i,2, t), . . .,C(i,m, t))

X2
def
=

∧

1≤i≤p(Length(w))
1≤t≤p(Length(w))

X
i,t
2

• Length(X2) ∈ Θ(p(Length(w))2)

3. X3 asserts that, at each point in time,M′ is in exactly one state.

X t
3

def
= U(S(1, t),S(2, t), . . .,S(s, t))

X3
def
=

p(Length(w))∧

t=0

X t
3

• Length(X3) ∈ Θ(p(Length(w)))

TDBC91 slides, page 9.36, 20081020



4. X4 asserts that, at each point in time, at most one tape cell can

change value, and that cell must be the one which is currently

being scanned.

X
i, j,t
4

def
= ((C(i, j, t+1)⇔C(i, j, t))∨H(i, t))

X4
def
=

∧

1≤i≤p(Length(w))
1≤ j≤Card(Γ)

1≤t≤p(Length(w))

X
i, j,t
4

• Length(X4) ∈ Θ(p(Length(w))2)

5. X5 asserts that, at each point in time, the new ID ofM′ is obtained

from the old one by an application of the state-transition function

δ′.

Y
i, j,t
5

def
=

∨

(k′, j′,ξ)∈δ′(k, j)
(ξ=−1⇒L; ξ=0⇒N; ξ=1⇒R)

(C(i, j′, t+1)∧S(k′, t+1)∧H(i+ξ, t+1))

X
i. j,t

5
def
= Y

i, j,t

5 ∨ (¬C(i, j, t)) ∨ (¬H(i, t)) ∨ (¬S(k, t))

legal
moves

wrong
tape symbol
for transition

wrong
tape cell

for transition

wrong
state

for transition

X5
def
=

∧

1≤i≤p(Length(w))
1≤ j≤Card(Γ)
1≤k≤Card(Q′)

1≤t≤p(Length(w))

X
i, j,t
4

• Length(X5) ∈ Θ(p(Length(w))2)

TDBC91 slides, page 9.37, 20081020



6. X6 asserts that the initial ID is correct.

X6
def
= S(1,0) ∧ H(1,0) ∧

(
Length(w)∧

i=1

C(i,wi,0)

)

∧





p(Length(w))∧

i=Length(w)+1

C(i,#,0)





initial
state

initial
tape
square

w on tape
(w= w1,w2, . . . ,wLength(w))

pad
with blanks

• Length(X6) ∈ Θ(p(Length(w)))

7. X7 states thatM
′ is in state qs at time p(Length(w)).

X7 = S(s, p(Length(w)))

• Length(X7) ∈ Θ(log(Length(w))).

• Thus,

X = X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ X7

can be generated and written in time O(p(Length(w))3).

• It follows directly from the construction that X is satisfiable iffM′

accepts w.

• The question of whether or not M′ accepts w can therefore be

solved by first computing X , and then using the SAT routine to

test it for satisfiability.

• Thus,

P∝ SAT

2

TDBC91 slides, page 9.38, 20081020



9.8 The Complexity of Other Satisfiability Problems

9.8.1 CNF-SAT Let X = {x1,x2, . . . ,xn} be a finite set of variables.

(a) A literal is either x∈ X or else a negation of a variable; e.g., (¬x).

• (b) A clause is a disjunction of literals; e.g.,

(ℓ1∨ℓ2∨ℓ3∨ . . .∨ℓn)

• (c) A Boolean expression is in conjunctive normal form (CNF) if

it is a conjunction of clauses.

• Example of a clause:

(x1∨x2∨x3)∧(x2∨x5)∧(x6∨x1)∧x7

(b) The decision problem CNF-SAT takes as input a Boolean expres-

sion ϕ in CNF and returns 1 if ϕ is satisfiable, and 0 otherwise.

• Clearly, CNF-SAT is a special case of SAT.

TDBC91 slides, page 9.39, 20081020



9.8.2 Proposition – CNF-SAT isNP-complete The problemCNF-

SAT isNP-complete.

PROOF: The proof makes use of the constructions in the proof of

Cook’s theorem (9.7.4). The expressions X1, X2, X3, X6, and X7 are

already in CNF. Note thatU(x1, . . . ,xr) may be rewritten as

U(x1, . . . ,xr)
def
=

(
r∨

i=1

xi

)

∧

(
∧

1≤i< j≤r

((¬xi)∨(¬x j))

)

It remains to show that X4 and X5 may be transformed into CNF in

polynomial time. First, X4 consists of conjuncts of the form

((ϕ1 ⇔ ϕ2)∨ϕ3)

which is equivalent to

(ϕ1∨(¬ϕ2)∨ϕ3)∧((¬ϕ1)∨ϕ2∨ϕ3)

This translation may be performed in constant time. Each X
i, j,k,t

5 in X5

may be transformed to CNF in linear time as well. Thus, X5 may be

so transformed as well, in time O(Length(X5)) = O(p(Length(w))2).

Hence, the entire transformationmay be performed in polynomial time.

Since the problem is a subproblem of SAT, it is clearly in NP which

completes the proof. 2

TDBC91 slides, page 9.40, 20081020



• It is important not to assume that every normal form for formulas

defines a class which is NP-complete.

• The following example illustrates this point.

9.8.3 Disjunctive normal form Let X = {x1,x2, . . . ,xn} be a finite

set of variables.

(a) A co-clause is a conjunction of literals; that is, a formula of the

form

(ℓ1∧ℓ2∧ℓ3∧ . . .∧ℓn)

(b) A formula is in disjunctive normal form DNF if it is a disjunction

of co-clauses.

• Shown below is a formula in DNF.

(x1∧x2∧x3)∨(x2∧x5)∨(x6∧x1)∨x7

(b) The decision problem DNF-SAT takes as input a Boolean expres-

sion ϕ in CNF and returns 1 if ϕ is satisfiable, and 0 otherwise.

• Clearly, DNF-SAT is a special case of SAT.

TDBC91 slides, page 9.41, 20081020



9.8.4 Proposition – the complexity of DNF-SAT DNF-SAT is solv-

able in time linear in the size of the formula.

PROOF: Let

ϕ = (ℓ11∧ . . .∧ℓ1n1)∨(ℓ21∧ . . .∧ℓ2n2)∨ . . .∨(ℓm1∧ . . .∧ℓmnm)

be a formula in DNF. Note that the formula is satisfiable iff at least one

of its co-clauses is. The algorithm simply searches each co-clause for

complementary literals; i.e., pairs of the form {x1,(¬xi)}. A co-clause

is satisfiable iff it does not contain such a pair. Clearly, such a search

may be conducted in linear time, with one sweep across the formula.

2

9.8.5 Remarks

• The above proposition shows that DNF-SAT cannot beNP-complete

unless P=NP .

• It also establishes that the transformation of a formula from CNF

to DNF cannot be performed in polynomial time, unless P=NP .

• In fact, it is possible to find formulas which are in CNF with the

property that any corresponding formula in DNF is exponentially

larger in size.

• Thus, even if P=NP , the transformation from CNF to DNF must

be Θ(2n) in the worst case.

TDBC91 slides, page 9.42, 20081020



9.8.6 Size-limited CNF Let X = {x1,x2, . . . ,xn} be a finite set of

variables, and let k be a positive integer.

(a) A Boolean expression ϕ over X is said to be in k-CNF if it is in

CNF and each clause of ϕ contains at most k literals.

(b) The problem k-SAT is that of determining whether a given for-

mula ϕ which is in k-CNF-SAT is satisfiable.

9.8.7 Proposition The problem 3-SAT isNP-complete.

PROOF:

• The approach is to show how to replace a clause with more than

three literals with a conjunction of clauses with exactly three lit-

erals, in polynomial time.

• Let

ϕ = (ℓ1∨ℓ2∨ . . .∨ℓk)

be a clause with k ≥ 4.

• Introduce k− 3 new variables y1, . . . ,yk−3, and replace ϕ by the

following conjunction.

ϕ′ = (ℓ1∨ℓ2∨y1)

∧ (ℓ3∨(¬y1)∨y2)

∧ (ℓ4∨(¬y2)∨y3)

∧ (ℓ5∨(¬y3)∨y4)
...

∧ (ℓk−3∨(¬yk−5)∨yk−4)

∧ (ℓk−2∨(¬yk−4)∨yk−3)

∧ (ℓk−1∨ℓk∨(¬yk−3))

TDBC91 slides, page 9.43, 20081020



• Let f be a truth assignment on the variables of the original clause

ϕ with f̄ (ϕ) = 1. Then f̄ (ℓi) must be true for some ℓi.

• Extend f by

f (y j) =

{

1 if j ≤ i−2

0 if j > i−2

• It is easily verified that f̄ (ϕ′) = 1.

• On the other hand, let f be a truth assignment on the variables of

ϕ with the property that f (ϕ) = 0. Then f (ℓi) = 0 for all i.

• The claim is that there is no extension of f to the variables {y1, . . . ,yk−3}
with f̄ (ϕ′) = 1.

• If g were such an extension, then

ḡ(ℓ1∨ℓ2∨y1) = 1 ⇒ g(y1) = 1

• Then

ḡ(ℓ2∨(¬y1)∨y2) = 1 ⇒ g(y2) = 1

• Continuing on in this fashion, it is easily established that g(yi) = 1

for each yi.

• The last clause

(ℓk−1∨ℓk∨(¬yk−3))

cannot then be satisfied by ḡ, since all three of its literals are false.

• Thus, ϕ′ is satisfiable iff ϕ is.

• This transformation may be performed in linear time, and applied

to each clause in a CNF formula.

• Thus, CNF-SAT may be reduced 3-CNF-SAT in linear time, whence

the result. 2

TDBC91 slides, page 9.44, 20081020



9.8.8 Remarks

• Note that in the previous proof, the problem which was known to

be NP-complete (CNF-SAT) was reduced to the problem which

was to be shown to be NP-complete (3-CNF-SAT).

• This is always the reductionwhich is need to showNP-completeness.

• Consider once again the following reduction diagram.

I1 {0,1}

I2

ρ1

ρ2

f

• The diagram states that, up to deterministic polynomial equiva-

lence, P2 = (I2,ρ2) is at least a difficult as P1 = (I1,ρ1), since P2
may be used as a subroutine to solve P1.

• Relative to the above example:

P1 = CNF-SAT

P2 = 3-CNF-SAT

• It is also worth noting that 2-CNF-SAT is solvable in determinis-

tic polynomial time, but that not all Boolean expressions have a

representation in 2-CNF.

• It also bears repeating that the best known algorithms for all of

these NP-complete problems run in worst-case time Ω2(k
n) for

some k > 1.

TDBC91 slides, page 9.45, 20081020



9.9 Other NP-complete Problems

• In this section, a number of other problems which are known to

be NP-complete are presented.

• This selection is far from complete; there are thousands of prob-

lems known to be NP-complete.

• The proofs that these problems are NP-complete will not be

given.

9.9.1 The discrete knapsack decision problem

• This problem is the decision version of the discrete knapsack

problem.

The setting:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s may be taken to be positive integers.

• A target profit P is also given.

The problem:

• Determine whether or not there is a vector

(x1,x2, . . . ,xn) ∈ {0,1}N such that:

(a) ∑n
i=1 xi · vi ≥ P, subject to the constraint that

(b) ∑n
i=1 xi ·wi ≤M.

TDBC91 slides, page 9.46, 20081020



9.9.2 The travelling salesman decision problem

• This problem is the decision version of the travelling salesman

problem.

The setting:

• A directed graph G = (V,E,g), together with a weighting

function d : E →N.

• A target tour cost C.

The problem: Determine whether or not there is a tour whose cost is

no greater thanC.

9.9.3 The coin changing decision problem

Given:

• A finite sequence (c1,c2, . . . ,cn) of positive integers, with

ci = 1 and ci ≤ ci+1 for all i.

• A target change amountC > 0.

• A maximum number of coins K.

The problem: Determine whether or not there is a vector

(x1,x2, . . . ,xn) ∈N
N such that:

(a) ∑n
i=1 xi · ci =C, subject to the constraint that

(b) ∑n
i=1 xi ≤ K.

TDBC91 slides, page 9.47, 20081020



9.9.4 The clique decision problem

Given:

• An undirected graph G= (V,E,g)

• A positive integer K ≤ Card(V ).

The problem: DeterminewhetherG has a clique with exactlyK nodes.

• A clique of G is a subgraph in which there is an edge between

every pair of distinct nodes.

9.9.5 The Hamiltonian circuit decision problem

Given:

• An undirected graph G= (V,E,g)

The problem: Determine whether G has a Hamiltonian circuit.

• A Hamiltonian circuit of G is a cycle which passes through each

vertex exactly once.

• Note that a tour (in the travelling salesman sense) is a Hamilto-

nian circuit.

TDBC91 slides, page 9.48, 20081020



9.9.6 The partition problem

Given:

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi.

The problem: Determine whether there is a partition {A,B} of

{obj1,obj2, . . . ,objn} such that

∑
x∈A

wx = ∑
x∈B

wx

• This problem may be viewed as one of placing weights on a bal-

ance scale such that the two sides balance exactly.

TDBC91 slides, page 9.49, 20081020



9.9.7 n-dimensional matching

Given:

• n disjoint sets X1,X2, . . .Xn, each of the same cardinality c.

• A subset A⊆ X1×X2× . . .× . . .Xn.

The problem: Determine whether there is a subset B ⊆ A with the

property that each element of each Xi occurs in exactly one tuple

of B.

• Note that B must also be of cardinality c.

• n dimensional matching is NP-complete for n ≥ 3, but not for

n= 2.

9.9.8 A remark on two-dimensional matching

• The two-dimensional matching problem is sometimes called the

marriage problem.

• Let

(i) X1 = set of males;

(ii) X2 = set of females; with

(iii) Card(X1) = Card(X2).

(iv) A⊆ X1×X2.

• Think of A as representing “acceptable” pairings.

• A match B (in the sense of 9.9.7 above), represents a pairing of

each individual with an acceptable mate.

• This problem is solvable in deterministic polynomial time; it is

not NP-complete.

TDBC91 slides, page 9.50, 20081020



9.10 Complements of problems

• There is an inherent asymmetry in the nature of acceptance for an

NDTM, as described in 9.2.5.

• This asymmetry has substantial implications for the nature of

NP-problems.

9.10.1 The complement of a problem

• Let P = (I,ρ) be a decision problem.

(a) The problem complementary to P is

Pc = (I,1−ρ)

• Here

1−ρ : x 7→ 1−ρ(x)

• In working with discussions of solutions using nondeterministic

algorithms, it is very important to distinguish between the solu-

tion of a problem and the solution of its complement.

• This will be illustrated via several examples.

TDBC91 slides, page 9.51, 20081020



9.10.2 UnSAT– The complement of SAT Let X = {x1,x2, . . . ,xn}
be a finite set of variables, and let ϕ ∈ BE(X).

(a) The unsatisfiability problem for ϕ is that of determining whether

there is no truth assignment

h : X →{0,1}

with the property that h̄(ϕ) = 1. Formally, the problem UnSAT is

defined as:

UnSAT = (BE(X),ρUnSAT)

with

ρUnSAT : ϕ 7→ inf({h̄(ϕ) | h is a truth assignment for BE(X)})

(b) The size of an instance of SAT is the size of the underlying set X

of variables.

• Note that with respect to nondeterministic solutions, this problem

appears to have a very different flavor than does SAT.

• With SAT, a nondeterministic algorithm can nondeterministically

generate a test solution and then test it in linear time.

• With UnSAT, the nondeterminism would not appear to be of any

help, since all truth assignment must be false. There is no notion

of a verifier which can test a proposed solution.

• It would thus appear that UnSAT is strictly more difficult than

SAT.

• This question will now be examinedmore closely in a short while.

• First, however, one more complementary problem will be pre-

sented.

TDBC91 slides, page 9.52, 20081020



9.10.3 The complement of the discrete knapsack decision prob-

lem

The setting:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s may be taken to be positive integers.

• A target profit P is also given.

The problem:

• Determine whether no vector

(x1,x2, . . . ,xn) ∈ {0,1}N has the properties that:

(a) ∑n
i=1 xi · vi ≥ P, and

(b) ∑n
i=1 xi ·wi ≤M.

TDBC91 slides, page 9.53, 20081020



9.10.4 Proposition Let P ∈ P . Then Pc ∈ P as well.

PROOF: This is immediate; if M = (Q,Σ,Γ,#,δ,q0,F) is an accept-

ing machine for P, then M = (Q,Σ,Γ,#,δ,q0,Q \F) is an accepting

machine for Pc. 2

9.10.5 Theorem

• If there is a decision problem P which has the following two prop-

erties:

(i) P isNP-complete; and

(ii) Pc ∈ NP;

then for every Q ∈ NP , Qc ∈NP as well.

• In other words, if the complement of someNP-complete problem

is in NP , then the complement of every problem in NP is also

in NP .

PROOF: Let:

P = (I1,ρ1) ∈ NPC

PC = (I1,1−ρ1) ∈ NPC

Q = (I2,ρ2) ∈ NPC

Then there is a function f : I1 → I2, which is computable in polynomial

time, such that the following diagram commutes.

I2 {0,1}

I1

ρ2

ρ1

f

TDBC91 slides, page 9.54, 20081020



Since ρ1 and ρ2 are total functions, this immediately implies that the

following diagram also commutes.

I2 {0,1}

I1

1−ρ2

1−ρ1

f

Then, since PC ∈ NP , so too is Qc. 2

9.10.6 Definition

co-NP
def
= {Pc | P ∈ NP}

9.10.7 Theorem (restatement)

NPC ∩ co-NP 6= ∅ =⇒ NP = co-NP 2

9.10.8 Corollary

P =NP =⇒ NP = co-NP 2

TDBC91 slides, page 9.55, 20081020


