
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 10: The Effective Solution of NP-Complete
Problems

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

10. The Effective Solution of NP-Complete

Problems

10.1 Pseudo Polynomial-Time Algorithms

10.1.1 The real complexity of the discrete knapsack problem

The setting: (Similar to 3.1.2, except that all parameters are now in-

tegers.)

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive integers.

• Recall that in the dynamic programming solution presented in

4.3.3, a sequence of sets was constructed:

S0, S1, S2, . . . , Sn−1

• In this sequence:

(i) Each Si has length bounded by M, because only the most

profitable entry for each weight is retained.

(ii) Each Si may be constructed in time proportional to the size

of Si−1.

• Thus, the algorithm has complexity O(n ·M).

Question: Is this a polynomial-time algorithm?

Answer with another question: Polynomial in what?

TDBC91 slides, page 10.1, 20081020

• This illustrates clearly the need to be very careful about how the

size of the input is measured.

• It only requires ⌈log(M)⌉ bits to represent M, and the algorithm

is not polynomial in n · log(M).

• Nevertheless, it is clear that to achieve “intractability,” very large

values forM must be involved.

• In many reasonable cases, the discrete knapsack problem is not

really so intractable after all.

• Note that these ideas apply to both the decision problem and the

optimization problem.

10.1.2 Pseudo polynomial-time algorithms

• Let P = (I,ρ) be a language problem.

• Assume that the elements of I are represented using a reasonable

encoding, as described in 9.5.2.

• Let w ∈ I.

(a) max(w) denotes the largest integer which occurs in the problem

encoding w.

(b) A deterministic algorithm A (i.e., a DTM) for P is pseudo polynomial-

time if there is a polynomial pwith the property that for anyw∈ I,
A solves P in time Ō(p(Length(w),max(w)).

• In the discrete knapsack problem, it is clear that max(w)≥M, so

the dynamic programming algorithm is indeed pseudo polynomial-

time.

TDBC91 slides, page 10.2, 20081020

10.1.3 Remarks on the pseudo polynomial-time approach

• ManyNP-complete problems do not involve numbers, other than

as labels on variables.

• A key example is SAT.

• Thus, there is no meaningful way even to analyze algorithms for

SAT along the theme of pseudo polynomial-time computations.

• To characterize those problems which do allow such analysis, the

following definition is made.

(a) The decision problem P = (I,ρ) is a number problem if

(i) It uses numbers as computational values in the problem de-

scription, and not just as labels;

(ii) There is no polynomial p such that, for all w ∈ I, max(w)≤
p(Length(w)).

• The motivation behind (ii) above is that the numbers which occur

in problem instances may be arbitrarily large.

• Even many number problems, such as travelling salesman, do not

admit pseudo polynomial-time solutions.

• A small theory can be developed along these lines, but the details

are not presented here.

TDBC91 slides, page 10.3, 20081020

10.2 Approximation Algorithms

10.2.1 The setting: a return to optimization problems

• In the study of approximation algorithms, the context returns to

that of optimization problems.

• The idea is to seek algorithms which, while not always producing

optimal solutions, find ones which are not more than a specified

amount from optimal.

• It is often possible to find such algorithms which run in determin-

istic polynomial time, even in the case that the original (corre-

sponding decision) problem is NP-complete.

TDBC91 slides, page 10.4, 20081020

10.2.2 Multisolution problems and their properties In this defi-

nition, let Σ be a finite alphabet.

(a) A multisolution problem (over Σ) is a quadruple P = (I,S,ρ,r)

in which

(i) I ⊆ Σ∗ is a set of problem instances.

(ii) S⊆ Σ∗ is a set of solution instances.

(iii) ρ : I→ 2S is the solution relation.

(iv) r : S→N is the solution ranking function.

(b) If w ∈ I and s ∈ ρ(w), then s is called a feasible solution for w.

(c) An optimal solution for w ∈ I with respect to r is a feasible solu-

tion s ∈ S with the further property that:

r(s) = max({r(t) | t ∈ ρ(w)})

The value r(s) so identified is written Optr(w).

TDBC91 slides, page 10.5, 20081020

10.2.3 Example context – the discrete knapsack optimization prob-

lem

• The discrete knapsack optimization problem, as described in 3.1.2,

will be used as a running example.

• The following (obvious) conventions will always be followed.

(i) The weights and values of the objects, as well as the capacity

of the knapsack, will always be taken to be positive integers.

(ii) The set S of feasible solutions consists exactly of those sub-

sets of objects whose total weight does not exceed the ca-

pacity of the knapsack.

(iii) The ranking function r : S→ N assigns to each solution s

the sum of the values of its objects.

10.2.4 Algorithms and absolute approximation LetP = (I,S,ρ,r)

be a multisolution problem over alphabet Σ. P.

(a) The deterministic TuringmachineM = (Q,Σ,Γ,#,δ,q0,F) solves

P if, for each w ∈ I,

fM(w) ∈ ρ(w)

(b) For ε ∈ R
>0, M is an ε-absolute approximation algorithm for P

with respect to r if, for all w ∈ I,

|Optr(w)− r(fM(w))| ≤ ε

(c) IfM computes fM in deterministic polynomial time, then it is said

to be an ε-absolute polynomial-time approximation algorithm for

P.

TDBC91 slides, page 10.6, 20081020

10.2.5 Theorem For no ε∈R>0 can there be an ε-absolute polynomial-

time approximation algorithm for the discrete knapsack optimization

problem unless P =NP .

PROOF: Suppose thatM is such an approximation algorithm for ε > 0,

and let w be an instance of the discrete knapsack problem with the

property that

|Optr(w)− r(fM(w))| ≤ ε

Now create a new instance w′ from w by multiplying the value of each

object by ⌈ε +1⌉. That is, if the original value of obji was vi, then the

new value is ⌈ε + 1⌉ · vi. It is easy to see that w′ and w have exactly

the same feasible solutions, with the total value of each solution for w′

⌈ε + 1⌉ times as large than the value of the corresponding solution of

w. In particular, the value of each solution must be an integer multiple

of ⌈ε+1⌉. Thus, the only way that

|Optr(w
′)− r(fM(w′))| ≤ ε

can hold is if

|Optr(w
′)− r(fM(w′))|= 0

Now, it is obvious that if the discrete knapsack optimization problem

could be solved exactly, then so too could the corresponding decision

problem. Hence, this condition can only be met in the case that P =

NP . 2

TDBC91 slides, page 10.7, 20081020

10.2.6 Relative approximation Let P = (I,S,ρ,r) be a multiso-

lution problem over alphabet Σ. and let M = (Q,Σ,Γ,#,δ,q0,F) be a

DTM which solves P.

(a) For ε∈R>0,M is said to be a ε-relative approximation algorithm

for P with respect to r if, for all w ∈ I for which Optr(w) > 0,

|Optr(w)− r(fM(w))|

Optr(w)
≤ ε

(b) IfM computes fM in deterministic polynomial time, then it is said

to be an ε-relative polynomial-time approximation algorithm for

P.

TDBC91 slides, page 10.8, 20081020

10.2.7 An approximation for the discrete knapsack problem

• The input to this algorithm is a discrete knapsack problem with n

objects, as described in 3.1.2 and 10.2.3.

• Specifically, the context and notation is as follows:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive integers.

• Additionally, an integer parameter k > 0, which is the order of

the algorithm, is supplied.

• The general idea is that, the larger k is, the better the approxima-

tion will be.

• Shown on the next page is a high-level sketch of the algorithm.

• The complexity analysis which follows (10.2.8) will be based

upon the times in a high-level language, rather than those of a

Turing machine, but the principle that the difference will be lim-

ited to a polynomial transformation should be kept in mind.

TDBC91 slides, page 10.9, 20081020

• Sk,n denotes the set of all subsets of {1,2, . . . ,n} which contain

no more than k elements.

• The function GrKnapp/w(B,W) gives the set of objects selected

when a greedy-style algorithm is applied to just the objects in

{obji | i∈ B}, with a reduced knapsack capacity ofW . The objects

are considered in order of non-increasing profit per unit weight.

• The solution is represented as a subset of {1,2, . . . ,n}, as opposed
to a vector x ∈ {0,1}n.

best profit ← 0;

best solution← ∅;
foreach A ∈ Sk,n do

if (∑i∈A wi ≤ M)

then 〈 kProfit(A)← ∑i∈A vi;

tent solution← A ∪GrKnapp/w({1, . . . ,n}\A,M −∑i∈A wi);

if (∑i∈tent solution [i] vi > best profit)

then 〈 best solution← tent solution;

best profit ← ∑i∈A vi ·best solution[i];

〉
〉

TDBC91 slides, page 10.10, 20081020

10.2.8 Theorem The algorithm presented in 10.2.7 is a

(1/(k+1))-relative polynomial-time approximation algorithm for the

discrete knapsack optimization problem which runs in worst case time

O(nk+1).

PROOF:

• The complete context of 10.2.7 is assumed.

• Let Sopt⊆{1,2, . . . ,n} define an optimal solution, with b
def
= Card(Sopt).

• Assume that k < b; otherwise, the algorithm finds an optimal so-

lution directly.

• Let Sk denote the subset of Sopt which indexes the kmost valuable

objects.

• Order the indices of the jobs in Sopt as 〈α1,α2, . . . ,αk,αk+1, . . . ,αb〉
according to the following scheme.

vα1
≥ vα2

≥ . . .≥ vαk︸ ︷︷ ︸

Sk

vαk+1

wαk+1

≥
vαk+1

wαk+2

≥ . . .≥
vαb

wαb︸ ︷︷ ︸

other objects of Sopt

• Let Salg denote the solution found by the algorithm with the set

Sk ∈ Sk,n the choice for A in the foreach loop.

• Thus, Sgr
def
= Salg\Sk is the set of objects which the algorithm adds

using the greedy-style strategy.

• Define

Val(Sk) = ∑
x∈Sk

vx Val(Sopt) = ∑
x∈Sopt

vx

Val(Salg) = ∑
x∈Salg

vx Val(Sgr) = ∑
x∈Sgr

vx

TDBC91 slides, page 10.11, 20081020

• If no rejection occur during the greedy-style computation, the en-

tire solution is optimal.

• Otherwise, let αm be the index of the first object in Sopt which is

rejected by the greedy subalgorithm.

• Let T denote the amount of capacity remaining in the knapsack

at the time of this rejection. Note that

T < M−
m−1

∑
i=1

wαi

but that equality can not hold; otherwise αm would be included

by the greedy procedure.

• Let ∆ denote the amount of space used by the objects which were

not in Sopt but which were selected by the greedy subalgorithm at

the point at which objαm
was rejected. Thus,

∆ = (M−
m−1

∑
i=1

wαi
)−T

• It must be the case that

m−1

∑
i=k+1

vαi
+

(
vαm

wαm

)

·∆ ≤ Val(Sgr)

since any object objℓ selected by the greedy subalgorithm before

objαm
must have vℓ/wℓ ≥ vm/wm.

• Also, the following must hold

b

∑
i=m

vαi
≤

(
vαm

wαm

)

· (M−
m−1

∑
i=1

wαi
) =

(
vαm

wαm

)

· (∆+T)

since the objects {objαm
, . . . ,objαb

} can fill at most the rest of the

knapsack, and can have p/w no greater than vαm/wαm.

TDBC91 slides, page 10.12, 20081020

• Now for the optimal profit:

Val(Sopt)

= Val(Sk)+
b

∑
i=k+1

vαi

= Val(Sk)+
m−1

∑
i=k+1

vαi
+

b

∑
i=m

vαi

≤ Val(Sk)+(Val(Sgr)−

(
vαm

wαm

)

·∆)+

(
vαm

wαm

)

· (M−
m−1

∑
i=1

wαi
)

= Val(Sk)+Val(Sgr)+

(
vαm

wαm

)

·T

< Val(Sk)+Val(Sgr)+ vαm (since T/wαm < 1)

= Val(Salg)+ vαm

• Since

Val(Sk)+ vαm ≤ Val(Sopt)

the average profit of the set {obji | i ∈ Sk}∪ objαm
cannot exceed

Val(Sopt)/(k+1).

• Since Sk indexes the k most profitable objects of Sopt, objαm
must

be the least profitable of those indexed by {obji | i ∈ Sk}∪ objαm
;

i.e.,

vαm ≤
Val(Sopt)

(k+1)

• Hence
∣
∣
∣
∣

Val(Sopt)−Val(Salg)

Val(Sopt)

∣
∣
∣
∣

<

∣
∣
∣
∣

Val(Salg)+ vαm−Val(Salg)

Val(Sopt)

∣
∣
∣
∣

=
vαm

Val(Sopt)
≤

1

(k+1)

TDBC91 slides, page 10.13, 20081020

• Thus, the algorithm satisfies the (k+ 1)-relative approximation

property

• It only remains to show that it runs in time O(nk+1).

• It suffices to note that

k

∑
i=0

(
n

i

)
≤

k

∑
i=0

ni ∈ O(nk)

• Thus, there are O(nk) subsets of {1,2, . . . ,n} to consider.

• For each subset, the algorithm runs in linear time.

• The only other point of complexity is that for the greedy-style

addition, the elements must be sorted. However, this only need

be done once for the entire problem.

• Thus, for any k ≥ 1, the algorithm runs in time O(nk+1).

2

10.2.9 Fact The bound O(nk+1) in 10.2.8 is tight, so that the com-

plexity is in fact Θ(nk+1).

PROOF: Consult the text of Horowitz, Sahni, and Rajasekaran. 2

TDBC91 slides, page 10.14, 20081020

10.3 Fully Polynomial-Time Approximation Methods

10.3.1 Approximation schemes Let P = (I,S,ρ,r) be a multiso-

lution problem.

(a) An approximation scheme for P is an algorithmM which accepts

as input

(i) an instance w ∈ I; and

(ii) a real number ε > 0

and produces as output a solutionM(w,ε) which satisfies

|Optr(w)− r(M(w,ε))|

Optr(w)
≤ ε

whenever Optr(w) > 0.

(b) The approximation scheme M is fully polynomial if there is a

polynomial p of two variables such that given anyw∈ I and ε > 0,

M runs in time O(p(Length(w)),1/ε).

10.3.2 Observation The algorithm of 10.2.7 and 10.2.8 is not fully

polynomial time, since n1/ε is not a polynomial in n and 1/ε.

TDBC91 slides, page 10.15, 20081020

10.3.3 Knapsack problems recast

(a) An n-element knapsack problem is a triple

P = (v(−),w(−),M)

in which

(i) The function

v(−) : {1,2, . . . ,n}→R
≥0

assigns to each i ∈ {1,2, . . . ,n} a value vi for the i
th object.

(ii) The function

w(−) : {1,2, . . . ,n}→N

assigns to each i ∈ {1,2, . . . ,n} a weight wi for the i
th object.

(iii) M ∈ N is the capacity of the knapsack, with M ≥ wi for

1≤ i≤ n.

(b) A feasible solution is any vector (x1,x2, . . . ,xn)∈{0,1}n for which

n

∑
i=1

xi ·wi ≤M

(c) An optimal solution is a feasible solution (x1,x2, . . . ,xn)∈ {0,1}n

for which
n

∑
i=1

xi · vi

is a maximum over all feasible solutions. Opt(P) denotes this

sum for an optimal solution.

(d) If vi ∈N for each i, then P is called an integer knapsack problem.

TDBC91 slides, page 10.16, 20081020

10.3.4 Partial solutions to knapsack problems Let n∈N, and let

P = (v(−),w(−),M) be an n-element knapsack problem.

(a) For k ≤ n, a k-partial solution for P is any k-tuple

(x1,x2, . . . ,xk) ∈ {0,1}
k

with the property that there is a feasible solution (y1,y2, . . . ,yn)

satisfying

xi = yi for 1≤ i≤ k

(b) In the above, (y1,y2, . . . ,yn) is called a completion of

(x1,x2, . . . ,xk) with respect to P.

(c) If X = (x1,x2, . . . ,xk) and Z = (z1,z2, . . . ,zk) are k-partial solu-

tions of P, X is said to dominate Z if there is some completion

(y1,y2, . . . ,yn) of X with the property that

n

∑
i=1

yi · vi ≥
n

∑
i=1

wi · vi

for every completion (w1,w2, . . . ,wn) of Z.

10.3.5 A common framework for the three techniques

• Three techniques, rounding, interval partitioning, and separation

will be described.

• Variations of the dynamic-programming solution described in 4.3

will be used.

• Either the problem instance (in rounding), or the method of purg-

ing (in interval partitioning and separation) will be modified to

yield approximate solutions under conditions of lowered com-

plexity.

TDBC91 slides, page 10.17, 20081020

10.4 Rounding

10.4.1 Rounding – the basic idea

• In the rounding technique, a new instance P′′ of the knapsack

problem is created from the original instance P.

• The algorithm of 4.3 is not modified at all; only the instance is.

• In P′′, the the values of the objects are rounded in such a way that

the number of possible entries in each Si is reduced substantially,

while keeping the error within specified bounds.

10.4.2 Lemma Let ε > 0, n ∈N, and let

P = (v(−),w(−),M) P′ = (v′(−),w
′
(−),M

′)

be two instances of the n-element knapsack problem, with the further

properties that M = M′ and wi = w′i for 1≤ i≤ n. If

n

∑
i=1

|vi− v′i| ≤ ε ·Opt(P)

then
|Opt(P)−Opt(P′)|

Opt(P)
≤ ε

PROOF: This is immediate, since

|Opt(P)−Opt(P′)| ≤
n

∑
i=1

|vi− v′i|

2

TDBC91 slides, page 10.18, 20081020

10.4.3 Acceptable lower bounds and the modified instance Let

ε > 0, n ∈ N, and let P = (v(−),w(−),M) be an instance of the n-

element knapsack problem.

(a) An acceptable lower bound for P is any number LB(P) ∈ N

which satisfies the following conditions:

(i) LB(P)≤ Opt(P).

(ii) LB(P)≥ vi for 1≤ i≤ n.

• As an example, LB(P) may be taken to be a value computed by a

greedy-style method.

(b) Define P(LB,ε) = (v
(LB,ε)
(−) ,w(−),M) to be the n-element knapsack

problem which has the same weights and knapsack capacity as P,

but which has object values as defined below.

v
(LB,ε)
i

def
= vi − (vi) mod ((LB(P) · ε)/n)

• This is the largest multiple of (LB(P) · ε)/n which is no larger

than vi.

• Note that the v
(LB,ε)
i ’s need not be integers, even if the vi’s are.

• This is not a serious problem, and, in any case, an equivalent

instance with integer values will be constructed shortly.

TDBC91 slides, page 10.19, 20081020

10.4.4 Lemma With the definitions as in 10.4.3,

n

∑
i=1

|vi− v
(LB,ε)
i |< ε ·Opt(P)

PROOF:

|vi− v
(LB,ε)
i |<

LB(P) · ε

n

just by definition. Hence

n

∑
i=1

|vi− v
(LB,ε)
i |<

(
LB(P) · ε

n

)

·n = LB(P) · ε≤ Opt(P) · ε

2

10.4.5 Theorem

• Let A be any algorithm which solves the discrete knapsack prob-

lem optimally.

• Let P = (v(−),w(−),M) be any instance of the n-element knapsack

problem.

• Let ε > 0, and let LB(P) be an acceptable lower bound for P.

• Let P(LB,ε) = (v
(LB,ε)
(−) ,w(−),M) be the associated problem, as de-

fined in 10.4.3(b).

• Then the algorithm which first converts P to P(LB,ε) and then ap-

plies A to this resulting instance is an ε-relative approximation

algorithm.

PROOF: Just combine 10.4.2 and 10.4.4. 2

TDBC91 slides, page 10.20, 20081020

10.4.6 Conversion of P(LB,ε) to a problem with integer object val-

ues

• To use 10.4.5 as a tool to construct an ε-relative approximation

algorithm which runs in polynomial time, is is first necessary to

convert P(LB,ε) to an equivalent problem with integer object val-

ues.

• This is easy; just multiply each value v
(LB,ε)
i by n/(LB(P) · ε).

(a) More specifically, define

v
(LB,ε)
i

def
= v

(LB,ε)
i ·

(
n

LB(P) · ε

)

=

⌊
vi ·n

LB(P) · ε

⌋

• The last equality holds because v
(LB(P),ε)
i is the largest multiple of

(LB(P) · ε)/n which is no greater than vi.

(b) Define P(LB,ε) = (v
(LB,ε)
(−) ,w(−),M) to be the n-element knapsack

problem using the above definition for values.

10.4.7 Lemma Let P = (v(−),w(−),M) be any instance of the n-

element knapsack problem. Then, for any acceptable lower bound LB

for P and any ε > 0, P(LB,ε) and P(LB,ε) have the same feasible and

optimal solutions.

PROOF: This is immediate, since only the profits have been scaled,

and all by the same amount. 2

TDBC91 slides, page 10.21, 20081020

10.4.8 Lemma Let P = (v(−),w(−),M) be any n-element knapsack

problem with integer values. When the dynamic programming algo-

rithm of 4.3 is applied to the modified instance

P(LB,ε) = (v
(LB,ε)
(−) ,w(−),M), the following constraint holds on the size

of the intermediate sets of the form Si which are constructed.

n−1

∑
i=1

Card(Si)≤ n+

(
n · (n−1)

2

)

·
⌊n

ε

⌋

∈ O(n3/ε)

PROOF:

• Since vi ≤ LB(P) for 1≤ i≤ n,

v
(LB,ε)
i ≤

⌊
LB(P) ·n

LB(P) · ε

⌋

=
⌊n

ε

⌋

• Hence

Card(Si)≤ 1+
i

∑
j=1

v
(LB,ε)
i ≤ 1+ i ·

⌊n

ε

⌋

• The term “1” is added to account for the entry

(
0
0

)
.

• Thus

n−1

∑
i=0

Card(Si)≤
n−1

∑
i=0

(

1+ i ·
⌊n

ε

⌋)

= n+

(
n · (n−1)

2

)

·
⌊n

ε

⌋

∈O(n3/ε)

2

TDBC91 slides, page 10.22, 20081020

• The following is a restatement of 10.4.5, modified to take into

account the use of P(LB,ε) and the complexity result of 10.4.8.

10.4.9 Theorem – final description of rounding

• Let A be any algorithm which solves the discrete knapsack prob-

lem optimally.

• Let P = (v(−),w(−),M) be any instance of the n-element knapsack

problem.

• Let ε > 0, and let LB(P) be an acceptable lower bound for P.

• Let P(LB,ε) = (v
(LB,ε)
(−) ,w(−),M) be the associated problem, as de-

fined in 10.4.6.

• Then the algorithm which first converts P to P(LB,ε) and then ap-

plies A to this resulting instance is an ε-relative approximation

algorithm which runs in time O(n3/ε). 2

TDBC91 slides, page 10.23, 20081020

10.5 Interval Partitioning and Separation

10.5.1 The basic idea behind interval partitioning and separation

• These techniques differ from rounding in that the problem in-

stance is not modified.

• Rather, when two pairs

(
pi
wi

)
,
(
p j
w j

)
∈ Si are close together, only

one is retained.

• In this way, the size of each Si’s is limited.

• Interval partitioning differs from separation in the manner in which

the choices of which elements to discard is made.

TDBC91 slides, page 10.24, 20081020

10.5.2 The interval partitioning algorithm

Input:

• An n-element integer knapsack problem P = (v(−),w(−),M).

• ε≥ 0.

Process:

• Define

m
def
=

⌊
n−1

ε

⌋

• Compute S0 as in the algorithm of 4.3.

• Build each Si+1 from Si as follows:

1. First compute S′i+1 as the full Si+1 of the standard dynamic

programming algorithm.

2. Define

Pri+1
def
= max({p |

(
p

w

)
∈ S′i+1})

3. “Partition” S′i+1 into m+ 1 disjoint sets {C1,C2, . . . ,Cm+1},
with

Ck =

{(
p

w

)
∈ S′i+1

∣
∣
∣
∣

k−1

m
·Pri+1 ≤ p <

k

m
·Pri+1

}

• Note that this is not a true partition, since some blocks may

be empty.

4. Create Si+1 from S′i+1 by retaining from each block Ck only

the pair with the least weight.

• It is clear that this algorithm generates feasible solution, since

pairs are only discarded; no new ones are generated.

TDBC91 slides, page 10.25, 20081020

10.5.3 Theorem

• The algorithm of 10.5.2 is a fully polynomial approximation scheme

for integer knapsack problems which runs in time O(n2/ε) for

ε≤ 1.

PROOF:

• Let the context be as in 10.5.2.

• The relative error in profit introduced at stage i≥ 1 is at most

(
vi
m

)

Opt(P)
≤

(
vi
m

)

vi
=

1

m
=

1
⌊
n−1

ε

⌋ ≤
ε

n−1

• The error at stage 0 is 0.

• Hence, the total error is bounded by

(n−1) ·

(
ε

n−1

)

= ε

since the errors are additive in this algorithm.

• To establish the upper bound on the complexity, proceed as fol-

lows.

• At stage 0, there is one block.

• In every other stage, the maximum number of blocks is m+ 1 =

⌈(n−1)/ε⌉+1. Hence

n−1

∑
i=0

Card(Si)≤ 1+(n+1) ·

(⌊
n−1

ε

⌋

+1

)

∈ O(n2/ε)

2

TDBC91 slides, page 10.26, 20081020

10.5.4 The idea behind separation

• In interval partitioning, the process may be thought of as one of

first ordering the partial solutions at stage i by profit, and then

drawing fixed boundaries to lump them together.

• These choices of boundaries may not be very good.

• In separation, a more dynamic approach to locating boundaries

around clusters of values is employed.

TDBC91 slides, page 10.27, 20081020

10.5.5 The separation algorithm

Input:

• An n-element integer knapsack problem P = (v(−),w(−),M).

• ε≥ 0.

Process:

• Compute S0 as in the algorithm of 4.3.

• Build each Si+1 from Si as follows:

1. First compute S′i+1 as the full Si+1 of the standard dynamic

programming algorithm.

2. Define

Pri+1
def
= max({p |

(
p

w

)
∈ S′i+1})

3. Order the elements of S′i+1 by increasing profit.

4. Scanning S′i+1 from left to right, build Si+1 is follows.

(i) Retain the first element.

(ii) Retain a subsequent element only if its profit exceeds

that of the previously retained element by at least

Pri+1 · (ε/(n+1)).

• It is clear that this algorithm generates feasible solution, since

pairs are only discarded; no new ones are generated.

10.5.6 Theorem

• The algorithm of 10.5.5 is a fully polynomial approximation scheme

for integer knapsack problems which runs in time O(n2/ε) for

ε≤ 1.

PROOF: The proof is similar to that of 10.5.3. 2

TDBC91 slides, page 10.28, 20081020

10.6 Closing Comments

• The techniques presented here apply only to a small class of prob-

lems which are structurally similar to the knapsack problem.

• In general, approximation techniques are very problem specific.

TDBC91 slides, page 10.29, 20081020

