Solutions to this exercise are due, at $1600(4 \mathrm{pm})$, on October 17, 2008. The signed cover sheet must be submitted with your solution.

In the course, it has been shown that by using the FFT as a tool in support of the multiplication of two polynomials of degree n, a time complexity of $\Theta(n \cdot \log (n))$ may be realized, which is a significant improvement over the complexity $\Theta\left(n^{2}\right)$ associated with the "naïve" algorithm. However, there are other algorithms which improve upon the $\Theta\left(n^{2}\right)$ bound, and in this exercise one of them will be investigated.

1. Let $p:=a_{0}+a_{1} x$ and $q:=b_{0}+b_{1} x$ be two polynomials of degree one. Show that the product

$$
p \cdot q:=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+a_{1} b_{1} x^{2}
$$

may be realized with only three multiplications.
(Hint: As one of the multiplications, use $\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{1}\right)$).
2. Design a divide-and-conquer algorithm with time complexity $\Theta\left(n^{\log _{2}(3)}\right)$ for the multiplication of two polynomials of degree $n-1$, based upon the technique which you developed in the solution to Problem 1. Sketch your algorithm clearly in high-level form. Additionally, show in step-by-step fashion how it multiplies the polynomials

$$
\begin{aligned}
p & :=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
q & :=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}
\end{aligned}
$$

Your answer will be graded in large part based upon this step-through, so make sure that it is clear and complete.
Note: Your algorithm may assume that n is a power of 2 .
3. Prove that your algorithm of Part 2 has worst-case time complexity $\Theta\left(n^{\log _{2}(3)}\right)$, by writing down and then solving the associated recurrence relation.
4. Determine which complexity is lower, $\Theta(n \cdot \log (n))$ or $\Theta\left(n^{\log _{2}(3)}\right)$. Prove your answer, do not just state it.

5DV022 Problem Exercise 6, page 2

(Hint: For Problem 4, you may find l'Hôpital's rule handy: If $f(x)$ and $g(x)$ are differentiable functions for which

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

is indeterminate; i.e., either both of

$$
\lim _{x \rightarrow \infty} f(x)=0 \text { and } \lim _{x \rightarrow \infty} g(x)=0
$$

hold, or else both of

$$
\lim _{x \rightarrow \infty} f(x)=\infty \text { and } \lim _{x \rightarrow \infty} g(x)=\infty
$$

hold, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{d f(x) / d x}{d g(x) / d x}
$$

holds as well.

