
5DV022 Fall 2008Software Exercise 2

Solutions to this assignment are due on October 6, 2008 at 5pm (1700¿ This is a laboratory

exercise, and the amount of collaboration allowed is as defined in the documents Riktlinjer

vid labgenomförande (Rules for the Preparation of Laboratory Exercises) and Hederskodex (the
Honour Code), which may be found on the course home page.

Late submissions are subject to penalty as described in the course syllabus.

This exercise may be carried out in groups of at most three individuals.

The report must be written in English. Reports written in any other language will be returned,
ungraded, unless prior written arrangement has been made with the course instructor.

Place your report in the instructor’s mailbox or give them to the instructor during

class. Do not place it in the mailbox for laboratory reports.

1. General Description

The purpose of this assignment is to examine the efficiency of a super sorting algorithm which
combines quicksort and insertion sort. As has been shown, quicksort is, on the average, a very
fast sorting algorithm. However, it has the disadvantage that it is not very efficient on small
arrays. Therefore, one potential improvement is to switch to a different sorting algorithm when
the size of the array to be sorted becomes small. One particular algorithm which is quite good
on small arrays is straight insertion sort. While it has Θ(n2) worst-case time complexity (where
n is the size of the list to be sorted), the constant is small enough that it works very well for
small arrays.

2. Specific Required Tasks

The assignment includes writing and profiling a set of procedures. For consistency and sim-
plicity of presentation, the syntax of Pascal is used in this description, but you should develop
your solutions in C, since they must be run using the profiling software which you developed
for Software Assignment 1.

Write a procedure

Sisort(var a: artype;

low, high: dimtype);

with



5DV022 Fall 2008, Software Exercise 2, page 2

type dimtype = 1..100000;

artype = array[dimtype] of integer

which sorts the subarray of a between low and high inclusive, using a straight insertion sort.
Straight insertion sort is described as Algorithm 3.9 on on page 151 of the text.

Write a procedure

Qsort(var a: artype;

low, high: dimtype;

switchpt: dimtype)

which sorts the subarray of a between low and high inclusive, using quicksort for the case of
high − low > switchpt, but which switches over to Sisort when high − low ≤ switchpt.
For quicksort, use a randomly selected key from the subarray to be sorted for the partition
element. Make sure that you select an actual key from the array; do not simply generate a
possible key from a random number.

Profile runs of Qsort on random arrays of 100000 integers for varying values of switchpt to
determine the best value. Specifically, start with profiles for switchpt = 0, 8, 16, . . . , 104. For
each of these values of switchpt, run Qsort on three different random arrays, but use the same
three random arrays in each case. Using these preliminary data, try to zero in on an exact
value of switchpt which gives the best performance. To do this you will need to run profiles
for additional values of switchpt not contained in the preliminary range.

Also, for the optimal switchpoint, run a profile using the utility gprof. Use this profile as a
sort of check on your software. Large discrepancies should be investigated thoroughly.

Turn in:

Your submission should be in the form of a report on an experiment. It should contain the
following parts.

1. An introduction which clearly describes the overall goal and ideas of the experiment.

2. A detailed description of the experiment which was conducted. Include a discussion of
any problems you encountered, together with an explanation of how you dealt with them.
Also, clearly identify the environment in which the experiment was conducted; i.e., the
machine and programming environment on which it was run.

3. An analysis of the results of the experiment, together with the conclusions drawn from
the experiment. This should include, but not be limited to, a graph and a table of
total execution time as a function of the value of switchpt. (The gnuplot program is
recommended for use in plotting the data.) Any large discrepancy between the time
reported by gprof and by your utility should be analyzed and explained.



5DV022 Fall 2008, Software Exercise 2, page 3

4. An appendix containing the following:

(a) A source listing of your program.

(b) Sample sorts on small input sets to demonstrate that your sorting algorithms work.

(c) All profiles generated, with each clearly labelled with the case considered.

If you just turn in a program and some data printouts, you will not receive much credit, even
though your programs work perfectly. You must submit a clear description of what you did
and what conclusions you reached. Furthermore, it must be organized as outlined above. This
is an experimental investigation, not a programming exercise.

Notes:

1. Do not output the arrays in the profile. That will just waste time.

2. Thoroughly debug your program on small data sets before running the tests on the large
arrays.

3. For the task at hand, only the main program need be profiled. Profiling the procedures
individually will add overhead to the experiment. However, for the optimal value of
switchpt (and for a few other values) run a profile with all procedures individually
measured, to determine (a) the kind of overhead such measurement introduces, and (b)
the division of time between Qsort and Sisort.

4. If necessary to obtain good profiling data, the array size of 100000 may be changed. A
discussion of what had to be done along these lines should be part of the description of
the experiment.

5. To accumulate the test results in a form which is easily usable, you may wish to modify
your augmentation routines so that they write out separate files for each switchpoint size;
e.g., timing 0.dat, timing 4.dat, etc. Thus, in profile.h you may wish to replace
the simple start log command with one which takes a single argument, the name of
the log file. You may also wish to improve your analyze program so that it can produce
the desired summary data over the range of switchpoints. This is fine, as long as you
document clearly what you are doing. This is one of the advantages of writing your own
profiling software, as opposed to using packages developed by someone else.

6. The goal of this exercise is to gain insight into the techniques of profiling, and not to
come up with results which conform to some nice, predictable result. It may not be the
case that the data show a nice, smooth curve with a single, clean minimum. However,
there should be a general minimum; in other words, the performance should not be flat
or wildly varying over large changes in the value of switchpt.

7. If you have particular difficulty in obtaining clean results, try varying the level of opti-
mization of the compiler. Less optimization may give a cleaner result.

The report must be typeset; handwritten reports will not be accepted.


