
Object-Relational
Concepts

These slides take a closer look as some of the
features of SQL:1999 and SQL:2003.

· SQL:1999 (also called SQL3): A relatively new
standard which embodies some ideas of the
object-oriented philosophy.

· SQL:2003 (also called SQL:200n,SQL4): The
latest standard, which adds XML support and a
few other features to SQL:1999..

Both standards provide nearly full backward
compatibility with SQL2 (SQL-92), the “purely
relational” standard.

20091017: slides22: 1 of 17

Row types:

SQL:1999 supports the idea of a row type:

Here is how to recapture a structure such as the
following:

CREATE ROW TYPE EmployeeType
(
Name NameType,
SSN Char(9) NOT NULL,
BDate Date,
Address AddressType,
Sex Char,
Salary Decimal(10,2),
SuperSSN Char(9);
DNO Int NOT NULL
);

CREATE ROW TYPE NameType,
(
LName Varchar(15),
FName Char,
MInit Varchar(15)
);

20091017: slides22: 2 of 17

Name SSN BDate Address Sex Salary SuperSSN DNO

Fname Minit LName Street City State Zip

CREATE ROW TYPE AddressType,
(
Street Varchar(15),
City Varchar(15),
State Char(2),
Zip Char(5)
);

CREATE TABLE Employee
OF TYPE EmployeeType

(PRIMARY KEY SSN);

Example query (note use of ..):

SELECT Name..LName, SSN,
FROM Employee
WHERE Address..State = ‘NH’;

or

SELECT Employee.Name..LName,
 Employee.SSN,
FROM Employee
WHERE Employee.Address..State = ‘NH’;

20091017: slides22: 3 of 17

Collection Types:

· SQL:1999 supports only the ARRAY collection
type.

· SQL:2003 supports MULTISET as well, which is
not a mathematical multiset, but just an ordinary
set.

The SQL declarations below are used to
recapture a table with the following format:

Department
Dname Dnumber MGRSSN MGR-

Startdate
DLocations

Research 5 333445555 1998-05-22 {Bellaire,
Sugarland,
Houston}

Administration 4 987654321 1995-01-01 Stafford
Headquarters 1 888665555 1981-06-19 Houston

CREATE ROW TYPE DepartmentType,
(
DName Varchar(15),
DNumber Int,
MgrSSN Char(9),
MgrStartDate Date,
DLocations Varchar(15) Multiset
);

20091017: slides22: 4 of 17

CREATE TABLE Department
OF TYPE DepartmentType,

(PRIMARY KEY DNumber);

To find the locations of the Research department:

SELECT L.DLocation
FROM Department D, TABLE(D.DLocations) L
WHERE D.DName = ‘Research’;

To count the locations of each department:

SELECT DName, COUNT(DLocations)
FROM Department
GROUP BY DName;

Comments:

· There are operations for union, intersection, list
concatenation, and the like.

· Reference types are not allowed as values (see
below).

20091017: slides22: 5 of 17

Reference Types:

Object identity is recaptured via the notion of a
reference type.

Example: Instead of using foreign keys, it is
possible (and perhaps more natural) to use
reference types:

Here is an example, using some types defined
previously
(Address_Type, EmployeeType, DepartmentType):

CREATE ROW TYPE EmployeeType
(
Name NameType,
SSN Char(9) NOT NULL,
BDate Date
Address AddressType,
Sex Char,
Salary Decimal(10,2),
Supervisor Ref(EmployeeType),
DeptRef Ref(DepartmentType) NOT NULL
);

CREATE TABLE Employee
OF TYPE EmployeeType,

(PRIMARY KEY SSN);

20091017: slides22: 6 of 17

To access reference types, a C-style notation is
used.

The following delivers a list of employee last names,
the name of the department, and the last name of
the supervisor.

SELECT Name..LName,
 DeptRef->Dname,
 Supervisor->Name..LName
FROM Employee;

20091017: slides22: 7 of 17

With reference types, the need for explicit keys in
constructed types becomes less clear.

CREATE ROW TYPE ProjectType,
(
PName Varchar(15) NOT NULL,
PNumber Int NOT NULL,
PLocation Varchar(15),
DNum Int
);

CREATE TABLE Project
OF ProjectType,
(PRIMARY KEY Pnumber);

CREATE ROW TYPE WorksOnType,
(
EmployeeRef Ref(EmployeeType) NOT NULL,
ProjectRef Ref(ProjectType) NOT NULL,
Hours Decimal(3,1)
);

CREATE TABLE Works_On
OF WorksOnType,
(PRIMARY KEY EmployeeRef, ProjectRef);

20091017: slides22: 8 of 17

Even in SQL:2003, multisets of reference types are
not allowed.

Example: Suppose it is desired to collect the set of
dependents for each employee as an attribute of
the dependent relationship. Sadly, the following
does not work.

CREATE ROW TYPE DependentType
(
EmployeeRef Ref(EmployeeType) NOT NULL,
DependentName NameType; NOT NULL,
Sex Char,
BDate Date,
Relationship Varchar(8)
);

CREATE TABLE Dependent
OF DependentType,
(PRIMARY KEY EmployeeRef, DependentName);

CREATE ROW TYPE EmployeeType
(
Name NameType,
... <other declarations here, same as before>
DeptRef Ref(DepartmentType) NOT NULL,
Dependents Set(Ref(Dependent))
);

CREATE TABLE Employee

OF TYPE EmployeeType,
(PRIMARY KEY SSN);

20091017: slides22: 9 of 17

One could do the following:

CREATE ROW TYPE EmployeeType
(
Name NameType,
... <other declarations here, same as before>
DeptRef Ref(DepartmentType) NOT NULL,
Dependents DependentType Multiset
);

CREATE TABLE Employee

OF TYPE EmployeeType,
(PRIMARY KEY SSN);

However, now the Employee relation contains
actual sets of tuples, rather than references to
tuples which presumably live in the Dependent
relation. This leads to two options.

1. Do away with the Dependent relation entirely.
· This leads to navigation problems similar to

those encountered in the legacy hierarchical
model.

· To process all dependents, one must traverse
the employee relation and then examine the
Dependents attribute of each tuple.

2. Keep both the Dependent relation and the set of
dependents in the Employee relation.

· This leads to an update and consistency
nightmare, since there are now two copies of
each dependent tuple.

20091017: slides22: 10 of 17

Explicit identity:

In object-oriented programming languages, it is
usually the case that object identity is hidden. In
object-oriented database situations, this need not
be the case.

Here is an example in which an explicit primary key
and object identifier called ID is generated by the
system:

CREATE ROW TYPE EmployeeType
(
ID Ref(EmployeeType) NOT NULL,
Name NameType,
SSN Char(9); NOT NULL,
BDate Date;
Address AddressType,
Sex Char,
Salary Decimal(10,2),
Supervisor Ref(EmployeeType),
DeptRef Ref(DepartmentType) NOT NULL
);

CREATE TABLE Employee
OF TYPE EmployeeType

VALUES FOR ID ARE SYSTEM GENERATED;
(PRIMARY KEY ID);

20091017: slides22: 11 of 17

Subtypes and Inheritance:

Example: Define a special type of Employee called
Manager. A tuple of manager type has all of the
fields of a tuple of EmployeeType, plus the field
DeptSupervised.

CREATE ROW TYPE EmployeeType
(
ID Ref(EmployeeType) NOT NULL,
...
...
DeptRef Ref(DepartmentType) NOT NULL
);

CREATE ROW TYPE ManagerType
UNDER EmployeeType
(
DeptSupervised DepartmentType;
);

CREATE TABLE Employee
OF TYPE EmployeeType

VALUES FOR ID ARE SYSTEM GENERATED;
(PRIMARY KEY ID);

CREATE TABLE Manager
OF TYPE ManagerType

 UNDER Employee;

20091017: slides22: 12 of 17

Behavior of subtypes and inheritance:

Insertion:

· Insertion into the Manager table automatically
inserts into the Employee table.

· Insertion into the Employee table has no effect on
the Manager table.

Deletion:

· Deletion from the Manager table automatically
deletes the corresponding tuple from the
Employee table as well!!!

· Deletion from the Employee table also deletes
any corresponding tuples from the Manager table.

Update:

· Any update of an attribute other than
DeptSupervised affects both tables.

· An update to DeptSupervised affects only the
Manager table.

20091017: slides22: 13 of 17

Consequences:

· How does one promote Lou to be a manager?

· How does one remove Lou as a manager, while
leaving him as an employee?

Answers:

It is necessary to delete the “Lou” tuple from the
old relation(s), and then insert a new tuple.

The utility of this construct is thus not very
clear.

20091017: slides22: 14 of 17

User-Defined Types:

· Row types are not encapsulated. Any operators
may manipulate them.

· SQL:1999 also supports encapsulated types, with
associated functions (methods).

· Values for attributes may not be altered, or even
read, except by using the methods.

Example: A name type with a function which returns
the whole name as one string:

CREATE TYPE NameADT
(
LName Varchar(15),
FName Varchar(15),
MInit Char,
NameLFM FnLFM,
NameFML FnFML,
FUNCTION NameLFM(:n NameADT)
 RETURNS Varchar(35);
 :s VarChar(31);
 BEGIN
 :s := STRCAT(:n.FName, ‘ ‘);
 :s := STRCAT(:s, :n.MInit);
 :s := STRCAT(:s, ‘. ‘);
 :s := STRCAT(:s, :n.LName);
 RETURN(:s);
 END;
);

20091017: slides22: 15 of 17

The type also includes certain built-in functions:

· A constructor function which generates a new,
null object of this type.

· One observer function for each attribute, which
allows one to examine the value of that attribute.
These typically have the A.B format, for
compatibility with other SQL data types.

· One mutator function for each attribute, which
allows one to change the value of that attribute.

Privileges may be granted to these functions, so
that, for example, some users may be able to look
at the values of attributes without changing them.

The privilege scheme follows the grant/revoke
format.

· External functions (written in some other
programming language) are also possible.

20091017: slides22: 16 of 17

Other SQL:1999 features:

· Recursive queries (e.g., Ancestor);

· Triggers (one action forces the execution of
another)

· New data types:
· Boolean
· CLOB (Character large object)
· BLOB (Binary Large Object)

· User-defined subtypes
· Example: Weight as a subtype of Int
· Problem: A very ugly and strict typecasting

system.

Other SQL:2003 features:

· SQL/XML

· New data types:
· Bigint
· Multiset
· XML

·
· Table functions

· CREATE TABLE LIKE

· Merge

· Sequence generators

20091017: slides22: 17 of 17

	Object-Relational Concepts

