
Security and
Authorization

· Access to large databases is generally selective:
· Distinct users have distinct privileges.
· The process of defining and granting these

privileges is called authorization.
· Authorization is generally a positive action,

designed to grant specific users specific
privileges.

· Large databases must also be protected from
those trying to obtain information which they are
not intended to have.
· Intruders may attempt to gain access to the

system from the outside.
· “Insiders” may attempt to bypass the

authorization mechanism and look at
information which they are not supposed to
have.

· Authorized users (e.g., the general public) may
attempt to extract unintended information from
statistical databases via techniques such as
trackers.

· Measures taken to control such access fall
under the general heading of security, which is
generally a negative or preventive measure.

20091007: slides19: 1 of 22

Authorization

Generally speaking, there are two flavors of
authorization:

· Discretionary: Individuals are given certain
access privileges on data objects, as well as to
propagate (grant) such privileges.

· Mandatory: Each data object has a certain fixed

classification, as does each user. Only users with
an appropriate classification may access a given
data object.

20091007: slides19: 2 of 22

Discretionary Access Control

An authority is a specification that a certain user
has, or group of users have, the right to perform a
given action on the database.

· The action of assigning authority is called
granting.

· The action of relinquishing authority is called
revocation.

The basic rules are the following:

· A user U has privilege P if and only if some other
user V with the authority to grant that privilege
has in fact granted it to U.

· Only a user U with privilege P and the authority to
grant P to others may in fact grant that privilege
to a second user V.

· A user U may revoke a privilege P from user V if
and only if U had earlier granted that privilege to
V.

· The database administrator (DBA) grants
initial privileges; to avoid a chicken-and-egg
problem.

20091007: slides19: 3 of 22

· Authorization and SQL

The general syntax for assignment of a privilege is
as follows:

GRANT <list of privileges>
 ON <list of database objects>
 TO <list of users>
 [WITH GRANT OPTION] ;

The legal privileges are:
· SELECT, INSERT, UPDATE, DELETE;
· USAGE, REFERENCES (not discussed here).

Examples:

The following gives users Smith and Jones have the
right to issue read-only (i.e., Select) queries on the
tables Employee and Department.

GRANT SELECT
ON Employee, Department
TO Smith, Jones

The following gives user Smith not only the select
privilege on this table, but also the right to pass this
privilege along to other users.

GRANT SELECT
ON Employee, Department
TO Smith
WITH GRANT OPTION

20091007: slides19: 4 of 22

The next statement gives Smith both select and
update privileges on the Employee table.

· Note that UPDATE has a specific semantics here;
namely “change entries.” It does not imply the
right to insert new tuples or to delete existing
ones.

GRANT SELECT, UPDATE
ON Employee
TO Smith;

The following statement grants all three forms of
modification:

GRANT SELECT, UPDATE, INSERT, DELETE
ON Employee
TO Smith;

In principle, it is possible to grant modification
privileges without view privileges, but this would be
rare.

GRANT INSERT
ON Employee
TO Smith;

20091007: slides19: 5 of 22

To grant privileges on only part of a relation or
relations, one must first create a view:

CREATE VIEW POOR_NAMES_ONLY AS
SELECT Lname, Minit, Fname
FROM Employee
WHERE (Salary < 20000);

GRANT SELECT
ON POOR_NAMES_ONLY
TO Smith;

It is even possible to grant privileges which are valid
only at certain times.

CREATE VIEW POOR_NAMES_9_TO_5 AS
SELECT Lname, Minit, Fname
FROM Employee
WHERE (Salary < 20000)
 AND CURRENT_TIME >= ’09:00:00’
 AND CURRENT_TIME <= ’17:00:00’;

GRANT SELECT
ON POOR_NAMES_9_TO_5
TO Smith;

20091007: slides19: 6 of 22

The complement of GRANT is REVOKE. The
general syntax is as follows:

REVOKE [GRANT OPTION FOR]
<list of privileges>
ON <list of database objects>
FROM <list of users>
RESTRICT | CASCADE;

Examples:

The following revokes the privilege of Smith to
execute select operations on the relation employee,
and also also revokes (in cascading fashion) any
such privileges which Smith (alone) granted:

REVOKE SELECT
ON Employee
FROM Smith
CASCADE;

The following is similar, except that it fails to do
anything if it would be required that the privilege be
revoked from some other user in cascading fashion.

REVOKE SELECT
ON Employee
FROM Smith
RESTRICT;

20091007: slides19: 7 of 22

It is possible for more than one user to grant the
same privilege to another.

Example: Suppose that both Washington and
Lincoln issue the following identical grant
commands, which they have the authority to
execute:

GRANT SELECT
ON Employee
TO Smith;

Now suppose that Washington issues the following
command:

REVOKE SELECT
ON Employee
FROM Smith
RESTRICT;

In this case, although the command “succeeds,”
Smith retains the priviliges because it was also
granted by Lincoln. On the other hand, if Lincoln
subsequently issues the same command, Smith will
lose the privilege.

20091007: slides19: 8 of 22

However, suppose that the situation is as follows:

First, Washington grants the right to Lincoln:

GRANT SELECT
ON Employee
TO Lincoln
WITH GRANT OPTION;

Now Lincoln passes this right on to Smith:

GRANT SELECT
ON Employee
TO Smith;

If Washington now issues the following command,
Smith as well as Lincoln will lose the associated
privileges.

REVOKE SELECT
ON Employee
FROM Lincoln
CASCADE;

However, if CASCADE is replaced by RESTRICT,
the directive will fail and both Smith and Lincoln will
retain the privilege. (It is not clear how one is
informed of this failure, since SQL does not have a
standard status-return mechanism.)

20091007: slides19: 9 of 22

Authorization in PostgreSQL:

● Privileges may be granted to any other user, but
these privileges are useful only if that user is
allowed to connect to the database on which the
privileges were granted.

● If a user is allowed to connect to a database, then
that user always has the privilege of creating new
relations and using them.

● A user is always the owner of a relation created
from that user account, regardless of the
ownership of the actual database.

● Thus, if access is to be granted at all to a
database, then the privilege of creating and
owning new relations by those with access is
irrevocable, even by the system administrator.

● If you allow a user to connect to your database,
then that user will be able to create and control
relations within your database. You may not even
be able to read them. The creator must grant
privileges to you!

● This is not good.

But...
● This applies only to access directly via

PostgreSQL.
● More limited access may be achieved via

applications written using ODBC or PHP.

20091007: slides19: 10 of 22

Mandatory Access Control

Mandatory access control is applied in situations in
which users may be assigned security classes.
Assumptions and notation:

· The security classes form a total order; e.g.,
top secret > secret > confidential > unclassified.

· Each user is assigned a security class. Write
Clearance(U) to denote the security class of user
U (called the clearance of U).

· Each database object is also assigned a value
from this set of security classes. Classification(P)
denotes the security class associated with
database object P.

The following rules are then enforced:

1. User U has read access to object P iff
Clearance(U)  Classification(P).

(This is called the simple security property.)

2. User U has update privileges on object P iff
Clearance(U) = Classification(P).

(This is called the star property.)

The first property is intuitive. The second seems
strange and requires elaboration.

20091007: slides19: 11 of 22

Analysis of the Star Property:

The intent of the star property is to prevent
information from being passed down from a higher
classification to a lower one.

Question: The textbook stipulates
Clearance(U)  Classification(P)

Is this not more flexible?

Answer: Yes, in a way, but then user U could write
information which U would not subsequently be
allowed to read!

Question: Is this requirement realistic in practice?

Answer: Probably not without some modification.

● It should be possible to trust people with higher
classifications not to carelessly write this
information into documents with lower
classification.

20091007: slides19: 12 of 22

Authority of the Database Administrator

· The database administrator (DBA) is the
database equivalent of a system administrator.

Typically, the DBA has sole authority in the
following areas of authorization:

· Create new accounts, and delete existing ones.

· Define security levels of accounts.

· Assign initial authorities.

Some of these responsibilities may be delegated in
the management of a very large system, but only in
very controlled ways.

20091007: slides19: 13 of 22

Security

Key security issues:

· Prevent attacks from outside intruders. The
issues here are similar to those for operating
systems.

· Prevent unauthorized access from insiders. A
key technique here is the maintenance of detailed
transaction logs.

· Use care not to grant privileges unintentionally.
This problem is particularly relevant in the context
of statistical databases.

20091007: slides19: 14 of 22

Security for Statistical Databases

It is common to grant “summary” access to large
databases, without permitting detailed access.

Example query for company database:
Provide the average salary of all employees in
the research department.

· The idea here is to provide information about the
general state of things, without revealing detailed,
confidential information about individuals.

Some databases, particularly those maintained by
government agencies, are explicitly stated to be
maintained for purposes of summary information
only, with details about individuals held “strictly
confidential.”

Question: Can we maintain such privacy, and if so,
how?

A basic problem is that of using so-called individual
trackers, which are queries designed to identify a
unique individual.

The following is a simple example, from
From D. E. Denning and P. J. Denning, Data
Security, ACM Computing Surveys, Vol. 11, No. 3,
1979, pp. 227-249.

Suppose that we have a medical database which
contains allows only statistical queries.

20091007: slides19: 15 of 22

Query: How many patients have these
characteristics?

Male
Age 45-50
Married
Two children
Harvard law degree
Bank vice president

Answer: 1

Suppose the questioner knows that Jones has
these characteristics. Now the following query is
posed.

Query: How many patients have these
characteristics?

Male
Age 45-50
Married
Two children
Harvard law degree
Bank vice president
Took drugs for depression

The answer will be either 1 or 0, and will then tell us
whether or not Jones took drugs for depression.

So, if the querier knows enough about Jones to
construct the first query, further information may be
obtained easily.
A candidate solution to this problem is a so-called
minimum query set control. The idea is as follows:

20091007: slides19: 16 of 22

Assume that the database contains n records.
Let k be a relatively large positive integer which is
less than n.

· Strategy: Prohibit queries for which there are
fewer than k or more than n-k records in the
query set.

Problem: Even with such controls, security may be
comprised.

Example: This example uses the Company
database of the text, and the specific instance
shown in Figure 5.6 (7.6 in the 3rd edition).

Query: Find the salary of Joyce English.

The query

SELECT Salary
FROM Employee
WHERE (Lname = “English”)
 AND (Fname = “Joyce”);

is not allowed, since only statistical queries are
permitted.

20091007: slides19: 17 of 22

Suppose it is known that Joyce is the only female
who works on the ProductY project. The “statistical”
query P shown below delivers the correct answer.

P: SELECT AVG(Salary)
FROM Employee, Works_On, Project
WHERE (SSN = ESSN) AND
 (PNO = PNumber) AND
 (PName = 'ProductY') AND
 (Sex = “F”);

However, it is not allowed, since it returns only one
record.

· Note that n=8; there are 8 employees in the
database.

· Suppose that k is set to 2 for this example. (It
would be much larger in a real example.) Thus,
any query must return aggregate data for at least
two records, and no more than 6 records.

Start by building the following so-called general
tracker, which we will call T0.

T0: SELECT Count(*), AVG(Salary)
FROM Employee, Department
WHERE (DNO = Dnumber) AND
 (Dname = “Administration”);

It returns a count of 3. Since 3 >2, this query
retrieves enough tuples to satisfy the above
condition.

20091007: slides19: 18 of 22

The complementary query T1 returns a count of 5.

T1: SELECT Count(*), AVG(Salary)
FROM Employee, Department
WHERE (DNO = Dnumber) AND
 (NOT (Dname = “Administration”));

Thus, we know that the database consists of eight
Employee tuples.

To proceed, we first need to know which of the two
sets Joyce English is in. The query Q0, defined as

Q0: SELECT Count(*), AVG(Salary)
FROM Employee, Department
WHERE (DNO = Dnumber) AND
 ((Dname = “Administration”) OR

 (SSN IN
 (SELECT E.SSN
 FROM Employee E, Works_On, Project
 WHERE (E.SSN = ESSN) AND
 (PNO = PNumber) AND
 (PName = 'ProductY') AND
 (Sex = “F”)));

yields a count of four tuples, one more tuple than
T0. Thus, we know that Joyce English is a member
of the result of T1, and not of T0.

At this point, it is easy to compute the salary of
Joyce English from the results of Q0 and T0. Just
take the differences of the total salaries in each
case.

20091007: slides19: 19 of 22

If Q0 had returned a count of only three tuples, then
it would be necessary to obtain the result of the
following query Q1, and then use that result and the
result of T1 to obtain the salary of Joyce English.

Q1: SELECT Count(*), AVG(Salary)
FROM Employee, Department
WHERE (DNO = Dnumber) AND

((NOT (Dname = "Administration"))
OR

 (SSN IN
 (SELECT E.SSN
 FROM Employee E, Works_On, Project
 WHERE (E.SSN = ESSN) AND
 (PNO = PNumber) AND
 (PName = 'ProductY') AND
 (Sex = “F”)));

In either case, it is easy to find the exact salary of
Joyce English from statistical queries over large
sets alone.

20091007: slides19: 20 of 22

Here is the general idea.

· Let T be the tracker formula, which divides the
database into two large sets. Let Tc denote the
complementary set. (These are T0 and T1 in the
example.)

· Let P be the query which identifies the individual
U uniquely.

First determine which of {T,Tc} includes the
individual, by issuing queries which measure the
result size. Let T^  {T,Tc} denote the query which
does not include the individual to be traced. Then

(T^  P) delivers information on U aggregated with
T.

(T^  P) delivers information on T without U.

From these two, information on U alone may easily
be extracted.

20091007: slides19: 21 of 22

How to deter tracking queries:

· Database partitioning: Partition the database
into groups. Only queries whose record sets
consists of the union of entire groups are allowed.
Queries on subsets of groups are not allowed.

· Noise: Introduce “noise” into the result of a
query, so that numerical answers are not exact.
This must be done carefully, so that the noise
cannot be filtered out by massaging a large
number of queries.

· Random samples: Instead of presenting a
database with all individuals, include only a
random sample. This technique is useful for very
large statistical-only databases, such as census
databases.

20091007: slides19: 22 of 22

	Security and Authorization
	Authorization
	Discretionary Access Control
	Mandatory Access Control
	Authority of the Database Administrator
	Security
	Security for Statistical Databases

