
Using ODBC
· The main ideas are presented via a sequence of

four annotated C programs.

· These slides provide only supporting information.

Context:

· These notes deal with ODBC progtrams written
using the gcc compiler under Linux/Unix.

· Although the examples are intended to be
generic, they have been tested only with the
PostgreSQL database system, using Debian
Linux as the client-side operating system.

● For information regarding ODBC with Microsoft
Visual C++ and Windows operating systems,
consult the slides from 2001.

● Currently, ODBC support is not available for Kexi,
an open-source DBMS with features similar to
those of Microsoft Access.

20090921:slides11:page 1 of 16

References:

· On-line documentation for ODBC is available at
the Microsoft web site. Follow the link on the
course home page.

The following hardcopy references are provided
only as information for those with insatiable
appetites for knowledge.

These notes, together with the accompanying
sample programs and lectures, should provide
enough information to write reasonable ODBC-
based applications.

· One may also purchase hardcopy of the Microsoft
documentation and software from booksellers.
(Microsoft ODBC 3.0 Software Development Kit
and Programmer's Reference, Second Edition --
Two books plus a CD, 1997)

· A decent book for the eager is ODBC 3.5
Developers Guide, by Roger E. Sanders,
McGraw-Hill, 1999.

· A great reference????? If one were available at a
reasonable price, it would become part of the
course literature.

.

20090921:slides11:page 2 of 16

Compiling a C Program with ODBC
Calls under the Linux Installation:

· To compile a C program with ODBC calls, one of
the ODBC client-side libraries must be included.

· One of the following should work:

cc -lodbc program.c
cc -liodbc program.c

· Although they are functionally equivalent, the
libraries odbc and iodbc cannot co-exist on the
same system.

· Try one, if a list of error messages appear, try the
other.

● Currently, use -liodbc.

● The actual structure of C programs which contain
ODBC calls will is illustrated via accompanying
example programs, with some basic principles
discussed later in these slides.

20090921:slides11:page 3 of 16

Data-Source Configuration under the
Linux Installation:

· Every data source which is to be reached via
ODBC calls must be declared in the .odbc.ini
file in the home directory of the user.

· A minimal example file is shown below for
connection to PostgreSQL databases on the
postgres server when using Linux.

[ODBC Data Sources]
mydb1 = database1
mydb2 = database2

[database1]
Description = PostgreSQL test database 1
Driver = /usr/lib/odbc/psqlodbca.so
Database = hegner1
Servername = postgres

[database2]
Description = PostgreSQL test database 2
Driver = /usr/lib/odbc/psqlodbca.so
Database = hegner2
Servername = postgres

● The Database field gives the name of the
database which was issued by the system
administrator.

● The header name (e.g. [database1]) is the
ODBC name for the database, and may be
chosen arbitrarily.

20090921:slides11:page 4 of 16

Variations:

· Shown below is a more complete .odbc.ini
entry, which expands some default entries.

[ODBC Data Sources]
mydb3 = database3

[database3]
Description = PostgreSQL test database 1
Driver = /usr/lib/odbc/psqlodbca.so

Database = hegner1
Servername = postgres
Port = 5432
ReadOnly = 0
Username = hegner1
Password = “badidea”
Trace = No
TraceFile = /tmp/odbc.log

· Attributes such as Port and ReadOnly need
only be specified if they differ from the default
values.

· Trace and TraceFile need only be specified if
tracing is desired.

· To use options such as UserName and
Password, it is necessary to use the
SQLDriverConnect call, which is not discussed
in these notes. See the example program
iodbc.c which comes with the iodbc library for
details.

● Needless to say, it is not a good idea to put the
password in this file.

20090921:slides11:page 5 of 16

Variations for the Solaris Installation:

● Under the Solaris installation, use the unixodbc
library, and specify gcc and the load path
explicitly:

gcc -L/usr/local/lib -lodbc program.c

● Under the Solaris installation, the location of the
PostgreSQL ODBC driver is specified in the
.odbc.ini file as follows:

[ODBC Data Sources]
mydb1 = database1
mydb2 = database2

[database1]
Description = PostgreSQL test database 1
Driver = /usr/local/lib/psqlodbc.so
Database = hegner1
Servername = postgres

[database2]
Description = PostgreSQL test database 2
Driver = /usr/local/lib/psqlodbc.so
Database = hegner2
Servername = postgres

20090921:slides11:page 6 of 16

● To use a single .odbc.ini file for under both
Linux and Solaris, a simple solution is to use
different ODBC names:

[ODBC Data Sources]
mydb1Solaris = database1S
mydb2Solaris = database2S
mydb1Linux = database1L
mydb2Linux = database2L

[database1S]
Description = PostgreSQL test database 1
Driver = /usr/local/lib/psqlodbc.so
Database = hegner1
Servername = postgres

[database2S]
Description = PostgreSQL test database 2
Driver = /usr/local/lib/psqlodbc.so
Database = hegner2
Servername = postgres

[database1L]
Description = PostgreSQL test database 1
Driver = /usr/lib/odbc/psqlodbca.so
Database = hegner1
Servername = postgres

[database2L]
Description = PostgreSQL test database 2
Driver = /usr/lib/odbc/psqlodbca.so
Database = hegner2
Servername = postgres

● This requires changing the name of the database
to be connected to when changing systems.

● A more elegant solution would be to create your
own soft link to the driver, which is set in a
system-dependent fashion in a login script.

20090921:slides11:page 7 of 16

Some Basics of ODBC calls in C:

Identifiers:

· Most ODBC identifiers begin with SQL (note the
capitalization). Thus, it is a very good idea to
avoid using this sequence as the beginning of
user-defined identifiers.

API calls:

· ODBC contains a large number of functions
(around 80). They have names like
SQLAllocHandle, and SQLCloseCursor.
Only a few will be used in this course.

· All (most?) return a value of type SQLRETURN.
This value is zero if the execution was normal,
and nonzero if it was special.

Includes:
· To run ODBC API calls, the following two

includes must be issued:
#include <sql.h>
#include <sqlext.h>

20090921:slides11:page 8 of 16

Variable types:

There are three classes of variables associated with
ODBC.

1. Types to be used as declarations to C. These
begin with SQL, and continue with a sequence of
capital letters, without underscores. They are
#defined within the header files to be certain C
types. Here are some of the principal ones:

ODBC Type C Type
SQLCHAR char
SQLSCHAR signed char
SQLINTEGER long int
SQLUINTEGER unsigned long int
SQLSMALLINT short int
SQLUSMALLINT unsigned short int
SQLREAL float
SQLDOUBLE,SQLFLOAT double
SQLDATE a large struct..

There are also a number of special ones for date,
time etc., which correspond to structs in C.

The definitions are found in the library file
sqltypes.h. Consult this file or the ODBC
documentation for complete information.

For types involved in API calls, these types, rather
than the C types, should be used.

20090921:slides11:page 9 of 16

2. C data type encodings. These are not true data
types, but rather numerical encodings of the
types listed in the previous group. These
numerical encodings are used as arguments to
API function calls. The following table lists some
of the principal types.

Integer Encoding ODBC Type
SQL_C_CHAR SQLCHAR
SQL_S_STINYINT SQLSCHAR
SQL_C_SLONG SQLINTEGER
SQL_C_ULONG SQLUINTEGER
SQL_C_SSHORT SQLSMALLINT
SQL_C_USHORT SQLUSMALLINT
SQL_C_FLOAT SQLREAL
SQL_C_DOUBLE SQLDOUBLE,SQLFLOAT
SQL_C_TYPE_DATE SQLDATE

The definitions for these types are found in the file
sqlext.h. Consult that file or the ODBC
documentation for further information.

It is important to remember that these are not C-
language data types. They cannot be used in type
declarations!!!

20090921:slides11:page 10 of 16

3. SQL data types encodings. These provide an
association between the types allowed in SQL
declarations, and those of the programming
language. They are used in arguments to API
calls, but never in variable declarations in the
program itself.

These are not true data types, but rather numerical
encodings which correspond to the numerical
encodings of the types in the previous list. They
cannot be used in type declarations!!!

The following table gives some principal examples.

Integer Encoding SQL Type
SQL_CHAR Char(n)
SQL_VARCHAR Varchar(n)
SQL_SMALLINT Smallint
SQL_INTEGER Integer
SQL_REAL Real
SQL_DECIMAL Decimal(p,s)
SQL_TYPE_DATE Date

The exact mapping between these types and those
of the previous table is implementation dependent.

The definitions for these types are found in the file
sqlext.h. Consult that file or the ODBC
documentation for further information.

20090921:slides11:page 11 of 16

Handles:

· Handles are numerical values which are
associated with certain items.

· Example: File handles are familiar in operating
system programming.

In ODBC, there are four types of handles:

· Environment handles: In order to access a
database via ODBC, an ODBC environment must
be established. There is normally only one such
environment per program.

· Connection handles: Just as one must have a
file handle for every open file in an operating
system, so too must one have a connection
handle for every ODBC database which is
opened.

· Statement handles: A statement handle is
associated with an SQL statement which is to be
issued to an ODBC database for execution.

· Descriptor handles: Descriptors are metadata
which describe formats associated with SQL
statements. They will not be studied in this
course.

20090921:slides11:page 12 of 16

In ODBC 3.0 and higher:

· Handles are declared using the type SQLHANDLE.

· Handles are allocated using the function
SQLAllocHandle.

· Handles are freed using the function
SQLFreeHandle.

The slides show examples of these activities.

Remark: There are older, ODBC 2 data types and
calls which deal with each of the first three types of
handles (all except descriptor handles) separately.

· The types are HENV, HDBC, and, HSTMT.

· The allocation functions are SQLAllocEnv,
SQLAllocDbc, and SQLAllocStmt.

· The freeing functions are SQLFreeEnv,
SQLFreeDbc, and SQLFreeStmt.

Although most ODBC implementations are
backwards compatible with these calls, their use is
to be discouraged in new software. (Translation:
Do not use them in your project!)

20090921:slides11:page 13 of 16

Other important general operations:

· Inform the system of the ODBC version in use:
SQLSetEnvAttr.

· Connect to a database identified by an allocated
connection handle: SQLConnect.

· Disconnect from the database allocated to a
connection handle: SQLDisconnect.
· The handle remains available for connection to

another database.

20090921:slides11:page 14 of 16

Special query operations:

· Prepare ("compile") an SQL statement for
execution: SQLPrepare.

· Execute a compiled SQL statement:
SQLExecute.

Note: The function SQLExecDirect combines the
above two functions, and is appropriate in situations
in which the SQL statement is executed only once.

· Bind an input parameter index in an SQL
statement with a variable in the program:
SQLBindParameter.

· Bind a column of a query result (output
parameter) to a variable in the program.
SQLBindCol.

· Fetch the next tuple from the result of a query:
SQLFetchTuple.

· Close the cursor on a given query, so that the
statement handle may be used to collect the
results of a new query: SQLCloseCursor.

20090921:slides11:page 15 of 16

Other classes of API calls:

· Catalog queries: Find out which relations are in a
given database, what the types of the columns
are, what the constraints are, etc.

· Optimization directives: Handle large queries with
efficient batch operations.

· Error management: If something goes wrong, find
out what the problem is.

All in all, there are over 80 API calls in ODBC.

20090921:slides11:page 16 of 16

