
Updates to Relational
Schemata

Query classification:
· Schema definition queries:

· Define and/or change relations and
constraints

· Data definition queries:
· Passive (ask a question)
· Active (update the database)

 We now look at active data-definition
queries.

20081118:slides8:1 of 15

Flavors of Update Directives
within SQL

Within SQL, there are two fundamental flavors of
update operations:

· Cursor Operations involve the use of a special
variable, called a cursor, which is used to
traverse a set of tuples, one at a time.
· This approach is used primarily in embedded

and module-based approaches, in which the
SQL lives within a host programming language.

· The cursor is typically a variable in a host
programming language.

· These notes will not look further at cursor
operations.

· Noncursor Operations do not involve the use of
cursors.
· Applicable to direct SQL.
· Examined in these notes.
· Four principal forms:

· Select ... into ...
· Insert into ...
· Delete from ...
· Update ... set ...

20081118:slides8:2 of 15

Here are some variations of the Insert command,
using the Company schema of the textbook:

Insert into Employee values
('Kari',' ','Nordmann','000000001',
 Date '1960-12-25',
�Thunes vei 10A, 0274 Oslo','F', 100000,null,5);

Insert into Employee values
('Ola',' ','Nordmann','000000002',
 Date '1955-12-25',
'Thunes vei 10A, 0274 Oslo','M',
50000.50,null,5);

In the following example, unspecified fields are
left null.

Insert into Employee
(LName,FName,SSN,DNo,Salary)
values
('Garnett','Kevin','111111111',5,21000000);

20081118:slides8:3 of 15

Here is a more complex insertion example, in
which a table of supervisors is created.

Create Table Bosses
 (FName Varchar(15) not null,
 MInit Char(1),
 LName Varchar(15) not null,
 SSN Char(9) not null,
 DNameVarchar(15) not null,
 Constraint pkey_boss primary key (SSN));

Insert Into Bosses
Select E.FName, E.Minit, E.LName, E.SSN,
 D.DName
From Employee E, Department D
Where (E.SSN = D.MgrSSN) AND
 (E.DNo = D.DNumber);

20081118:slides8:4 of 15

· The Select ... Into ... directive in PostgreSQL and
Microsoft Access has the effect of creating a table
and then inserting values.

· The following example creates at table named
Bosses1 which contains the same tuples as the
Bosses table of the previous example.

Select E.FName, E.MInit, E.LName, E.SSN,
 D.DName
Into Bosses1
From Employee E, Department D
Where (E.SSN = D.MgrSSN) AND
 (E.DNo = D.DNumber);

· Warning: It is not clear that this is standard SQL.

· Some SQL references describe quite different
semantics for this directive.

· Use it with caution in code which may need to be
ported to another system.

20081118:slides8:5 of 15

· The Update ... Set ... directive is fairly
straightforward.

· Here is an example which makes everyone on
the Computerization project work harder.

Update Works_On
Set Hours = Hours + 10
Where PNo in
 (Select PNo
 From Project, Works_On
 Where PNo = PNumber
 and PName = 'Computerization'
);

· The Delete From directive is very straightforward.

· Here is an example which removes all working
instances of greater than 40 hours.

Delete From Works_On
Where Hours >= 40;

20081118:slides8:6 of 15

· Some Difficulties Surrounding Updates

· The aspect of managing updates which makes
things nontrivial is checking integrity constraints.

· Two basic forms of update philosophies:

· Tuple-at-a-time: Perform the updates one tuple
at a time, checking for satisfaction of the
integrity constraints after each tuple operation.
These are called immediate constraints in SQL.

· Transaction at a time: Perform all requested
updates as a block, and verify that the integrity
of the database is satisfied only upon
conclusion of the block operation. These are
called deferred constraints in SQL. (Not
supported in Access.)

Comparison:

Tuple-at-a-time: Transaction-at-a-time:
- Hinders realistic updates + Allows most realistic updates
+ Simpler to implement - More complex to implement
 Used in low-end systems Used in high-end systems

� Transaction-at-a-time processing is not
available in Microsoft Access.

20081118:slides8:7 of 15

· In Access, when a directive mandates insertion,
deletion, or update of a set of tuples, the following
rules (seem to) hold.

· The tuples are inserted, deleted, or updated in
the order in which the appear in the source
relation, or are generated in the source
command.

· Satisfaction of integrity constraints depends
upon the order in which the tuples are fetched
from the source relation. Integrity constraints
must hold at each intermediate step.

· In a system with tuple-at-a-time update, database
initialization may involve a �chicken-and-egg�
problem.

· In the Company database example from the
textbook:

· Every department must have a manager.

· Every employee must work in some
department.

· How is the database initialized?

· The (not particularly elegant) solution is to build
the database first, without constraints, and then
install the constraints.

20081118:slides8:8 of 15

· Some other tricky problems on the Company
database which may occur in the absence of
transactions:

· The following update could pose a problem if
the manager of an employee to be deleted is
deleted first.

Delete Employee.*
From Employee
Where Salary < 30000

· Whether or not this will work depends upon
this order in which tuples are processed.

· A better solution is to delete all non-
managers first.

· This example ignores the further constraints
that every department must have a manager.

· Here are some others to think about.

· Swap managers for two departments.

· Hire a new employee who is to be the manager
of a new department.

· Since different systems may process tuples in
different orders, only those solutions which are
independent of the order of processed tuples
should be used in portable code.

20081118:slides8:9 of 15

Transactions in SQL and PostgreSQL

� These problems may be solved via the notion of
a transaction, an SQL construct which Access
does not support.

� An SQL transaction is a block of statements
surrounded by Begin ... Commit markers.

� In a transaction, certain integrity checking is
deferred until the Commit directive is
encountered.

· Observe that, in the previous examples, the
problems which arise are due to foreign-key
constraints.

� In PostgreSQL, the deferred checking applies
only to foreign-key constraints; other constraints
are checked immediately.

· This may or may not be true in other systems;
the detailed semantics of transactions are not
standardized.

� In the absence of transaction directives, each
SQL statement is taken to be a distinct
transaction.

� Transactions will be discussed in more detail
later in the course.

20081118:slides8:10 of 15

Some general issues
 regarding the computational complexity

 of supporting updates

· Consider the difference:
· Checking an entire database for integrity
· Checking a database for integrity after an

update operation, assuming that it was correct
before the operation

Time complexity for verifying constraints on a
database:

· Candidate/primary key constraint, with n the
number of tuples in the relation.
· Sequential access: O(n2)

· Log access: O(n ·log(n))
· Constant-time access: O(n)

· Foreign key constraint, with n1 tuples in the
relation with the foreign key and and n2 tuples in
the relation with the corresponding primary key.

· Sequential access: O(n1·n2)

· Log access: O(n1 ·log(n2))
· Constant-time access: O(n1)

20081118:slides8:11 of 15

Time complexity for verifying constraints after an
update to a legal database:

· Candidate/primary key constraint, with n the
number of tuples in the relation.

Access Deletion Insertion Update

Sequential O(0) O(n) O(n) / O(0)

Log O(0) O(log(n)) O(log(n)) /
O(0)

Constant O(0) O(1) O(1) / O(0)

· Update complexity is the same as insertion if
the primary key or a candidate key is altered.
No checking is necessary if no primary or
candidate key is altered.

20081118:slides8:12 of 15

· Foreign key constraint, with n1 tuples in the
relation R1 with the foreign key and n2 tuples in
the relation R2 with the corresponding primary
key.

Sequential Access:

Deletion Insertion Update

R1 O(0) O(n2) O(n2) / O(0)

R2 O(n1) O(0) O(n1) / O(0)

Log Access:

Deletion Insertion Update

R1 O(0) O(log(n2)) O(log(n2)) / O(0)

R2 O(log(n1)) O(0) O(log(n1)) / O(0)

Constant Access:

Deletion Insertion Update

R1 O(0) O(1) O(1) / O(0)

R2 O(1) O(0) O(1) / O(0)

More information on this topic: Ke Wang and Marc
H. Graham, Constant-Time Maintainability: A
Generalization of Independence, ACM Transactions
on Database Systems 17(2), June 1992, pp.
201-246.

20081118:slides8:13 of 15

Classification of constraints:

· For a positive integer n, call a constraint n-easy if
it is possible to check the constraint by looking at
at most n tuples as a time.

· Examples: Both primary/candidate key
constraints and foreign key constraints are 2-
easy.

· Example of a constraint which is m-easy, but not
k-easy for any k < m:
· Every department must have at least m

employees.

Remark: With an update, usually one tuple is fixed,
so, an n-easy constraint only needs to look at n-1
other tuples. This is why 2-easy is so nice.

Remark:
· Key constraints are called equality-generating,

because the condition to be checked is the
equality of fields.

· Join constraints are called tuple-generating,
because the condition to be checked is the
existence of further tuples.

20081118:slides8:14 of 15

· Further classification of (equality-generating)
constraints:

· A primary/candidate key constraint is a (")(")-
constraint, because it requires that any two tuples
with matching keys match everywhere.

· A foreign key constraint is a (")($)-constraint,
because it checks that for any tuple in the main
relation, there is (exists!) a corresponding tuple in
the relation whose primary key corresponds to
the foreign key of the main relation.

This impacts the complexity of certain update
operations:

· If tuples are deleted from a legal database, a (")

(")-constraint cannot be violated as a result.

· If tuples are deleted from the �"� relation

corrsponding to a (")($)-constraint in a legal
database, that constraint cannot be violated.

· If tuples are added to the �$� relation

corrsponding to a (")($)-constraint in a legal
database, that constraint cannot be violated.

20081118:slides8:15 of 15

