
Three types of information systems:

 Information-Retrieval Systems (IR)
 Search large bodies of information which are not

specifically formatted as formal data bases.
 Web search engine
 Keyword search of a text base

 Typically read-only

 Database Management Systems (DBMS)
 Relatively small schema
 Large body of homogeneous data
 Minor or no deductive capability
 Extensive formal update capability
 Shared use for both read and write

 Knowledge-Base Systems (KBS)
 Relatively small body of heterogeneous information
 Significant deductive capability
 Typical use: support of an intelligent application.

20081105: slides 1 of 12

Key DBMS issues:

 Efficiency issues:
 Databases can be very large. Efficient access

must be provided despite the size.

 Simplicity issues:
 Many potential users are not sophisticated

programmers, and so simple means of access
must be available.

 Means of more sophisticated access must also be
available.

 Multi-user issues:
 Concurrency

 Several users may have simultaneous access to
the database.

 Access via views
 Each user has a limited “window” through which

the appropriate part of the database is viewed.
 Authorization

 The access privileges of each user will be limited
in a specific way.

 Robustness issues:
 Deadlock must be avoided.
 A means of recovery from crashes, with minimal

loss of data, must be available.

20081105: slides 2 of 12

Data Model Evolution:

Model Devel. Use Properties Analogy
File management 1950’s – 1970’s 1950’s- Low-level interaction. No data independence. Assembly

language
Navigational
models

1950’s – 1960’s1960’s - Some data independence, but the model invites
dependence. Requires procedural queries.

Procedural
languages

Relational model 1970’s - Late
1980’s -

Simple, easy to use for non-experts. Strong data
independence. Standard nonprocedural query
language (SQL). Excellent implementations exist.
Limited expressive capability.

Declarative
languages

Object-oriented
models

1980’s - 1990’s - Powerful expressive capability, but require substantial
expertise for use. Popular in niche applications.
Standardization not imminent.

Object-oriented
languages

Object-relational
models

1990’s 1990’s - Attempt to integrate the simplicity of the relational
model with the advanced features of the object-
oriented approach. A new standardized query
language (SQL:1999) is available, with SQL:20xx on
the way. Many “high-end” commercial relational
systems embody object-relational features.

?

Semi-structured
models

1990's 2000's - Attempt to integrate data management with markup
languages, principally via XML.

?

20061029: slides 3 of 12

The course focuses on the relational
model. Why?

 The relational model is very widely used.

 The relational model provides a flexible interface
which has components appropriate for users at all
levels.

 A standard query language, SQL, is used with
virtually all commercial products. Thus,
applications have a high degree of portability.

 The relational model provides strong data
independence: the external product is relatively
independent of the internal implementation.

 The relational model is dominant on
microcomputers running Windows operating
systems:

 Office suites:
 OpenOffice.org: Base
 Lotus SmartSuite: Approach
 Lotus Symphony: None yet...
 Corel Suite: Paradox
 Microsoft Office: Access

 Other microcomputer products:
 Kexi
 dBase

 All have proprietary graphical interfaces, and
provide programming-style queries as well.

20061029: slides 4 of 12

 The relational model has also been dominant on
mainframe database servers, including but not
limited to UNIX systems.

 Recently, many of these systems have become
available for the Linux. (Some are free!)
 Oracle
 Interbase (Codegear)
 Sybase Adaptive Server Enterprise
 Informix (now owned by IBM)
 IBM DB2
 PostgreSQL 8.3 (public domain, very good)

 There are even some products from Sweden:
 MySQL (Now owned by Sun)
 Mimer SQL (Upright Database Technology)

20061029: slides 5 of 12

In the past, this course had used Microsoft Access.

Since 2002, PostgreSQL has been be used.

Why?

 The dialect of SQL which is supported under
Access is much more limited than the dialects
of comprehensive systems.

 PostgreSQL has matured greatly in the past
decade.

 The Department of Computing Science has
an SQL server, which is administered by the
support staff.

 The course instructor is a strong advocate of
FOSS (Free and Open-Source Software).

The following system will also be used:

 Leap
 A simple relational database system which uses

the relational algebra as a query language.
 Although not of commercial importance, use of

this alternate query language is very beneficial
pedagogically.

 Students are still free to use Microsoft Access,
although it will not be discussed in class.

 All final versions of SQL assignments must run
under PostgreSQL.

20061029: slides 6 of 12

Database access models:

 SQL is the standard query language for the
relational model.

 There are many access models which are built
around SQL.

 Direct SQL: Write and send SQL queries
directly to the database system.

 Hosting SQL within a programming language:

 Embedded SQL: SQL statements are
embedded in a host programming language,
such as C. Generally requires
preprocessing.

 Proprietary hosting languages: (e.g., Oracle
PL/SQL).

 Proprietary hosting systems: (e.g., within
Microsoft VBA).

 SQL / CLI ODBC: A vendor- and OS-
independent call-interface system (in
principle) for SQL. Embedding may be in any
of a variety of languages (C, C++ are the
most common.)

 In this course, we will use both direct SQL and
ODBC.

20061029: slides 7 of 12

A Rough Course Outline:

 Introduction to DBMS’s

 Knowledge Representation for DBMS's (10%)
 Entity-Relationship Modelling
 The Relational Model

 Query Processing and Constraints (40%)
 Query Languages

 Relational Algebra
 Relational Calculus
 SQL

 Views
 Database Programming and the CLI/ODBC

Interface
 Dependencies and Normalization

 Implementation Issues (40%)
 Physical Database Design
 Database System Architecture
 Query Optimization
 Transaction Processing and Concurrency

Control
 Recovery
 Security and Authorization

 Special Topics (10%)
 Object-Oriented and Object-Relational

Approaches

20061029: slides 8 of 12

Database System Architecture:

 Early approach: one-level

 The user interacted directly with the storage
model.

 Analogy: assembly-language programming
 Disadvantages:
 Impossible to use for non-experts.
 Difficult to use and error-prone even for experts.
 Evolution of storage model, or migration to a new

architecture, requires a total rebuild of all
application programs.

20061029: slides 9 of 12

A more modern approach: two-level

 Advantages:
 Internal model and/or target architecture may

be changed without requiring a rebuild of
applications.

 Analogy: A high-level programming language.

 Disadvantages:
 There is a single external model for all.

20061029: slides 10 of 12

External
Data Model

Internal
Storage
Model

External/
Internal
mapping

The ANSI/SPARC three-level architecture:

 Advantages:
 Provides two levels of independence:
 The internal storage model is isolated

from the conceptual component, as in
the two-level architecture.

 Many external views are possible.
 The conceptual model may be re-

designed without requiring rebuilds of
application programs.

20061029: slides 11 of 12

Conceptual
Data Model

Internal
Storage
Model

Conceptual/
Internal
mapping

External
Data Model

1

External
Data Model

n
. . .

External/
Conceptual

mapping

Data independence:

 Data independence refers to the idea that a more
internal level of a database system may be re-
engineered, or moved to a different architecture,
without requiring a total rebuild of the more
external layers.

 The ANSI/SPARC architecture provides two
levels of data independence.

 It is often, however, something of an ideal, even
with the systems of today.

 Usually, in a relational system, both the
conceptual schema and the external schemata
are relational.

 Still, the conceptual schema is often designed
using a more general tool than the relational
model.

20061029: slides 12 of 12

	Model
	Devel.
	Use
	Properties
	Analogy
	Database access models:

