
Recovery Techniques

· The classical UNIX philosophy:
· When things go bad, broadcast a warning and

reboot.
· Provide no backup, other than tape archives.

· This strategy is definitely not acceptable for a
DBMS.

· There is even debate as to whether it is
acceptable for an OS. See the classic book The
UNIX Hater�s Handbook from 1994, which is now
available on-line:

http://research.microsoft.com/~daniel/

unix-haters.html

· In most database-management applications, it is
critical that integrity be maintained in the face of
failures.

20081203: slides18: 1 of 27

Types of failures:

· Transaction Failure:
· This is a logical failure, caused by a deadlock

or other reason that the transaction cannot be
completed.

· Examples:
· Deadlock
· Programming error in transaction

· Recovery uses logs written to primary and/or
secondary storage as a resource.

· System Failure:
· This is a temporary failure, which wipes out

primary memory, but not secondary (disk
memory).

· Types
· Software failure
· Hardware or power failure

· Recovery uses logs which were written to
secondary storage (disks).

· Media Failure: This is a failure of secondary
storage.
· Disk failure
· Recovery depends upon access to a supporting

archive, such as tape.

· We will focus largely upon transaction failures,
with some attention paid to system failures.

20081203: slides18: 2 of 27

The Recovery Manager:

The heart and brains of the recovery management
process is the recovery manager.

It handles at least three distinct types of input:

Transaction reads and writes:
· The recovery manager has the responsibility of:

· logging all writes in a secure way, so that
recovery may be effected;

· handling all reads in such a way that the correct
image of the database is accessed.

· It may work with a buffer manager in this respect.

Transaction terminators:
· The recovery manager must process abort

commands from transactions, since portions of
other transactions may need to be undone
(rollback) or redone.

· The recovery manager must process commit
commands from transactions, so it knows which
writes are permanent and cannot be aborted.

Recover commands:
· The recovery manager handles explicit recovery

requests from the system.

20081203: slides18: 3 of 27

Basic Update Strategies:

To understand recovery management, it is best to
start with a few �pure� examples, to illustrate the
extremes of update strategies.

Update strategies may be placed into two basic
categories (although most practical strategies are a
combination of these two):

Deferred update:
· All writes within a transaction are recorded in a

temporary log.
· During the lifetime of the transaction, these writes

are invisible to other transactions.
· When the transaction is completed, these

changes are written to the database in one
logically indivisible operation (at the commit
operation).

Immediate update:
· All writes within a transaction are written directly

to the database, where they are visible to other
transactions.

The choice of strategies affects:
· The type of action needed for recovery.
· The information which is necessary for the

transaction log to support recovery.

20081203: slides18: 4 of 27

Example: T1 = r(x) w(x) r(y) w(y)
T2 = r(y) w(y) r(z) w(z)

Deferred update:

T1 T2 Temp Log Database
x0 y0 z0

r(x) x0 y0 z0

w(x) x1 x0 y0 z0

r(y) x1 x0 y0 z0

w(y) x1 y2 x0 y0 z0

r(y) [y0] x1 y2 x0 y0 z0

w(y) x1 y2 y1 x0 y0 z0

Commit y2 x1 y1 z0

r(z) y2 x1 y1 z0

w(z) y2 z2 x1 y1 z0

Commit x1 y2 z2

Immediate update:

T1 T2 Temp Log Database
x0 y0 z0

r(x) x0 y0 z0

w(x) x0 x1 y0 z0

r(y) x0 x1 y0 z0

w(y) x0 y0 x1 y2 z0

r(y) [y2] x0 y0 x1 y2 z0

w(y) x0 y0 y2 x1 y1 z0

Commit x0 y0 x1 y1 z0

r(z) x0 y0 x1 y1 z0

w(z) x0 y0 z0 x1 y1 z2

Commit x1 y1 z2

20081203: slides18: 5 of 27

 The Transaction Log:

To support the recovery process, the recovery
manager maintains an extensive transaction log.

· The physical configuration of the log varies
substantially from system to system.

· From a logical point of view, each entry in the log
must contain the following information.
· transaction identity
· time stamp

· If the transactions are kept in sequence of
occurrence, no time stamp is necessary.

· specific transaction information

Generic examples (time stamp not shown):

Begin(Transaction)

Commit(Transaction)

Abort(Transaction)

Before_Image(Transaction, Data_object)
= The value of Data_object before it is written by
 Transaction.

After_Image(Transaction, Data_object)
= The value of Data_object after it is written by
 Transaction.

20081203: slides18: 6 of 27

Example of Log Entries with Pure
Deferred Update:

T1 T2 Augment
Trans. Log

Database

x0 y0 z0

Begin Begin(T1)
r(x)
w(x) After(T1,x)

Begin Begin(T2)
r(y)
w(y) After(T2,y)

r(y) [y0]
w(y) After(T1,y)

x1 y1 z0

Commit Commit(T1)
r(z)
w(z) After(T2,z)

x1 y2 z2

Commit Commit(T2)

· The after image is needed to support the commit
operation itself.

· The after image is also needed if the transaction
is to be re-done as part of a recovery effort.

· With pure deferred update, no before images of
data objects are required.

· Reads need not be recorded in the log.

20081203: slides18: 7 of 27

Recovery with Pure Deferred Update:

From an aborted transaction:

· Nothing need be done (except to update the log),
since the aborted transaction did not modify the
database.

From a system crash:

· For transactions which committed before the
crash, do nothing, since their actions are already
recorded in the database.
� If the database must be recovered from the log,

�redo� the transaction.
· Generally, do not actually re-execute the

transaction.
· However, if the transaction was interactive,

this may be the only option.
· Use the after-images in the log to reconstruct

the transaction action.
· Note that only the last (in terms of commit

time of the transaction) after image for each
data object actually need be restored, so
some preprocessing of the log file is
warranted.

· For transactions which started but did not commit
before the crash, simply re-run each transaction,
since no actions were recorded in the database.

· Undo is never required as part of a recovery,
since transactions are only written to the
permanent database after a commit.

20081203: slides18: 8 of 27

Example of Log Entries with Pure
Immediate Update:
T1 T2 Trans. Log Database

x0 y0 z0

Begin Begin(T1)
r(x) Read(T1,x)

Before(T1,x)
After(T1,x)

w(x) x1 y0 z0

Begin Begin(T2)
r(y) Read(T2,y)

Before(T2,y)
After(T2,y)

w(y) x1 y2 z0

r(y) [y2] Read(T1,y)
Before(T1,y)
After(T1,y)

w(y) x1 y1 z0

Commit Commit(T1)
r(z) Read(T2,z)

Before(T2,z)
After(T2,z)

w(z) x1 y1 z2

Commit Commit(T2)

· The before image is needed if the transaction is
to be un-done as part of a recovery effort.

· Reads must be logged to support rollback.

· After images are needed to allow redo rather than
require re-run for recovery of committed
transactions after a system crash.

20081203: slides18: 9 of 27

Recovery with Pure Immediate Update:

From an aborted transaction:

· A rollback process (�undo�) must be initiated:
· For each write which the transaction made, the

before image is used to restore the database
state to the value that it had before the
transaction modified it.

· The rollback must be cascaded:
· If the rolled-back transaction wrote a value

which a second transaction read, that second
transaction must be rolled back also. And so
on�

From a system crash:

· Transactions which started but did not commit
before the crash must be treated as aborted
transactions.
· To ensure proper cascading, rollback must

proceed in reverse time order.

· For transactions which committed before the
crash:
· Their actions are already recorded in the

database.
· They only need be rolled back if mandated by a

cascading relationship.
· If the database itself is compromised, the after

images in the log may be used to redo the
transactions.

20081203: slides18: 10 of 27

Recoverable Schedules

Consider the following situation with immediate
update:

T1 T2 Trans. Log Database
x0 y0 z0

Begin Begin(T1)
r(x) Read(T1,x)

Before(T1,x)
After(T1,x)

w(x) x1 y0 z0

Begin Begin(T2)
r(y) Read(T2,y)

Before(T2,y)
After(T2,y)

w(y) x1 y2 z0

r(y) [y2] Read(T1,y)
Before(T1,y)
After(T1,y)

w(y) x1 y1 z0

Commit Commit(T1)
Abort

To recover, transaction T1, which has committed,
must be rolled back. This is very difficult to achieve.

A schedule is called recoverable if, for any two
transactions Ti and Tj, if Ti writes a data item whose
value Tj reads, then Ti must commit before Tj does.

In a recoverable schedule, to effect recovery,
committed transactions need never be rolled back.

20081203: slides18: 11 of 27

Unsuitability of the Pure Update Strategies

· Both pure deferred update and pure immediate
update are unrealistic to employ in practice.

· Disadvantage of pure deferred update (Redo with
no undo):

· It requires a huge disk cache to maintain all of
the updates which have been executed but not
committed to the permanent database.

· Disadvantage of pure immediate update:

· It requires a huge disk cache to maintain all of
the before images.

· The possibility of long, cascaded rollbacks
makes it particularly unsuitable in its pure form.

· Guaranteeing recoverability is a complex task.

· It is difficult to envision any practical database
system which would require cascaded rollback
as part of its recover strategy.

20081203: slides18: 12 of 27

Basic Properties of Every Recovery
Algorithm:

Before looking at less ideal but more effective
strategies, it is useful to identify some key points
which must be kept in mind, regardless of approach.

Commit point:
· Every transaction has a commit point. This is the

point at which it is finished, and all of the
database modifications which it mandates are
made a permanent part of the database.

· Once it has committed, a transaction can no
longer be aborted (although it may need to be
�undone� as part of a recovery process.)

· Under some strategies, a transaction may modify
the database before it has committed.

Every recovery algorithm must meet the following
two conditions:

Write-ahead-log protocol: In the case that a
transaction may write the database before it
commits, the before image of every database object
which is modified by a transaction must be written to
the log before the after image is written to the
database.

Commit rule: The after image of every object written
by a transaction must be written to permanent
memory (to the log or to the database itself) before
that transaction commits.

20081203: slides18: 13 of 27

DBMS Caches and Checkpoints

· Any practical logging and recovery strategy will
make use of a fast but volatile DBMS cache (also
called a DBMS buffer) to store data temporarily.

· Such caches typically reside in main memory.

· They are part of the DBMS and should not be
confused with memory and/or disk caches of the
hardware or operating system.

· Such a strategy may also make use of fast but
volatile in-memory index structures to temporary
or permanent data on disk.

· In the event of a system crash, the data in these
volatile memories will be lost.

· At a checkpoint, the following steps are taken:

1. All active transactions are suspended.

2. All data residing in the DBMS cache and other
DBMS memory buffers are written to the
corresponding permanent locations on disk.

3. Copies of volatile index structures are updated
on permanent secondary storage.

4. The checkpoint existence is written to the log.

5. The suspended transactions are resumed.

20081203: slides18: 14 of 27

Pages in the DBMS Cache

· The DBMS cache is divided into pages.

· Such pages typically have two associated bits.

· The dirty bit has its usual rôle in a cache:

· The bit is initially set to 0.
· It is set to 1 when the cache page has been

modified, but not yet written to disk.

· The pin-unpin bit has the following rôle:

· If the page may be written to disk, this bit is set
to 0.

· If the page may not be written back to disk, this
bit is set to 1, and the page is said to be
pinned.

· When is a page pinned?

· Pinning occurs when a transaction has locked a
data object associated with it, so that its current
contents is not useful in a more global context.

· Note that pinned pages cannot be written in
place (as permanent archives) at a checkpoint
without further control measures.

· For this reason, a pinned page is often
shadowed with its most recent unpinned
instance, and this shadowed instance is written
to disk at the checkpoint.

20081203: slides18: 15 of 27

In-Place vs. Shadowed Updating of the
DBMS Cache

In-Place updating:

· In in-place updating, a page of the DBMS cache
is associated with a single, unique page on the
permanent secondary storage.

· A cache flush always writes each page of the disk
cache to the associated page in secondary
storage.

Shadow updating:

· In shadow updating, a page of the DBMS cache
may be associated with several (usually two)
pages on the permanent secondary storage, all
associated with the same logical data item(s).
Thus, there may be several permanent copies of
a data item.

· A cache flush may write the page of the disk
cache to a new location on the secondary
storage, thus preserving the original data on that
store.

· By keeping before and after images on disk as
shadow updates, the need for such entries in the
log is obviated.

� A specific model, using shadow paging, will be
described shortly.

20081203: slides18: 16 of 27

Some Modified Approaches to Recovery
Management

· There are many approaches to recovery
management which combine basic principles with
tricks of the trade to improve performance.

· These slides will sketch a few:

· Approaches with stealing.
· Approaches with no-force writes of the disk

cache.
· Shadow paging.

· Real strategies combine ideas from all of these,
with many others.

20081203: slides18: 17 of 27

Steal vs. No-Steal Approaches

· These strategies relate the point at which a page
of the DBMS cache may be written to permanent
secondary storage to the point at which a
transaction commits.

· Whether or not such pages may be written is
governed by the value of the pin/unpin bit.

· In a no-steal approach, updates made to data
items in pages cannot be written to disk until the
transaction has committed.

· This is the default in a deferred update approach.

Modified deferred update with stealing:

· In a steal approach, pages may be written to disk
before the transaction commits.

· This may reduce greatly the size of DBMS cache
needed.

· If another transaction needs to read or write the
stolen page, it must wait until the transaction
which wrote it previously commits.

· If the transaction which wrote the page is aborted,
the previous value of the page must be recovered
from the log.

· This strategy is widely used in practice.

20081203: slides18: 18 of 27

Force vs. No-Force Approaches

· These strategies relate the point at which a page
of the DBMS cache must be written to permanent
secondary storage to the point at which a
transaction commits.

· In a force approach, at the commit point of a
transaction, all pages which were updated by the
transaction are written to permanent secondary
storage immediately.

· This is the default in a deferred update approach.

Modified deferred update without forcing:

· In a no-force approach, pages need not be written
to disk immediately after the transaction commits.

· This may reduce greatly the number of disk writes
needed, since active pages will remain in
memory.

· If the system crashes before the page is written, it
must be recovered from the system log.

· This strategy is widely used in practice.

20081203: slides18: 19 of 27

Shadow Paging for Database Systems

· This approach is related to shadow updating of
disk caches. However, the emphasis here is
upon the directory itself, and not how it is
maintained.

· For each transaction, two directories to the
database pages for the data objects which the
transaction will need are maintained: (see Figure
19.5 of the textbook (21.5 in the 3rd edition).)
· current directory;
· shadow directory.

· Initially, these two directories contain identical
entries.

· During execution of the transaction, neither the
shadow directory nor the pages to which it points
are modified.

· Instead, upon first modification of an object, a
copy is created, and the current directory set to
refer to that copy. Only that copy may be
updated by the transaction.

· When the transaction commits, the shadow
directory is removed, and the corresponding
pages are freed.

· If the transaction aborts, the current directory is
removed, and the shadow directory is restored to
be the current one.

20081203: slides18: 20 of 27

· Ideally, this is almost a no-undo/no-redo strategy.
(To be truly so, directory update would have to be
performed in a single uninterruptable step.)

· In practice, things are not so ideal:

· The pages on which the database is stored
become very fragmented. This can lead to
greatly increased access times, since
adjacency of pages which are likely to be
retrieved together cannot be maintained.

· Garbage collection becomes a significant
problem.

A modified strategy:

· Keep all shadowed pages (those associated with
the current directory, but not the shadow
directory) in the DBMS cache.

· When the transaction commits, write those pages
to the permanent database in secondary memory.

· This is then nothing more than a form of caching.

· The main advantage of shadow paging, that disk
pages need not be rewritten upon commit, is lost.

If the directory is maintained via the page table,
then this approach corresponds to shadow
updating.

20081203: slides18: 21 of 27

Log Security:

A fundamental property of the transaction log is that
it must be secure.

· In the event of a system crash:
· It must be possible to restore the system to a

consistent state, in which it is known exactly
which transactions completed and which were
aborted.

· It is important that as little of the completed
transactions as possible be lost in the event of
a crash.

· The second point leads to a tradeoff decision
during the design process:
· To protect information in the event of a system

crash, it is generally necessary to save it to
secondary storage.

· Maintaining the entire log on secondary storage
implies a serious performance compromise.

· The solution is generally to maintain some of the
log in main memory, but in such a way as to
minimize the above problems.
· Keep the log on a separate disk drive with a

separate channel.
· Speeds up operation
· Allows recovery even in the case of a crash

of the main disk.
· Write to the log disk as frequently as possible.

20081203: slides18: 22 of 27

Summary of Before and After Images:

Suppose that transaction T issues a write w(x) on
data object x.

· The value of x before the write is called the
before image of x.

· The value of x after the write is called the after
image of x.

A general recovery manager must maintain both of
these images in the log.

· The before image is needed in case the
transaction must be �undone.�

· The after image is needed in case the transaction
must be �redone.�

· These values need not always be represented
explicitly. There are tricks which have been
developed to maintain things securely while
reducing the amount of physical storage
necessary.

20081203: slides18: 23 of 27

Summary of Undo and Redo and Rerun
Operations:

To effect a recovery, there are three basic forms of
operations which the recovery manager may need
to carry out:

· Undo : A transaction needs to be �reversed.� The
updates which a transaction has made to the
database may need to be �undone,� in order to
restore the database to a useful state.

· Redo : The changes to the database effected by a
transaction were lost in the failure, so these
changes must be recovered from the log and
applied to the database.

· Rerun : The changes to the database effected by
a transaction were lost in the failure. However,
for some reason, they cannot be recovered from
the log. Thus, the entire transaction must be run
again.

· With pure deferred updates, only redo operations
are required.

· With pure immediate updates, only undo
operations (with a subsequent rerun) are required
to recover from transaction failure.

20081203: slides18: 24 of 27

· Rerun is needed when the transaction did not
commit reliably; for example, when it is rolled
back after an undo. It is generally implied after
an undo.

Recovery strategies are often classified according
to the operations which they require:

· Only redo operations required
· Only undo operations required
· Both redo and undo operations required
· Neither undo nor redo operations required

20081203: slides18: 25 of 27

Recovery from Disk Crashes

· Recovery from disk crashes is much more difficult
than recovery from transaction failures or
machines crashes, because the second line of
storage is lost.

· Loss from such crashes is much less common
today than it was previously, because of the wide
use of redundancy in secondary storage (RAID
technology).

· Nonetheless, some protection against such
crashes must be built into the system, and this is
usually done in several ways.

· The log for the database system is usually
written on a separate physical disk from the
database. This log may be used to rebuild the
database, at least partially, in the event of a
crash.

· Periodically, the database is also backed up to
tape or other archival storage.

20081203: slides18: 26 of 27

Using the Log to Reconstruct the
Database:

So far, we have only looked at using the log to
recover from transaction failures and system
crashes.

It may also be used, to a degree, to recover from
disk crashes.

Assumption:
· The transaction log is kept on a separate disk

from the database.
· This is a good safety measure in any case.

Requirement:
· The log must record after-images, regardless of

the update strategy.

Algorithm:
· Assume that the database has been saved to a

further archive at time point t.
· Assume that the log contains after images for all

transactions which occurred after time point t.
· The database may then be restored by installing

the after images to (a copy of) the archive.
· If immediate update or a more complex strategy

is used, further processing may be necessary on
this restored copy, as per the previous
algorithms.

20081203: slides18: 27 of 27

