Physical Database
Design

Basic considerations:

Data independence:

The user should be insulated from physical
database design.

It is perhaps acceptable (desirable) to allow the
user to make suggestions for things such as
which attributes should be indexed for faster
access.

Types of access needed:

Fast retrieval based upon specific keys (suggests
hashing strategies)

Processing tuples in order based upon a key
(suggests a sequential structure)

Partial-match queries: Requests based upon
several attributes (suggests multi-dimensional
data structures)

20081202: slides14: 1 of 72

Overriding concern:
« Data are stored on external devices (disk)

« Access is much slower (1000 to 10000 times)
than access to main memory.

« For efficiency, the number of disk accesses must
be minimized.

High-level implementation strategy:
« Use the file system of the OS.
o Use a DBMS-specific partition.

« Roll-your-own file system.

20081202: slides14: 2 of 72

Basic concepts of disk access:

Physical concepts:

Platter
Head
Cylinder
Track
Sector

CHS addressing
Logical sector addressing

Microcomputer disk interfaces:

IDE / ATA

EIDE

ATA4 / Ultra DMA-33
ATA5 / ATA-66
ATAG6 / ATA-100
ATA-133, ATA-150
Serial ATA

SCSI |l

Wide SCSI Il

Ultra SCSI (various flavors)
Serial-attached SCSI
Fiber channel

Time parameters:

Seek time
Rotational latency
Block transfer time
Bulk transfer rate

20081202: slides14: 3 of 72

A high-end SCSI drive:

Seagate Cheetah 15K.5:

ST3300655LW/LC/FC/SS (300 GByte)
ST3146655LW/LC/FC/SS (146.8 GByte)

ST373655LW/LC/FC/ISS (73.4 Ghyte)
Specification Value
Formatted capacity 300/ 146.8/ 73.4 Gbyte.

Interface

Ultra320 SCSI
4 Gbit/sec fibre channel
3 Ghit/sec serial-attached

SCSI
Rotational speed 15000 RPM
Seek time (avg. read) 3.5 msec.
Seek time (avg. write) 4.0 msec.
Rotational latency (avg.) 2.0 msec.
Platters 4121
Heads 8/4/2
Nonrecoverable error rate |1 sector / 10 bits

Acoustics idle (bels -- sound
power)

3.0-3.6

20081202: slides14: 4 of 72

A high-quality SATA drive for a PC.:

Seagate Barracuda ES:
ST3750640NS (750 GByte)
ST3500630NS (500 GByte)
ST3400620NS (400 Gbyte)

ST3320620NS / ST3320820NS (320 Gbyte)
ST3250620NS / ST3250820NS (250 Gbyte)

Specification Value

Formatted capacity 750/500/400/320/200 Gbyte.
Interface SATA 3Gbit/sec.

Rotational speed 7200 RPM

Seek time (avg. read) 8.5 msec.

Seek time (avg. write) 9.5 msec.

Rotational latency (avg.) 4.16 msec.

Platters

?

Heads

?

Nonrecoverable error rate

1 sector / 10** hits

Acoustics idle (bels -- sound
power)

25-2.7

20081202: slides14: 5 of 72

RAID:
Redundant Array of Inexpensive Disks
Redundant Array of Independent
Disks

Mulitiple disks are used in RAID configurations in
two main ways:

Striping (RAID 0): The data are distributed in

blocks over several disks in order to speed up

access.

« Disadvantage: If one disk in the array fails, all
data are lost.

« RAID 2 and RAID 3 are variants with different
types of striping.

Redundancy via mirroring (RAID 1): The data are

replicated over several disks in order to increase

reliability in case of failure.

« Mirroring provides first and foremost a reliability
advantage.

It can also provide a performance advantage for
reading, with some loss of perfomance in writing.

« Not all RAID controllers provide such
performance advantage.

20081202: slides14: 6 of 72

Combination: A number of RAID configurations
provide both striping and redundancy:
o RAID O+1: A mirror of stripes
o RAID 1+0: A stripe of mirrors
o RAID 5: Block-level striping plus redundancy
via parity data
o In case of a failure of a disk, all data can be
recovered from the remaining disks using the
parity data.
o There are numerous other configurations, each
with its advantages and disadvantages.

RAID may be implemented:
 in the hardware (via a special disk controller);
 in the software (e.g., Linux kernel).

« It is difficult to boot from a software RAID
partition.

20081202: slides14: 7 of 72

Some Basic Concepts:

« Field:
« Smallest unit of logical storage
« Typically corresponds to one column of a
relation.
« Length has two dimensions:
o Fixed vs. variable
o Logical vs. physical
o In Access:
« Variable logical length allowed.
 All fields are fixed-length physically.

e Record:
« A collection of fields (similar to PL notion).

« Physical record: Stored as a single
accessible unit.

« Logical record:
e Corresponds to a logical notion in the data
model (e.g. tuple)
« May or may not be stored as a physical
record.
e Length: (see Figure 13.5; (5.7 in 3" Ed.))
« Fixed-length records
« Variable-length records
« May arise in two distinct ways:
« Variable-length fields
« Variable number of fields

20081202: slides14: 8 of 72

« Blocking factor:
o A block is the unit of data which is
transferred in a single disk access.
e The blocking factor is the number of records
stored in a single block.

B = size of block
R = size of record
bfr = B/R]

e Block organization: (Figure 13.6 (5.8 in 3“ Ed.))

« Unspanned: Every record is contained in a
single block:
e Unused space per block = B — (bfr x R)

« Spanned: To avoid wasted space, a record
may be split over blocks.
« Spanning makes retrieval slower,
however.

20081202: slides14: 9 of 72

Processing Needs:

« A good physical database design must be based
upon perceived processing needs.

AcCcCess:

e Random access: Retrieve records individually
based upon the value of a key.

e Batch access: Retrieve and process all of the
records, in any order.

e Sequential access: Retrieve all of the records, in
order, based upon the values of a selected key.

e Primary key only: Access based upon one
key only.

e Multi-key: Multiple access requirements,
based upon different keys.

e Range access: Retrieve all of the records which

satisfy certain range constraints on one or more
key attributes.

20081202: slides14: 10 of 72

Basic Organizations:

o Heap:

Records are stored without any logical regard

to order.

Order is typically the “insertion order.”

Access:

« Linear search, block-by-block

« Via secondary indices (later)

Insertion: very easy

Deletion:

« Physical removal is very slow.

« Marking of deleted records may also be
used, but periodic garbage collection is
necessatry.

This organization is seldom used in a DBMS without
further structural support (e.g. indices).

20081202: slides14: 11 of 72

Sequential: (Figure 13.7 (5.9 in 3@ Ed.))
« Records are stored in order, based upon
some field used as a key.
o Block-by-block +
« Within each block
o Access:
« Via binary search.
« Still need one disk access per “division”
step in the binary search.
« Insertion:
o Very slow.
e May be partially remedied with an overflow
file.
o Deletion:
« May use the same strategies as for a
heap.
« Same advantages and disadvantages.

This organization is seldom used in a DBMS without
further structural support (e.g. indices).

20081202: slides14: 12 of 72

Indexed Organizations:

 Direct (Figure 14.1 (6.1 in 3" Ed.))

« Records are accessed based upon the direct
value of one or more keys.

« Advantage: Rapid sequential processing is
possible.

« Disadvantage:
« Relatively large indexing structure
« Nonuniform distribution may require

frequent reorganization of the index.

« Hashed
o A key is transformed to another value, and
the record is stored based upon that
computed value:
« Advantages:
« Relatively small indexing structure
« A well-chosen transformation (hashing
function) can result in a very uniform
distribution of records within the storage
space, even when the key values are very
clustered.
« Random and batch access times are
improved.
« Disadvantage:
« The capability for rapid sequential
processing is lost.
« Special hashing techniques exists for
structures on secondary storage.

We will look at direct indexing first, and then return
to hashing.

20081202: slides14: 13 of 72

Indices:

o Primary:
e A primary index is one which is tied to the
physical order of the records. (Figure 14.1
(6.1in 3" Ed.))

« Secondary:
e A secondary index is one which is not tied to
the physical order of the records.

o Density
o Dense:

o A dense index is one which has a distinct
index entry for each record.
e Secondary indices are almost always
dense. (Figure 14.4 (6.4 in 3 Ed.))

« Nondense:

e In a nondense index , a single index entry
may reference many records. (Figure 14.1
(6.1 in 3" Ed.))

« Primary indices may be nondense.

o Clustering:
e For a field which does not have a distinct
value for each record, a clustering index may

be used. (Figures 14.2 and 14.3 (6.2, 6.3 In
3" Ed.))

20081202: slides14: 14 of 72

e Direct vs. indirect:;

e In a direct index, the index entry points
directly to the associated record(s).

e In an indirect index, the index entry points
to a (block of) pointer(s) to the associated
record(s). (Figure 14.5 (6.5 in 3" Ed.))

« Advantages:
« Ease of implementation of non-dense
indices.
o Less burden during file re-
organization.
« Single-level vs. multi-level:

e The index itself may be organized as a multi-
level entity (e.qg., a tree).

« Advantage: more rapid search of the index.
Question: Do the analyses of access time
in the text make sense?

Would you keep an index which is 1 Mb. in size on
disk, and bring it into memory in 2 Kbyte. blocks?

More on this later.

20081202: slides14: 15 of 72

Specific examples of structures which use multi-
level indices:

e B-trees
e B'-trees

We will first examine B-trees.

20081202: slides14: 16 of 72

B-trees:

Recall that in a binary search tree, each node has
one data entry and two pointers:

o Left subtree

o Right subtree

In a B-tree, this arrangement is generalized. In a B-
tree of order n, there are n-1 data entries and n
pointers.

Here is a node for a B-tree of order 8:

d,

d,

d; ds)l dg |yl d;

S I A A A
Po Pi P2 Ps Py Ps Ps Pr Pg

e The p/'s are pointers.
o The d/'s are data fields.

Note that a binary tree node is just a B-tree node of
order 1.

However, B-trees have special properties not
shared by all binary trees.

20081202: slides14: 17 of 72

Because of their more general structure, the rules
for maintaining B-trees are more complex than for
binary trees. Here are some basics:

o Any node, except for the root, must be at least
half full, in the precise sense that if the nodes

contain m data fields, then at least | m/2] must be
nonempty. (Round down for odd values.)

e The root must contain at least one data value; i.e,
at least two pointers.

« Data fields are used from left to right, with unused
fields empty

« The data elements in a given node are sorted.

« All pointer fields of a leaf node are null.

« For internal nodes, if a data field is not empty,
then neither its left pointer nor its right pointers

may not null.

« If a data field is empty, then its right pointer must
be null.

« A non-null pointer identifies a subtree containing

values which are between the values of the keys
surrounding that pointer.

20081202: slides14: 18 of 72

« The tree is always balanced: the length of the
path from the root to a given leaf is the same as
for any other leaf.

The operations are best illustrated with examples.

Example: Inserting the months, in chronological
order. (Sort in alphabetical order.)

20081202: slides14: 19 of 72

Jan

20081202: slides14: 20 of 72

Feb] | Jan
Feb] | Jan] | Mar
Apr| | Feb] | Jan] | Mar
.| Jan
Apr] | Feb Mar] | May
, Jan
Apr] | Feb Jun] | Mar] | May
, Jan
Apr] | Feb Jul Jun]| | Mar| | May
.| Jan
Apr] | Aug Feb Jul Jun| | Mar|] | May

The last four months:

(This first two trees provide different alternatives for
the insertion of Sep.)

Jan . Mar
Apr| [Aug | Feb Jul| [Jun May| | Sep

Jul

Apr Auq Feb| [Jan Jun| | Mar| | may| | Sep

Jan| | Mar
Apr| [Aug| | Feb Jul| [Jun May| | Oct| | Sep

Jan| | Mar
Apr| | Aug| | Feb Jul| [Jun May| [Nov| | Oct] | sep

Jan| | Mar
Apr| [Augl | Dec] | Feb Jul| [Jun May| [Nov| | Oct] | sep

20081202: slides14: 21 of 72

¢L 10 ¢¢ ‘yT1S9aplIs :2021800¢

‘yidap ur moub ued aal) ayl yaiym ul Aem Ajuo ayj SiI Siy L

oviivv|ict 8€119€]|€E Gellecliie

61181 pLIIEL 811211911¢€

ov | [og I {1 —JlstiloL]

:U0IIN|0S [ensn ay) SI 1004 ay) 03 sarebedoid ydoiym apou [|NHaA0 ay) Jo ids v

o [Trr] ler selleziliel] [derTlsL]IsiITer [[T IT2JTg

[lovtloellozloL [

:91N1oNA1S BuiMmo||o) ay) oul T Masu| :ajdwex3

¢L 10 €2 yTS9aplIs :202T1800¢

o | [PV LICh : : éclieclliclloc 3L1IGLLIPL L B 112118
lovTloclieL (1oL
OF | 1YV LICY : s gclleclllie 5L1I8LIISL L Q] .

[lovtloellozloL [

‘3Nl 1Sej-pue-piey e uey] dnsLNay e Jo aiow s ABarens Jo a2i10yd ay] °

'SaNn[eA Jo uonelol e Aq pazifeal ag os[e pjnod T JO uonJasul ay) ‘ased rejnonted siyj uj

¢L 10 ¥¢ ‘yTSaplIs :2021800¢

8611961 |€G oviivv|ich 8€]19¢ Gelleclile

1 Ylos|lov[loglT priletfllIgllz]lolle

:MOJ}J3puUN Ou SI 31ay] 32UIs ‘Janew ajdwis e si

8G1196]1€S ov|ivv|ich 8€]19€] |E€ Gelleclite

| Ylocilot [Tog] JAIED vL]EL gllzIllolle

U Il I Moel]
19911 BUIMO[|0} BY) WO} € JO UoN3|ap 3y J8PISUOI MON

¢/ 10 G¢ yTS9aplIs :202T1800¢

8G1196]1€S ov|ivp ov| I8¢ Gelleclile

1 Ylos|ler[loglT pLifetfllIgllz]lolle

8G119G11€9 oviivv|lch 8€] 19¢€ Gelleclile

1 Ylos|lov[loglT priletfllIgllz]lolle

:uonngLIsipal e Yim palpawal aq Aew YdIym ‘SIndd20 MOJIapun ue ‘gg Jo uonsjap ayl uj

¢L 10 9¢ yTS9aplIs :2021800¢

8G1196]1€S ov|ivy ov| I8¢ Gelleclite

1 Ylos|ler[loglT pLifetfllIgllz]lolle

‘(paJinbai uononpal) Bulgis Ya| dYl YUM apou ||[npspun ay) sauiquio) e
‘(paJinbai uonanpal ou) Bungis 1YBIL BYI YUM 3poU |[npspun ay) sauiquo) e
:SaNlIqIssod om) aJe alayl ‘pi7 JO uonsep ay) 1opPISU0I MON

(*spjal} erep Jo Jaquinu abie| e Ylm diewoine wouj Jej sing
‘apou Jad spjalj erep i1noj Ajuo yum sjdwexs ajdwis 1no ul Ajjeanewoine suaddey siyl)

‘2JNIN} Jeau ay) ul uonnguisIpal JIayioue Jo pooyl|ayI| 8yl uassa| [|IM SIYL “awes ay)
(1noge) Builgls yoes ul Sjuswa|d JO Jaquuinu ay) axew ‘Bunnguisipal Usypa :onsunaH e

¢L 10 /¢ ‘yTS9aplIs :202T1800¢

gg|log||es ov|lev|lov]ige gelleellie
[l 1l Tlos[loel" 51181 vLileL gllz]lolle
1 11 Jlseflor]
U 11 T Noeel
86|]9g os | [ov ov||8€ gzlleellie
| Ylesllev ol vLileL gllizllolle

SUOIIN|OS OM) Y] aJe aJaH

¢/ 10 8¢ yTS9aplIs :2021800¢

oG 1ot |7 6LIIGLIIVL]|EL 811 211911¢€

111 JloglioLl]

Lf1 Il Tloel]

:SOARI| U] WoJ) dn [9A3] BUO SanjeA 3a1nquisIpal ued ap\

8G1196]1€S ov|Ivv]ict 8€J19€]1€€ Gelleclile

| Ylosilot[Tog|] 511 [8L vLIEL gllzIllolle

LI I MYoel
:21N10NAS BuIMOo||0) Y] woJ) 8T Bunajap IBpISUOD MON *

¢L 10 6¢ ‘YTS9plIS :202T1800¢

ov[lvvlley gelloc]|ee Gelleellie
eLilselivifierljiaflzJlolle
[lovllocifoz]foL]
ov[lvv|ley gelloc]|ee Gelleellie
Lils1 prilerljliellzilolle
v1l0€ siilol

(191€] paresnsn||l — uawisnlpe-al abuel-buo| e op am SSajun)
"ybiay ayp 1snlpe 1snw am ‘1anamoy ‘aaJ) Buimol|o) ay) wolj ST 919|9p oM J|

¢L 10 0E YTS9plIs :202T1800¢

ov| vt |ley gelloe]lee selleellie
6L] (81 pLl|eL L1lolle
v 1 log 11 _Jlsifiell
57T
ov|lvv|ley gelloellee selleellie
L[]8l piiletllligllz]lolle
vllog si{lol

:9a.1) BuIMo||0} ay) Wwody QT JO uonajap ayl
JapIsuo) ‘ainguisipal 01 a|qissod Sawinawos S]l ‘Sapou Jeal-uou Jo uonajap ayl YA ©

¢L 10 TE yTS9aplIs :202T1800¢

ov[lvv|ley gelloc]|ee Gelleellie
grilseliviilerlfiaflzJlolle
[fovllocifoz]foL]
ov[lvv|ley gelloc]|ee Gelleellie
Lilsl prilerljliellzilolle
v1l0€ siilol

:100J 3Y1 YIIM uoneuiquiod
uayl pue ‘[oA8| puodas ay) Je Juswisnlpe aiinbai 0] sieadde gT Jo uons|eq

¢/ 10 ¢€ yTS9aplIs :202T1800¢

ov| vt |ley gelloellee selleellie
gL][s1 cLljoL LIlolle
v] log 11 Jlvifie |l
T
ov|lvv|ley gelloellee selleellie
L[]8l piiletllligllz]lolle
vllog si{lol

:6T JO UoNsdp 3yl 01 UOIIN|OS ajeuld]fe ue
Sl 2194 ‘luawishlpe-al a|dininw abuel-buo| e op 03 a|gissod sawnawos Si)l ‘JIsASMOH

Some general heuristics for B-trees.

« When making adjustments, always try to keep
sibling nodes with about the same number of
keys.

« Avoid depth changes whenever possible.

Disadvantages of B-trees for DBMS's:
« There are too many disk accesses for large files.

« Cannot perform sequential processing efficiently.

20081202: slides14: 33 of 72

A look at the number of disk accesses:
Example:
Assumptions:

« 2 Kbytes. pages.

« 128 bytes per record (very conservative for a

DBMS).

« 4 bytes per pointer (4 Gbyte. address space).

Maximum number of records per page:
4 + ne(128+4) < 2048

So: n =|2044/132] = 15 records per page.
« Suppose that we have 10° records.
What is the depth of the tree?
o The answer depends upon the fullness of the

nodes. A minimum and a maximum can be
computed.

20081202: slides14: 34 of 72

Maximum depth / Minimum density:

The tree will have maximum depth when the
nodes have minimum density.
For minimum density, it is assumed that nodes
are at least half full, but no more full than
necessary.
The sole exception is the root node, which need
contain only one data value.

A node which is half full contains [15¢(1%)]= 7
records.
o Note that “half full” entails “round down” here.

What is the maximum depth of the tree?

o First, this problem may be solved with a "brute
force" technique, using a table.

Level Nodes Records at this Total
Level Records

Root 1 1 1

1 2 2¢7 = 14 15

2 208 =16 16e7 =112 127

3 168 = 128 128e7 = 896 1023

4 1288 = 1024 10247 = 7168 8191

S 10248 = 8192 81927 = 57344 65535

6 81928 = 65536 655367 = 458752 924287

7 655368 = 524288 524288e7 = 3670016 4194303

The maximum depth of the tree is thus 6, because a
B-tree of depth of 7 would require a minimum of

4194303 records.

20081202: slides14: 35 of 72

This "brute-force" approach becomes tedious,
particularly when the depth becomes substantial,
and it applies only to this special case.

It is instructive to derive a more general formula
relating depth to the number of nodes in a B-tree.

The starting point is a B-tree with the following
parameters:

« d denotes the depth of the B-tree.

« m denotes the total number of records in the root
node.

« All nodes other than the root node contain exactly
r records.

Note that not all B-trees have this structure!!

However, a formula for such B-trees will
nonetheless prove very useful.

Such B-trees will be called uniform (m,r,d)
B-trees.

20081202: slides14: 36 of 72

Consider the following table, which computes the
number of nodes and records at each level.

Level Nodes Records

Root 1 m

1 m+1 (m+1)er

2 (m+1)e(r+1) (Mm+21)e(r+1)er

3 (m+1)e(r+1)? (m+1)e(r+1)%er
4 (Mm+1)e(r+1)? (M+1)e(r+1)3er
d (Mm+1)e(r+1)** (Mm+1)e(r+1)% er

Thus, the total number of records R(m,r,d) in a
uniform (m,r,d) B-tree is

m—l—(m—l—l)-r-cfi1 (r+1)

The general law

which may be derived from:
(I+k+E+.. +)1-k)=(1-k""

leads to

Rim,r,d)=m+(m+1)-((r+1)—1)

20081202: slides14: 37 of 72

o This formula easily simplifies to

R(m,r,d)=(m+1)(r+1)*=1

Now, reconsider the problem of finding the
maximum depth of a B-tree with a given number of
nodes. Instead of the "brute-force" approach, the
above formula will be used.

The idea is to find the greatest depth d of a uniform
(1,r,d) B-tree which has the property that the total
number of records does not exceed the specified
number of records N.

« The value of mis 1 in this case, since a tree of
maximum depth is sought, and therefore as few
records as possible are placed in the root node.

« The value of ris 7 for the example.

« The value of N for the example is 1000000.

Thus,
(m+1)(r+1)=1<N
or
N+1
+1)<
(r+1) (m+1)

20081202: slides14: 38 of 72

« To solve, take the log base r+1 of each side.

N+1

log,|——

J<lo N+1|_ m+1
=08 | log ,(r+1)

Plugging in r=7, N=1000000, and m=1 yields

log ,1500000.5]
d <
log ,(8)

Since the depth of a B-tree must be an integer, it
follows that it must be no larger than 6, in
agreement with the brute-force approach.

=6.31

20081202: slides14: 39 of 72

Minimum depth / Maximum density:

o The tree will have minimum depth when the
nodes have maximum density.

« For maximum density, it is assumed that all
nodes are full, including the root.

A node which is full contains 15 records.

What is the minimum depth of the tree in this case?

o First, this problem may be solved with a "brute
force" technique, using a table.

Level Nodes Records at this Total
Level Records

Root 1 15 15

1 16 16015 = 240 255

2 162 = 256 25615 = 3840 4001

3 16° = 4096 4096015 = 61440 65441

4 16* = 65536 65536015 = 983040 1048481

Since the "Total Records" entry is now the
maximum number for the given depth, the tree must
have depth at least 4, since a tree of depth 3 can
hold at most 65441 records.

20081202: slides14: 40 of 72

This problem can also be solved using the general
R(m,r,d) formula. This time:

« m =r =15, since each node, including the root,
contains the maximum number of records.
« N = 1000000, as before.

Thus,
(m+1)(r+1)=1=N
or
N+1
+1)%>
(r+1) m-+1
Since m=r
(r+1)* ' > N+1
Thus
PRI N+l loge(N—l—l)
+1> +1]=
O8r+1 log,(r+1)
or
Ioge(N—i—l)
Z —_—
log,(r+1)

20081202: slides14: 41 of 72

Plugging in N=1000000 and r=15 yields

log (1000001 |
d>

> —1=3.9828
log,(16)

Since d must be an integer, it follows that it must be
at least 4. Again, this is in agreement with the
brute-force approach.

The fact that d is very close to 4 suggests that by
adding just a few more nodes to N, a tree of depth
five would be required. The "brute-force" chart
confirms this; the largest uniform (15,15,4) B-tree
1048481 nodes, only 48481 more than 1000000.

20081202: slides14: 42 of 72

The "R(m,r,d)" formula is useful in other ways. For
example, if the total number of records, as well as
depth d and root record count m of a uniform (m,r,d)
B-tree is known, then the record density r can be
computed as well. Starting with

Rim,r,d)=(m+1)-(r+1)—1
then

R(m,r,d)+1
m+1

(r+1)=

To solve for r, one simply takes the d™ root of both
sides, and then moves the 1 over:

—1

r:</R(m,r,d)+l
m+1

Let us illustrate the utility of this formula with some
concrete examples.

20081202: slides14: 43 of 72

First of all, consider the example of a maximum
depth / minimum density tree with 10° records.

Specifically, consider a uniform (1,r,6) tree with 10°
records. We may ask what the value of r is.

(16
r:ci/R(m’r’d)-l_l —1:6 M—127.90
m-+1 1+1

o This says that a uniform (1,r,6) B-tree would have
7.90 records in its (non-root) nodes.

« Of course, it is impossible to have a tree with 7.90
records per node. This result is thus just an
estimate. A real B-tree, as balanced as possible,
would have between 7 and 8 records per node.

Suppose now that we put 2 records in the root
node. The average value of r for the other nodes
then becomes

6
:</R(m,r,d)—|—1_1:6/10 1 _0as
m+1 2+1

o Thus, by creating slightly more fan-out at the root
node, the lower nodes are much less densely
populated. In fact, the density is just barely
adequate, since the minimum is 7.

20081202: slides14: 44 of 72

Finally, suppose that we put 3 records in the root
node. The average value of r for the other nodes
then becomes

(16
r:ci/R(m’r’d)-l_l —1:6 M—126.93
m-+1 341

« Here the value of r is not enough for a valid tree,
since the minimum is 7.

« Thus, it should not be assumed that a legal value
for r will always result.

20081202: slides14: 45 of 72

Now let us look at the example for minimum depth /
maximum density.

The tree of 10° records with m=15 and d=4 is
characterized as follows:

[A6
r:ci/R(m’r’d)-l_l —1:4M—1=14.81
m-+1 15+1

o The average record density of the nodes is
extremely high, as is expected, since a uniform
(15,r,4) tree can have a maximum of 1048481
nodes.

If the fan-out at the root is reduced by just one, to
m=14, we obtain

6
r=</R<m’r’d>+l =0 1506
m4+1 \ 14+1

o This does not characterize a real B-tree, since the
maximum value forris 15.

Indeed, a uniform (14,15,4) B-tree has as the
maximum number of records:

(m+1)(r+1)=1=15-16"—1=983041

which is only slightly less than 10°.

20081202: slides14: 46 of 72

Average Path Length

Now consider the following question, the answer to
which is a major factor in computing access time:

« For a given uniform (m,r,d) B-tree, what is the
average path length from the root to a node?

From previous computations, we know that

« Number of records at level d = (m+1)e(r+1)""er
 Total number of records = (m+1)e(r+1)*-1

Thus, the percentage of records which are situated
In leaves is approximately

(m—l—l)-(r—i—l)d_l-rN (m+1)-(r+1)"1r r

(m+1)-(r+1)'=1 (m+1)-(r+1)* 7+l

If r is reasonably large (as is typically the case with
a B-tree), then most of the records will reside in the

leaf nodes.
r r/(r+1)
1 0.500
8 0.888
15 0.938
32 0.970
100 0.990

Thus, even for the example which we have
considered, it can be expected that around 90% of
the records will reside at leaf nodes.

20081202: slides14: 47 of 72

Implication:

« If there is one disk request per access to a B-tree
node, then the average access time will be the
time for a single access times the depth of the
tree.

« For the example, four or five disk access per
record fetch is excessive! Even at 10 ms. per
access, this would result in 40 to 50 ms. per
record access! (Of course, a good caching
strategy would help immensely.)

« Can this be improved upon?
There is an interesting improvement.
« Since pointer fields are not needed in leaf nodes,
we could have two types of nodes.
« For interior nodes, use the design we have
already described.
« For leaf nodes, have data fields only.

« In our example, without pointers, we could fit 16
records in such a leaf node, instead of just 15.

20081202: slides14: 48 of 72

How substantial an improvement is this?

e The total number of leaf nodes in a uniform
(m,r,d) B-tree is (m+1)e(r+1).

e The total number of records in the tree is
(Mm+1)e(r+1)"-1.

« Assume that by eliminating pointer fields, an
additional k records may be placed in a node.

Then, the capacity of the tree, for r set to the

maximum number of records per ordinary node, is
iIncreased by the factor

(m+1)-(r+1)" "k N(m—i—l)-(lf—i—l)d_l-/c_ k

(m+1)-(r+1)7=1 (m+1)-(r+1)7 r+l

For the running example, k would be just 1, so the
improvement would be 1/(r+1), which is a a rather
small amount; for r=9, it would be about 10%.

Still, this is a simple improvement which may be
made with little or no programming overhead.

20081202: slides14: 49 of 72

Additional comments on B-trees
There are two distinct flavors of implementation:
1. Actual records are stored in the data fields.

Advantages:
« Rapid access to adjacent records.

Disadvantages:
o Low density of records per node results in a
very large structure.

2. The entire B-tree is merely an index to the actual
records; the data fields of the B-tree are pointers
to the actual records .

Advantages:
« High density of keys per node, as only key
values and pointers need be stored.

Disadvantages:

« Potentially extreme fragmentation of actual
data.

20081202: slides14: 50 of 72

A better approach: the B*-tree

A B*-tree differs from a B-tree in the following
fundamental way:

All of the data records are held at the leaves.
The interior nodes are used solely as an index
structure.

Leaf nodes must be at least half full of records.

Advantages:

Since index fields are much smaller than record
fields, the index (non-leaf nodes) will be relatively
small.

The non-leaf index structure is often small
enough so that it may be kept in main memory.
« This gives constant-time access. (only one
disk access per data request!)

The leaf nodes may be linked together to provide
a simple means of sequential processing.

The insertion and deletion algorithms are similar
to those for B-trees.

Adjustments to non-leaf nodes are easier, since
field values are not records, but merely index
value.

20081202: slides14: 51 of 72

¢L 30 ¢S wTS9aplIs :2021800¢

"UON3|aP puUR UOIASUI 81esSN||l MOU S\

86 [9g [I Jovlvv]l | | Iselog] | | lezlie] [Jct]or] 8|
A

¢9 |09 g |os 2v [ov [2]lo]¢]

—tlesTlss[lzvTlev [lee] 1R

(Anua xapul
1eyl JO 13| aY) 01 punoj ale Aljua Xapul ue ydrew SAay aSoym SpIoaay :UoNUSAU0D)
:9311-,g e Jo ojdwexs uy

¢L 10 €S WTS9aPIIS :202T1800¢

[| Jozler] [IstistivtL]

86 [9g L | lov]|vr] ge |o¢ eL]oL] 8|

G9109 €6 10S ¢v |0Y

[lz]ol¢]

—tlesTlss I zvTlev [l6eT

86 |9g L | lov|v¥] g¢ |o¢ _

g9 [09 ¢ [0 zv lov [2]9]¢]

—t1lesTiss|zvTler[6eT]

L If 10 I 11 If f1 Tleel
:(sAem j1ualajip oM]) 9all-,g 9A0Qe Byl 01Ul OZ JO uolasul Jo ajdwex3

¢L 0 vS WTS9aPIIS 120218002

86 [9g [I Jovlvv]l | | Iselog] | | lezl6L] [Jct]or] 8|
A A

¢9 |09 g |os 2v [ov [2]lo]¢]

—tlesTlss[lzvTlev [lec] IR

LI 01 01 I1 f1 Il Tlee

86 [9g [I Jovlvv]l | | Iselog] | | lezlie] [Jet]or] 8|
A A

_ |9 {09 g [og 2t o e¢ o sz l6r]se]seive] | L 12]l9]¢€]

—tlesTlss | 1zvTlev [le6c] 1IN veTlozTIeLT] £

(L IT_IT IT TT IT TI TTsell

:TZ 9njeA ay) Jo uons|ag :uonajap Jo ajdwexs uy e

g9

09

bmq ob

0€ |S¢

€¢

¢/ 30 GG YTS9pPIIS 120218002

1]

vl

I~

LE1i0Cc]i€!L

L

:99.) [eNIUI 81 SI SIYL

'auU0 [9A3] Te Buibiaw e saresnsn||l 8¢ Uayl pue 9¢ Jo uonaap ayL

8g

9g

09

1%

4%

€G

0€ |S¢C

€¢

¢ |OY

¢/ 10 99 yTS9aplIs :202T1800¢

€l

1]

Gl

vl

6G 1SS |2V]|EV] |SE

0¢

€l

L

:ypdap ul uononpal e Yim g€ Jo uona|ap ‘ajdwexa uonajap ayl Jo uonenunuod

g9

09

oY

G¢

€¢

%44

_,Nq

€L|ol

N

8¢ |0€

Sl

vl

I~
©
id

czl]oz[[etL

L

6€

:SaNn[eA JO uoie)ol e eiA paysijdwodde S| gs Jo uonajap ayL

¢L 30 LS YTS9pPIIS 120218002

es|os | Zr :a_,oq 6¢ gz lsz|ce €L10L]8

bl L]o9]¢€

ocllociier]l L

8G |96 ov | Y zeloslselse €LioL| 8

€4 109 cv |1V |0V |6€ 8LI9L|SL|VI L]91]€

6GISS|IZvIEP|ISEL]0C]|EL]] 2

:82 A3 UYlm plo2al e Jo uoiasul ay) ‘uoisuedxa Jo sjdwexs uy

¢/ 108G yTS9aplIs :202T1800¢

LI 11 01 IF JF J1 Tlsel

‘lesionel] 1apI0-9SIaAal MO|Je 0]
Se ||om Se ‘uoluasul Asea mojle 0] ‘pasn sI (1s1] paxyul] Aignop) Bunjuil Aem-om) ‘Ajrensn ¢

‘Saul| paysep Y1im umoys s)ull ay) 9as e
‘19Y1ab0)
paxul| aq Aew aal1-,g e JO SaARa| ay) ‘9l sy} Jo Buissadsoud fenuanbas jwpe o]

*Saul| paysep Ylim umoys s)ul| ay) 9as e
*19Y1ab0)
paxul| aq Aew aall-,g e JO SaAea| ay ‘a1 syl Jo Buissaosoud fenuanbas yqwpe o] e

Analysis of B*-tree size requirements:

Example:
Assumptions:

« 2 Kbyte. pages.

« 128 bytes per record (very conservative for a
DBMS)
4 bytes per pointer (4 Gbyte. address space).
16 bytes per internal key.
10° records total.
8 bytes total for the sequential pointers of the
leaf nodes.

Number of indices per internal node:

4 + ne(16+4) = 2048
So: n = 2044/20] = maximum 102 keys per internal
node.

Number of records per leaf node:
8 + ne128 = 2048
So: n = 2040/128] = maximum 15 records per

external node.

(The initial eight bytes are for the sequential
pointers, with links in both directions.)

20081202: slides14: 59 of 72

Maximum depth / Minimum density

The assumptions are similar to those for a B-tree:

« The tree will have maximum depth when the
nodes have minimum density.

o For minimum density, it is assumed that index
nodes are at least half full of pointers, but no
more full than necessary.

e Leaf nodes are at least half full of records.

o The sole exception is the root node, which need
contain only one index value.

e An index node which is half full contains

| 102¢(*2)] = 51 indices. (Round down)

A record node which is half full contains [15e(%%) |
= 8 records. (Round up)

What is the maximum depth of the index structure
for tree?

« First, this problem may be solved with a "brute
force" technique, using a table.

Level |Nodes Keys at this Level Min. Records at Leaf
Level Below

Root 1 1 208 = 16

1 2 2051 =102 20528 = 832

2 2052 =104 104e51= 5304 104528 = 58240

3 104e52= 5408 540851 = 275808 | 5408528 = 2249728

The maximum depth of the index structure is thus 2,
because an index of depth of 3 would require a
minimum of 2249728 records. The tree itself has
depth bounded by 3.

20081202: slides14: 60 of 72

In analogy to a uniform (m,r,d) B-tree, we may
define the notion of a uniform (m,q,r,d) B*-tree.
Such trees have the following uniform parameters.

m = total number of indices at the root node.

g = total number of indices in each other index
node.

r = total number of records in each leaf node.

d = depth of the tree, from the root to a leaf node.

In the above example, m=1, g=51, r=8, and d is to
be computed.

Remember that not every B*-tree is uniform. This is

a special case, which is very useful for
computational purposes.

20081202: slides14: 61 of 72

Consider the following table, which computes the
number of nodes and records at each level.

Index [Index Nodes Keys Total Records at
Level Next Level

Root 1 m (m+1)er

1 m+1 (m+1)eq (m+1)e(g+1)er

2 (Mm+1)e(g+1l) (m+1)e(g+l)eq (M+1)e(q+1)er
3 (M+1)e(g+1)* (m+1)e(g+l)’eq (M+1)e(q+1)’er
4 (M+1)e(q+1)’ (m+1)e(g+l)’eq (Mm+1)e(q+1)’er
d (M+1)e(g+1)* (m+1)e(q+1)*eq (m+1)e(q+1)er

Let R(m,q,r,d) denote the total number of records
which are stored in a uniform (m,q,r,d) B*-tree.
Then

Rim,q,r,d)=(m+1)(g+1)"""r

We can solve for d in this equation as in the one for
B-trees:

R(m,q,r,d)

+1
(m+1)-r

d=log

qg+1

For the example (m=1, g=51, r=8, R(m,q,r,d)=10°),
we compute d = 3.794. Since d must be an integer,
the depth of the tree must be at most 3, in
agreement with the brute-force approach.

20081202: slides14: 62 of 72

Minimum depth / Maximum density:

o The tree will have minimum depth when the
nodes have maximum density.

« For maximum density, it is assumed that all
nodes are full, including the root.

o An index node which is full contains 102 indices.
o A leaf node which is full contains 15 records.

What is the minimum depth of the tree in this case?

« First, this problem may be solved with a "brute
force" technique, using a table.

Level |Nodes Keys at this Level Max. Records at
Leaf Level

Root 1 102 103015 =1545

1 103 103102 = 10506 103%e15 = 159135

2 103* = 10609 103%102= 1082118 103%15 = 16390905

Since the "Total Records" entry is now the
maximum number for the given depth, the tree must
have depth at least 3, since a tree of depth 2 can
hold at most 159135 records. Remember that 1
must be added to the level to account for the leaf-
level data nodes.

« Note that a tree of depth three will accommodate
over 16M records!

20081202: slides14: 63 of 72

The formula

R(m,q,r,d)
(m+1)-r

d=log ., +1

when supplied with m=g=102, r=15, and
R(m,q,r,d)=10° yields d = 2.39. Since d must be an
integer, it is round up to 3, to get the minimum
height of the tree.

Thus, the minimum and maximum heights are the
same in this examplel!

20081202: slides14: 64 of 72

In a uniform (m,q,r,d) B*-tree, the number of index
(interior) nodes is

1+<m+1>-g<q+1>l‘:1+<m+1>'<<qq+1>‘H—1>

o Consider a uniform (1,51,8,4) B*-tree, which
would have 2249728 data records.

« According to this formula, It would have just
5515 index nodes.

« At 2KB per node, this translates to just over
11 Mbyte. of memory.

Consider a uniform (102,102,15,3) B*-tree, which
would have 16390905 data records.

« According to this formula, It would have just
10713 index nodes.

« At 2KB per node, this translates to just under
22 Mb. of memory.

Why not keep the whole index in main memory?

« This reduces the number of disk accesses per
record to one — constant time access!

20081202: slides14: 65 of 72

Extendible Hashing:

« The goal of extendible hashing is to realize the
advantage of hashing:
« Fast (constant-time) random access
within the context of data on secondary storage.

|dea:
o The hashing function
h: keys — hash values
Is broken into two pieces:
« Directory address
o Leaf address

Toy example:
Suppose we have a 16-bit hash address:
« Directory address size = 3 bits
« Hash address size = 13 bits

Suppose that « is a key with the property that h(x) =
1010111010110001.

Then,
« Directory address = 101
o Leaf address =0111010110001

e This assumes that we use the first three bits as
the directory address.

« There are other possibilities.

20081202: slides14: 66 of 72

General structure:
« For each directory entry, there is a hash bucket.
« Directory entries may share hash buckets.

e In a “powers-of-two” fashion

Example:

« The value d indicates the actual depth of the
Index entries associated with that bucket.

Depth = 3 d=2
000 >
o] 12—
010 ~ d=3
011 \\»
100 N
101 N d=3
110 N
111 N

d=1

Index
Leaf Pages

20081202: slides14: 67 of 72

Notes:

e In a “real” application, the index size would be
much larger (e.g., 12 to 16 bits).

o The index is typically kept in main memory, since
it is quite small.

« The index may be searched very rapidly, in an
“array” style.
e The i" entry is found at address
base + i x entry_size.

« The sharing of buckets accommodates
unevenness in the distribution of hashed values.

« The arrangement of elements within a bucket is a
separate issue, and may be optimized for the
particular application.

« It should be done is such a way to
accommodate the “splitting” operation,
which will be described next.

Now let us examine why this scheme is termed
extendible.

20081202: slides14: 68 of 72

o Suppose that the 00 bucket (shared by 000 and
001) in the example becomes full.

« This bucket is then split into two, as illustrated
below.

d=3
New
\ buckets
] after

000 1

o +——
010 -
011 \\

100
101

110
111

d=3

Index

Leaf Pages

20081202: slides14: 69 of 72

« A more serious problem occurs if a bucket which
IS associated with only one index entry becomes
overfull.

o In this case, the index must be doubled, as
Illustrated below for the case that the bucket for
001 became full.

Depth = 4
0000
0001
0010 -
0011 N

New
0100) buckets

0101 d=4 after
A / splitting

o110[
o111
1000 | d=3
1001
1010
1011
1100
1101
1110
1111

d=3

d=4

/|

Index Leaf Pages

20081202: slides14: 70 of 72

Other issues:

o Itis possible to construct a block-combining
strategy as well, but this is uncommon unless it is
expected that the database will shrink
substantially without subsequent growth.

e Random-access time may be somewhat superior
to that for B*-trees, particularly in situations in
which there is relatively little memory available:

e The index for extendible hashing is much
smaller than the index for a corresponding
B*-tree.

« NoO searching is required; just computation
of a key-to-address transformation and an
array access.

« Relative advantages diminish as memory size
Increases.

« With a typical hashing strategy:
« Sequential processing becomes very slow.
« Batch processing is still feasible.

« In some cases, it may be possible to arrange
things so that sequential processing is still
feasible:

o Use atrivial KAT: the first k bits of the key
become the directory address, and the rest
the leaf address.

« This may or may not result in very poor
record distribution, depending upon the
application.

20081202: slides14: 71 of 72

o Reference for further information:

R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong, “Extendible hashing — a fast access method
for dynamic files,” ACM Transactions on Database
Systems, 4(3), September 1979, pp. 315-344.

20081202: slides14: 72 of 72

