10001010 meffectiveness of Data

00100011

Thomas Hellström Department of Computing Science Umeå University SweDS2018 2018-11-20

Intelligent robotics @ Umeå University

Professor Thomas Hellström Department of Computing Science Umeå University

Machine Learning for

- Robot learning
- Natural Language Processing
- Object identification in images

This talk ... The Reasonable Ineffectiveness of Data

The Model Driven Approach

- Galileo Galilei
 - One of the first to combine theoretical and experimental physics with mathematics
 - The Scientific Method: A mathematically formulated hypothesis about the world is tested with experiments: collecting and analyzing data
 - "the laws of nature are mathematical"
- Physics can often be described with very simple equations
 - $-s = at^2/2$
 - -f = ma
 - $-e=mc^2$

Isaac Newton British Founded classical mechanics & more

> Albert Einstein German/American Theory of Relativity

The Model Driven Approach

- Eugene Wigner
 - Hungarian-American theoretical physicist
 - Nobel Prize in Physics in 1963
- *"The Unreasonable Effectiveness of Mathematics in the Natural Sciences"*
 - Newton's law of gravitation is accurate to less than a ten thousandth of a per cent.
 - In quantum mechanics they make fantastic discoveries by generalizing mathematical rules, generated from data
 - "the enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and that there is no rational explanation for it".

Eugene Wigner

Hungarian-American

Nobel Prize in Physics in 1963

Limitations With the Model Driven Approach

- Science that include human behavior is often resistant to elegant mathematics
 - Cognitive science
 - Speech recognition
 - Language understanding
 - An (incomplete) English grammar is more than 1700 pages long
 - Economics
 - Ethics
 - • •

Traditional (model driven):

Peter Norvig

American

"The Unreasonable Effectiveness of Data"1

- State-of-the-art in speech recognition, machine translation, and image analysis are data driven.
- "We should stop acting as if our goal is to author extremely elegant theories, and instead embrace complexity and make use of the best ally we have: the unreasonable effectiveness of data."
- This view is embraced in machine learning, not least in deep learning

Machine translation

- MUCH better than 10 years ago
- However, the machines make mistakes no human would make
 - Some random Thai characters translates into:
 "There are six sparks in the sky, each with six spheres. The sphere of the sphere is the sphere of the sphere."

Do these machines UNDERSTAND language?

Gomes, Lee (July 22, 2010). "Google Translate Tangles With Computer Learning". Forbes.

A system learns to generate image annotations from a database with images & annotations (>1M images)¹

A group of young people playing Frisbee A person riding a motorcycle on a dirt road

A refrigerators filled with lots of food and drinks

Much better than state-of-the-art

But does the program UNDERSTAND in any sense?

1. Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, *Show and Tell: A Neural Image Caption Generator*, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP'15).

- So is this observed ineffectiveness reasonable and even expected?
- Yes, and it is a consequence of a purely datadriven approach which leads to
 - Finding correlations by chance
 - Confusing correlation with causation
 - Inability to identify causation

Finding correlations by chance

"Data snooping"

• "If you torture data long enough it will confess to anything"

- Correlations and patterns only exist in the examined data
- Especially problematic if data is big AND limited (e.g. economy data)

Finding correlations by chance

Tyler Vigen, www.tylervigen.com

Confusing correlation with causation

- Data: HDL ('good') cholesterol is negatively correlated with heart attacks.
- (incorrect) Conclusion: Taking medication to raise HDL decreases the risk of getting a heart attack.
- Further research (experiments) showed that
 - Exercise, Genes, Diet,... affect
 both HDL levels and the likelihood of having a heart attack
 - This is manifested as the observed correlation
 - Medication to increase HDL may even increase the risk
- Data alone could not answer what would happen if we increase HDL
- Randomized Controlled Trials (RCT) is a common technique in medicine

NIH stops clinical trial on combination cholesterol treatment, National Institute of Health, 2011. https://www.nih.gov/news-events/news-releases/nih-stops-clinical-trial-combination-cholesterol-treatment

Inability to identify causation

- Data alone cannot identify causation and answer questions such as "What if ..."
- Deep Learning normally only works with correlations
- That's why the program thinks this picture is a "refrigerators filled with lots of food and drinks"
- We need to incorporate *understanding* in our solutions
 - Judea Pearl introduced *do-calculus* and uses *causal diagrams*
 - X causes Y if P(Y | do(X)) > P(Y)
 - Hybrid solutions

SUMMARY

- Problems with a purely data-driven approach
 - Finding correlations by chance
 - Caused by the huge amount of data
 - Confusing correlation with causation
 - Not so strange since correlations often IS causation
 - Inability to identify causation
 - There is no general way to identify causation from data only
 - *Understanding* of the problem is required!
 - For this, models AND data are necessary