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Prefae

This work overs perturbation analysis of the following three kinds of algebrai

eigenproblems: the eigenvalue problem

Ax = �x; (I)

the singular value deomposition

A = U�V

H

; (II)

and the generalized eigenvalue problem

�Ax = �Bx; (III)

where the matries A and B are data.

Perturbation analysis of the algebrai eigenproblems ontains forward perturba-

tion analysis and bakward perturbation analysis.

Forward perturbation analysis is motivated by the fat that any one of the prob-

lems (I), (II) and (III), as the others in matrix omputations, is usually subjet to

perturbations on the data reeting various errors in the formulation of the problem

and in its solution by a omputer. When solving a omputation problem, it may well

be asked: How does a solution hange when the data are subjet to perturbations?

The result of a forward perturbation analysis may be a perturbation expansion,

or a ondition number, or a perturbation bound. A perturbation expansion approxi-

mates the perturbation in the solution in terms of a known perturbation on the data.

A ondition number is a measure of the sensitivity of the solution to perturbations

on the data. A perturbation bound is used to bound the resulting perturbation in

the solution.

Bakward perturbation analysis is motivated by the following fat. Let an ap-

proximate solution to a omputation problem be given. For example, the approx-

imate solution may ome from a numerial algorithm for approximating the exat

solution. Then there are two important questions assoiated with the approximate

solution: (1) Is the approximate solution the exat solution of a slightly perturbed

v



vi PREFACE

problem? (2) Is the approximate solution lose to the exat solution?

To answer the question (1) we need the notion of bakward error of a problem

with respet to an approximate solution. In general, an approximate solution of

a problem solves many perturbed problems. The bakward error of the problem

with respet to the approximate solution is a measure of the nearness between the

perturbed problems and the original problem. A small bakward error means that

the approximate solution is the exat solution of a slightly perturbed problem. Con-

sequently, to �nd a omputable formula of the bakward error may be very useful

for testing the bakward stability of pratial algorithms.

When omputable formulas of the bakward error and the assoiated optimal

(minimum) bakward perturbation on the data are found, an answer to the question

(2) will be obtained by applying an appropriate forward perturbation result to the

optimal (minimum) bakward perturbation on the data. Generally speaking, the

optimal (minimum) bakward perturbation is expressed through some residual of

the problem with respet to the approximate solution, and so the obtained estimate

onerning the auray of the approximate solution is usually in the form of resid-

ual bound.

The present work is a sequel to the books Matrix Perturbation Analysis [104,

1987 and 2001℄ and Matrix Perturbation Theory [97, 1990℄. In the two previously

published books, we were hiey onerned with perturbation bounds for linear

systems, least squares, eigenvalue problems, the singular value deomposition, and

generalized eigenvalue problems. The main objet of this work is to desribe teh-

niques for deriving perturbation expansions, ondition numbers, bakward errors,

and residual bounds for the problems (I), (II) and (III).

I hope that this work will be useful to graduate students in tehnial areas and

my olleagues in numerial analysis, and also to all omputational sientists and

engineers who are onerned about the stability and auray of their results.

The �rst hapter of the work reviews and ollets neessary bakground material

from matrix algebra and analysis. Chapters 2, 3 and 4 are devoted to the problems

(I), (II) and (III), separately. We have supplemented eah setion with a set of

\Notes and Referenes" in whih literature itations are given, and other related

results are disussed. Besides, a ertain number of simple numerial examples are

used to illustrate some theoretial results. All omputations were performed using

MATLAB, version 4.2. The relative mahine preision is 2:2204 � 10

�16

.

This work has greatly bene�ted from the insight and knowledge provided by

many friends and olleagues. In partiular, the work of Pete Stewart and Nik

Higham has strongly inuened my researh in perturbation analysis of algebrai

eigenproblems.
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Chapter 1

Preliminaries

This hapter ontains neessary bakground material for the hapters that follow.

The �rst setion introdues some notation. x1.2 { x1.5 are devoted to norms,

metris, matrix orthogonal deompositions, and solutions of some matrix equations.

The impliit funtion theorem, the Brouwer �xed point theorem and the Shauder

�xed point theorem, are ited in x1.6 and x1.7, respetively.

In x1.8 and x1.9 we introdue de�nitions of normwise ondition numbers and

normwise bakward errors.

1.1 Notation

Throughout this work we shall use the following notational onventions.

The symbol C

m�n

(R

m�n

) will denote the set of m� n omplex (real) matries,

C

n

= C

n�1

, R

n

= R

n�1

, C = C

1

, and R = R

1

. As usual ; is the empty set.

The transpose of a matrix A will be written A

T

, the onjugat A, and A

H

= A

T

.

The trae of a square matrix A will be written tr(A). The symbol jAj will denote

the matrix (j�

ij

j) for A = (�

ij

). The identity matrix will be wriiten I, e

j

is the jth

olumn of I, and e

(n)

j

stands for the jth olumn vetor of I

n

, the identity matrix of

order n. The null matrix will be written 0.

The set of n�nHermitian (real symmetri) matries will be writtenH

n�n

(S

n�n

),

and the set ofm�n unitary (real orthogonal) matries will be written U

m�n

(O

m�n

);

i.e.,

H

n�n

= fA 2 C

n�n

: A

H

= Ag; S

n�n

= fA 2 R

n�n

: A

T

= Ag;

U

m�n

= fA 2 C

m�n

: A

H

A = Ig; O

m�n

= fA 2 R

m�n

: A

T

A = Ig:

1
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The positive de�niteness (or semi-de�niteness) of A 2 H

n�n

(or S

n�n

) will be

denoted by A > 0 (or A � 0).

For A 2 C

m�n

, A

y

stands for the Moore-Penrose inverse of A, and R(A) the

olumn spae of A, i.e., R(A) = fAx : x 2 C

n

g. The orthogonal projetion onto

the subspae R(A) will be written P

R(A)

(or simply, P

A

), and P

?

A

= I � P

A

. For a

subspae X , dim(X ) will denote the dimension of X .

The set of all eigenvalues of A will be wriiten �(A), the set of all singular values of

A will be written �(A), and �

+

(A) will denote the set of all positive singular values

of A. The largest (smallest) singular value of A will be written �

max

(A) (�

min

(A)).

For A = (�

jk

) = (a

1

; : : : ; a

n

) 2 C

m�n

and a matrix B, A 
 B = (�

jk

B) is a

Kroneker produt, and ve(A) is a vetor de�ned by ve(A) = (a

T

1

; : : : ; a

T

n

)

T

. For

basi properties of the Kroneker produt and ve operator, see Graham [42, Chap-

ters 1 and 2℄, or Horn and Johnson [56, Chapter 4℄, or Lanaster and Tismenelsky

[67, Chapter 12℄.

Throughout this work, the symbol k � k will be used to denote any unitarily in-

variant norm (see Setion 1.2.3) if there is no a speial statement.

For linear spaes A and B, the produt spae A� B is de�ned by

A� B = f(a; b) : a 2 A; b 2 Bg:

The relation \�" is used for impliit de�nitions.

1.2 Norms

Most of the perturbation results presented in the following hapters are on normwise.

Therefore, norms have an important role to play in our work. In this setion we

ollet ertain basi notion and fats on vetor norms and matrix norms.

1.2.1 Vetor Norms

A vetor norm is a generalization of the modulus of a omplex number.

A funtion � : C

n

!R is a norm on C

n

if � satis�es the following onditions:

1: x 6= 0 =) �(x) > 0;

2: �(�x) = j�j�(x) for any � 2 C;

3: �(x+ y) � �(x) + �(y):
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For any x = (�

1

; : : : ; �

n

)

T

2 C

n

, the p-norm kxk

p

is de�ned by

kxk

p

= (j�

1

j

p

+ � � �+ j�

n

j

p

)

1

p

; p � 1:

The most useful p-norms are the 1-norm, 2-norm (or the Eulidean norm), and the

1-norm:

kxk

1

=

n

X

j=1

j�

j

j; kxk

2

=

p

x

H

x; kxk

1

= max

1�j�n

j�

j

j:

A vetor norm � on C

n

is absolute if �(jxj) = �(x) for all x 2 C

n

, where jxj

denotes the vetor whose elements are the absolute values of the elements of x. Any

p-norm is obviously an absolute norm.

It is known (see, e.g., Stewart and Sun [97, Chapter II, Theorem 1.3℄) that a

vetor norm � is absolute if and only if

jxj � jyj =) �(x) � �(y):

For any vetor norm �(�) on C

n

, the dual norm �

D

(�) is de�ned by

�

D

(y) = max

�(x)=1

jy

H

xj; y 2 C

n

:

It an be veri�ed that for any vetor x we have

kxk

D

2

= kxk

2

; kxk

D

1

= kxk

1

; kxk

D

1

= kxk

1

:

1.2.2 Matrix Norms

A funtion � : C

m�n

!R is a norm on C

m�n

if � satis�es the following onditions:

1: A 6= 0 =) �(A) > 0;

2: �(�A) = j�j�(A) for any � 2 C;

3: �(A+B) � �(A) + �(B):

Let �

1

; �

2

and �

3

be norms on C

m�n

, C

n�k

and C

m�k

, respetively. Then �

1

; �

2

and �

3

are mutually onsistent if

�

3

(AB) � �

1

(A)�

2

(B)

whenever A 2 C

m�n

and B 2 C

n�k

. In partiular, a matrix norm � on C

n�n

is

onsistent if

�(AB) � �(A)�(B)

for all A;B 2 C

n�n

.
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The most frequently used matrix norms in matrix perturbation analysis are the

Frobenius norm k � k

F

and the p-norm k � k

p

. For A = (�

jk

) 2 C

m�n

, the norms

kAk

F

and kAk

p

are de�ned by

kAk

F

=

v

u

u

t

m

X

j=1

n

X

k=1

j�

jk

j

2

;

and

kAk

p

= sup

x6=0

kAxk

p

kxk

p

; p � 1:

Note that the Frobenius norm and any p-norm are onsistent norms.

The most useful p-norms are the 1-norm, 2-norm (i.e., the spetral norm), and

the 1-norm.

If �

1

; : : : ; �

n

are the singular values of A 2 C

m�n

, i.e., if �

1

; : : : ; �

n

are nonneg-

ative salars and �

2

1

; : : : ; �

2

n

are the eigenvalues of A

H

A, then the norms kAk

F

and

kAk

2

an be expressed by

kAk

F

=

v

u

u

t

n

X

j=1

�

2

j

; kAk

2

= �

max

(A):

1.2.3 Unitarily Invariant Norms

For any A 2 C

m�n

, U 2 U

m�m

and V 2 U

n�n

, we have

kUAV k

F

= kAk

F

; kUAV k

2

= kAk

2

;

and

kAk

F

= kAk

2

if rank(A) = 1:

These fats suggest the following de�nition.

A norm k � k on C

m�n

is alled a unitarily invariant norm if it satis�es

4: kU

H

AV k = kAk for any U 2 U

m�m

and V 2 U

n�n

;

5: kAk = kAk

2

if rank(A) = 1:

Note that any unitarily invariant norm is a onsistent norm.

By the von Neumann theorem [125℄ (or see Stewart and Sun [97, Chapter II,

Theorem 3.6℄), any unitarily invariant norm an be haraterized as a symmetri

gauge funtion of singular values.
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A funtion � : R

n

! R is alled a symmetri gauge funtion if it satis�es the

following �ve properties:

1: x 6= 0 =) �(x) > 0;

2: �(x) = jj�(x) for any  2 R;

3: �(x+ y) � �(x) + �(y);

4: �(P jxj) = �(x) for any permutation matrix P;

5: �

�

e

(n)

1

�

= 1:

Suppose that � is a symmetri gauge funtion on R

N

, where N is a suÆiently

large natural number. Then for any m;n � N we may de�ne a unitarily invariant

norm k � k on C

m�n

(m;n � N) by

kAk = �(�

1

; : : : ; �

n

; 0; : : : ; 0);

where �

1

; : : : ; �

n

are the singular values of A. Consequently, we obtain a family of

unitarily invariant norms on

S

m;n�N

C

m�n

generated by �. For simpliity, the symbol

k � k will also be used to denote a family of unitarily invariant norms generated by

any symmetri gauge funtion.

The following properties possessed by unitarily invariant norms are well known:

kA

H

k = kAk;

�

+

(A

1

) = �

+

(A

2

) =) kA

1

k = kA

2

k;

kA

2

k =











 

0

A

2

!











�











 

A

1

A

2

!











;

kABk � kAk

2

kBk; kABk � kBk

2

kAk:

Besides, if the singular values of A;B 2 C

m�n

are �

1

� � � � � �

n

and �

1

� � � � � �

n

,

respetively, and �

j

� �

j

for j = 1; : : : ; n, then kAk � kBk.

1.2.4 Some Results on Matrix Norms

The following results on matrix norms will be used in hapters 2{4.

Theorem 1.2.1. Let A =

 

A

11

A

12

A

21

A

22

!

be a partitioned matrix, and let

B =

 

0 A

12

A

21

0

!

; C =

 

A

11

0

0 0

!

; D =

 

A

11

0

0 A

22

!

; A

1

=

 

A

11

A

21

!

:
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Then

kBk � kAk; kCk � kAk; kDk � kAk; kA

1

k � kAk:

Proof. Let

Q =

 

I 0

0 �I

!

:

Then from

B =

1

2

(A�QAQ); D =

1

2

(A+QAQ); C =

1

2

(D +QD)

we get

kBk � kAk; kCk � kDk � kAk:

Moreover, from

A

1

= A

 

I

0

!

we get

kA

1

k � kAk











 

I

0

!











2

� kAk: 2

Theorem 1.2.2. Let B 2 C

m�m

; C 2 C

n�n

(m � n) be normal matries, and

� = diag(

i

) with 

1

� � � � � 

n

� 0. Then











B

 

�

0

!

�

 

�

0

!

C











F

� 

n











B

 

I

(n)

0

!

�

 

I

(n)

0

!

C











F

: (1:2:1)

Proof. We �rst prove the inequality (1.2.1) for m = n. Let

Æ = kB�� �Ck

2

F

� 

2

n

kB � Ck

2

F

and


 = �� 

n

I:

Obviously, the diagonal elements of 
 are nonnegative. Moreover,

Æ = kB
� 
C + 

n

(B � C)k

2

F

� 

2

n

kB � Ck

2

F

= kB
� 
Ck

2

F

+ 2

n

Re

�

tr

h

(B
� 
C)

H

(B � C)

i�

= kB
� 
Ck

2

F

+

n

tr

�




h

(B � C)

H

(B � C) + (B � C)(B � C)

H

i�

� kB
� 
Ck

2

F

� 0;

whih shows

kB�� �Ck

F

� 

n

kB �Ck

F

: (1:2:2)
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We now prove the inequality (1.2.1) for m > n. Let

^

� =

 

� 0

0 

n

I

m�n

!

;

^

C =

 

C 0

0 I

m�n

!

:

Then we have







B

^

��

^

�

^

C







2

F

=











 

B

 

�

0

!

�

 

�

0

!

C; B

 

0



n

I

m�n

!

�

 

0



n

I

m�n

!!











2

F

=











B

 

�

0

!

�

 

�

0

!

C











2

F

+ 

2

n











B

 

0

I

m�n

!

�

 

0

I

m�n

!











2

F

;

(1:2:3)

and



2

n







B �

^

C







2

F

= 

2

n











B

 

I

n

0

0 I

m�n

!

�

 

C 0

0 I

m�n

!











2

F

= 

2

n











B

 

I

n

0

!

�

 

I

n

0

!

C











2

F

+ 

2

n











B

 

0

I

m�n

!

�

 

0

I

m�n

!











2

F

:

(1:2:4)

By (1.2.2),







B

^

��

^

�

^

C







F

� 

n







B �

^

C







F

:

Combining it with (1.2.3) and (1.2.4) shows the inequality (1.2.1). 2

We now ite two famous results on norm-preserving dilations.

Theorem 1.2.3 (Kre

�

in and Kahan). Let

�(W ) =

 

A C

H

C W

!

with A 2 H

k�k

and C 2 C

l�k

. Then

min

W2H

l�l

k�(W )k

2

=











 

A

C

!











2

:

Theorem 1.2.4 (Kahan, Weinberger, Davis, and Parrot). Let

	(Z

22

) =

 

Z

11

Z

12

Z

21

Z

22

!
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with Z

11

2 C

k�k

and Z

21

; Z

T

12

2 C

l�k

. Then

min

Z

22

2C

l�l

k	(Z

22

)k

2

= max

(











 

Z

11

Z

21

!











2

; k(Z

11

; Z

12

)k

2

)

:

Note that Theorems 1.2.3 and 1.2.4 are valid for real matries.

Notes and Referenes

NR 1.2{1. There is a large literature on vetor norms and matrix norms. For

deeper issues onerning norms, see Householder [57, Chapter 2℄, and Horn and

Johnson [55, Chapter 5℄; for unitarily invariant norms, see von Neumann [125℄ and

Mirsky [78℄; for historial omments on the development of norms in numerial anal-

ysis, see Stewart and Sun [97, Chapter II℄.

NR 1.2{2. The inequality (1.2.2) is proved by Sun [100℄. Theorem 1.2.2 is

proved by Chen and Sun [20℄.

NR 1.2{3. Theorem 1.2.3, as an important dilation theorem, is disovered by

Kre

�

in [64℄ and Kahan [61℄ (see Parlett [83, 231{233℄). Reently, Elsner, He and

Mehrmann [36℄ give a proof in a di�erent way.

NR 1.2{4. Theorem 1.2.4 is a general dilation theorem. The �rst proof is given

by Kahan and Weinberger; later proofs are given by Davis [25℄ and Parrott [84℄ (see

Davis, Kahan and Weinberger [27℄).

1.3 Metris on Subspaes of C

n

In some appliations, the objet that is perturbed is not a vetor or a matrix, but

a subspae, for example, an invariant subspae of a matrix. In this setion we shall

disuss measures of metris on subspaes.

The symbol G

n

l

will be used to denote the set of l-dimensional subspaes of C

n

.

We shall use X

1

;Y

1

;Z

1

for subspaes.
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1.3.1 Unitarily Invariant Metris

A funtion d(�; �) : G

n

l

!R is a metri on G

n

l

if it satis�es the following onditions:

1: d(X

1

;Y

1

) � 0; and d(X

1

;Y

1

) = 0 () X

1

= Y

1

;

2: d(X

1

;Y

1

) = d(Y

1

;X

1

);

3: d(X

1

;Y

1

) � d(X

1

;Z

1

) + d(Z

1

;Y

1

):

A metri d(�; �) on G

n

l

is unitarily invariant if it satis�es

4: d(UX

1

; UY

1

) = d(X

1

;Y

1

) for any U 2 U

n�n

:

From the de�nition it follows that for any unitarily invariant norm k � k on C

n�n

,

kP

X

1

� P

Y

1

k is a unitarily invariant metri on G

n

l

.

Let X

1

and Y

1

be l-dimensional subspaes. Take X

1

; Y

1

2 U

n�l

suh that

R(X

1

) = X

1

;R(Y

1

) = Y

1

. De�ne �(X

1

; Y

1

) 2 H

l�l

by

�(X

1

; Y

1

) = aros(X

H

1

Y

1

Y

H

1

X

1

)

1

2

� 0: (1:3:1)

Then we have the following result.

Theorem 1.3.1. For any unitarily invariant norm k � k on C

l�l

, there exists a

unitarily invariant norm k � k

�

on C

n�n

suh that

kP

X

1

� P

Y

1

k

�

= k sin�(X

1

; Y

1

)k:

Conversely, for any unitarily invariant norm k � k

�

on C

n�n

, there exists a unitarily

invariant norm k � k on C

l�l

suh that

k sin�(X

1

; Y

1

)k = kP

X

1

� P

Y

1

k

�

:

Theorem 1.3.1 shows that for any unitarily invariant norm k � k on C

l�l

, the

quantity �(X

1

;Y

1

) de�ned by

�(X

1

;Y

1

) = k sin�(X

1

; Y

1

)k (1:3:2)

is a unitarily invariant metri on G

n

l

. Partiularly, we have

�

2

(X

1

;Y

1

) � k sin�(X

1

; Y

1

)k

2

= kP

X

1

� P

Y

1

k

2

;

�

F

(X

1

;Y

1

) � k sin�(X

1

; Y

1

)k

F

=

1

p

2

kP

X

1

� P

Y

1

k

F

:

(1:3:3)
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We now onsider the simplest ase: n = 2 and l = 1. Let x

1

= (�; �)

T

and

y

1

= (; Æ)

T

be nonzero vetors of C

2

. Then by (1.3.1) and (1.3.2) we have

�(R(x

1

);R(y

1

)) =

j�Æ � �j

p

(j�j

2

+ j�j

2

)(jj

2

+ jÆj

2

)

� �((�; �); (; Æ));

(1:3:4)

whih is the hordal metri on the omplex projetive plane (or the hordal metri

on the Riemann sphere). Hene, the metri �(X

1

;Y

1

) de�ned by (1.3.2) is usually

alled the generalized hordal metri.

Let X

1

= R(X

1

) and Y

1

= R(Y

1

) be l-dimensional subspaes of C

n

, where

X

1

; Y

1

2 U

n�l

. By Stewart [91, Appendix℄ (or see Stewart and Sun [97, Chapter 1,

Theorem 5.2℄), there are unitary matries Q;U

1

and V

1

suh that

QX

1

U

1

=

0

B

�

I

l

0

0

1

C

A

and QY

1

V

1

=

0

B

�

�

�

0

1

C

A

(when 2l � n)

or

QX

1

U

1

=

0

B

�

I

n�l

0

0 I

2l�n

0 0

1

C

A

and QY

1

V

1

=

0

B

�

� 0

0 I

2l�n

� 0

1

C

A

(when 2l > n);

where

� = diag(

1

; : : : ; 

n

1

); � = diag(�

1

; : : : ; �

n

1

);

0 � 

1

� � � � � 

n

1

; �

1

� � � � � �

n

1

� 0;



2

j

+ �

2

j

= 1; j = 1; : : : ; n

1

;

in whih

n

1

=

(

l if 2l � n;

n� l otherwise:

(1:3:5)

The angles �

j

� sin

�1

�

j

2 [0; �=2℄ (j = 1; : : : ; n

1

) are alled the anonial angles

between X

1

and Y

1

.

Using the anonial angles, the metri �(X

1

;Y

1

) an be expressed by

�(X

1

;Y

1

) = kdiag(sin �

j

)k: (1:3:6)

partiularly, we have

�

2

(X

1

;Y

1

) = sin �

1

; �

F

(X

1

;Y

1

) =

s

X

j

sin

2

�

j

: (1:3:7)
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1.3.2 Some Estimates of Metris

The following result reveals a relation between �(X

1

;Y

1

) and Y

1

�X

1

, where X

1

=

R(X

1

), and Y

1

= R(Y

1

).

Theorem 1.3.2. Let X

1

= R(X

1

) and Y

1

= R(Y

1

), where X

1

; Y

1

2 C

n�l

, and

rank(X

1

) = rank(Y

1

) = l. Then

�(X

1

;Y

1

) =







P

?

X

1

(Y

1

�X

1

)(Y

H

1

Y

1

)

�1=2







=







P

?

Y

1

(Y

1

�X

1

)(X

H

1

X

1

)

�1=2







:

(1:3:8)

Theorem 1.3.2 implies that for nonzero vetors x; y 2 C

n

, we have

sin �(x; y) = sin �(u; v) � min

�

ky � xk

2

kyk

2

;

ky � xk

2

kxk

2

�

; (1:3:9)

where u = x=kxk

2

; v = y=kyk

2

, and �(u; v) denotes the angle between the one-

dimensional subspaes R(x) and R(y).

Proof of Theorem 1.3.2. De�ne Z

1

and W

1

by

Z

1

= X

1

(X

H

1

X

1

)

�1=2

; W

1

= Y

1

(Y

H

1

Y

1

)

�1=2

:

Then from (1.3.1) and (1.3.2)

�(X

1

;Y

1

) =









�

I � Z

H

1

W

1

W

H

1

Z

1

�

1=2









: (1:3:10)

Moreover, we have

P

?

X

1

(Y

1

�X

1

)(Y

H

1

Y

1

)

�1=2

= P

?

X

1

Y

1

(Y

H

1

Y

1

)

�1=2

= P

?

Z

1

W

1

;

and







P

?

X

1

(Y

1

�X

1

)(Y

H

1

Y

1

)

�1=2







=











�

�

P

?

Z

1

W

1

�

H

�

P

?

Z

1

W

1

�

�

1=2











=









�

I �W

H

1

Z

1

Z

H

1

W

1

�

1=2









:

(1:3:11)

Observe that

�

+

�

�

I � Z

H

1

W

1

W

H

1

Z

1

�

1=2

�

= �

+

�

�

I �W

H

1

Z

1

Z

H

1

W

1

�

1=2

�

:

Hene, by a property possessed by unitarily invariant norms (see x1.2.3), we have









�

I � Z

H

1

W

1

W

H

1

Z

1

�

1=2









=









�

I �W

H

1

Z

1

Z

H

1

W

1

�

1=2









:
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Combining it with (1.3.10) and (1.3.11) shows the �rst equality of (1.3.8). Further,

interhangingX

1

and Y

1

of the equality yields the seond equality of (1.3.8). 2

Let X

1

= R(X

1

) and Y

1

= R(Y

1

) be l-dimensional subspaes of C

n

, where

X

1

; Y

1

2 U

n�l

. Moreover, let �

1

� �

2

� � � � � �

n

1

be the anonial angles between

X

1

and Y

1

, where n

1

is de�ned by (1.3.5). Then from (1.3.6), (1.3.7) and

sin �

j

� tan �

j

; tan �

j

�

sin �

j

p

1� sin

2

�

1

if sin �

1

< 1;

we get

�(X

1

;Y

1

) � k tan�(X

1

; Y

1

)k; (1:3:12)

and

k tan�(X

1

; Y

1

)k �

�(X

1

;Y

1

)

q

1� �

2

2

(X

1

;Y

1

)

if �

2

(X

1

;Y

1

) < 1: (1:3:13)

The following result gives some estimates of the distane between the subspaes

R(X

1

) and R(X

1

+X

2

Z), where (X

1

;X

2

) 2 U

n�n

with X

1

2 U

n�l

.

Theorem 1.3.3. Let X = (X

1

;X

2

) 2 U

n�n

with X

1

2 U

n�l

. Let

~

X

1

= X

 

I

l

Z

!

; (1:3:14)

and

Y

1

=

~

X

1

(

~

X

H

1

~

X

1

)

�

1

2

: (1:3:15)

Then

kZk = k tan�(X

1

; Y

1

)k; (1:3:16)

and

�(X

1

;Y

1

) = kZk+O(kZk

3

) as Z ! 0; (1:3:17)

where �(X

1

; Y

1

) is de�ned by (1.3.1), X

1

= R(X

1

), and Y

1

= R(Y

1

).

Proof. Let

Z = PTQ

H

(1:3:18)

be the singular value deomposition of Z, where P 2 U

(n�l)�(n�l)

; Q 2 U

l�l

, and

T = diag(�

j

). Then by (1.3.1), (1.3.14), (1.3.15) and (1.3.18), we have

sin�(X

1

; Y

1

) = Qdiag

0

�

�

1

q

1 + �

2

1

; : : : ;

�

l

q

1 + �

2

l

1

A

Q

H

;
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whih shows that �

j

=

q

1 + �

2

j

= sin �

j

, and so we have �

j

= tan �

j

for j = 1; : : : ; n

1

,

where n

1

is de�ned by (1.3.5). Combining this fat with (1.3.18) shows (1.3.16).

By the �rst equality of (1.3.8), we have

�(X

1

;Y

1

) =







P

?

X

1

Y

1

(Y

H

1

Y

1

)

�1=2







=







Z(I + Z

H

Z)

�1=2







: (1:3:19)

Substituting the expansion

(I + Z

H

Z)

�1=2

= I �

1

2

Z

H

Z +

3

8

(Z

H

Z)

2

� � � � (kZk

2

< 1)

into (1.3.19) gives the relation (1.3.17). 2

Let X

1

and Y

1

be the subspaes of Theorem 1.3.3. From (1.3.12), (1.3.16) and

(1.3.17) we see that a sharper upper bound �

�

for kZk is also a sharper upper bound

for �(X

1

;Y

1

) if �

�

is very small.

Notes and Referenes

NR 1.3{1. Usually, G

n

l

(the set of l-dimensional subspaes of C

n

) is alled a

omplex projetive spae, or a Grassmann manifold (see, e.g., Hirsh [53, Chapter

1℄). There are various approahes to introdue metris on G

n

l

(see Berkson [4℄, and

Stewart and Sun [97, Chapter II℄). Aording to Berkson [4℄, the metri �

2

(X

1

;Y

1

)

of (1.3.3) was �rst de�ned on Hilbert spae by Kre

�

in and Krasnoselsky [65℄.

NR 1.3{2. The funtions aros(X

H

1

Y

1

Y

H

1

X

1

)

1

2

, sin�(X

1

; Y

1

) and tan�(X

1

; Y

1

)

of (1.3.1), (1.3.2) and (1.3.16) are matrix funtions. For de�nitions and approxima-

tion methods of matrix funtions, see Golub and Van Loan [41, Chapter 11℄.

NR 1.3{3. Theorem 1.3.1 is ited from Sun [99, Theorem 3.1℄, a proof of the

result is given by Sun [104, Chapter 2, Theorem 4.4℄. From (1.3.6) we see that

the anonial angles between two subspaes play important role for measuring the

distane between the subspaes. Consequently, it may well be asked: Can we har-

aterize any unitarily invariant metri on G

n

l

as some speial kind of funtions of the

anonial angles? This is a researh problem.

NR 1.3{4. Theorem 1.3.2 is a generalization of a result given by Sun [104,

Chapter 4, Theorem 4.5℄, where only �

2

(X

1

;Y

1

) and �

F

(X

1

;Y

1

) are onsidered.

NR 1.3{5. For more results on the generalized hordal metri �(X

1

;Y

1

) and

the anonial angles, see Kato [63, Chapter IV℄, Davis and Kahan [26℄, Stewart [91℄,

[93℄, and Stewart and Sun [97, Chapter II℄. For numerial methods for omputing

the anonial angles, see Bj�ork and Golub [7℄.
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1.4 Matrix Orthogonal Deompositions

Let X 2 C

n�l

with rank(X) = l. The QR fatorization X = QR, the singular value

deomposition X = U�V

H

, and the polar deomposition X = PH are important

orthogonal deompositions of X, where Q;U; P 2 U

n�l

, V 2 U

l�l

, R 2 C

l�l

is upper

triangular with positive diagonal elements, � 2 R

l�l

is diagonal with positive diag-

onal elements, and H 2 H

l�l

is positive de�nite. The matrix Q is alled the unitary

QR fator, and P the unitary polar fator of X.

It is known that the unitary polar fator P of X possess the best approximation

property:

min

U2U

n�l

kX � Uk

F

= kX � Pk

F

:

In this setion we shall show the following fat:

kX

H

X � Ik

F

� 1 =) kX � Pk

F

� 1 and kX �Qk

F

� 1; (1:4:1)

where Q is the unitary QR fator of X.

We �rst prove a result on perturbations of the Cholesky fator of the identity

matrix.

Theorem 1.4.1. If H 2 H

n�n

satis�es kHk

2

< 1, then I + H has a unique

Cholesky fatorization

I +H = LL

H

; (1:4:2)

where L = I +G is a lower triangular matrix with positive diagonal elements, and

kGk

F

�

p

2kHk

F

1� kHk

2

+

p

1� kHk

2

: (1:4:3)

Proof. The assumption kHk

2

< 1 implies that the Hermitian matrix I +H is

positive de�nite, and so there is a unique Cholesky fatorization (1.4.2). We now

prove the estimate (1.4.3).

The elements of L are obviously di�erentiable funtions of the elements of H.

Di�erentiating (1.4.2) gives

dH = dLL

H

+ LdL

H

and

L

�1

dL+ (L

�1

dL)

H

= L

�1

dHL

�H

:

Combining it with

p

2kLk

�1

2

kdLk

F

�

p

2kL

�1

dLk

F

� kL

�1

dL+ (L

�1

dL)

H

k

F
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and

kL

�1

dHL

�H

k

F

� kL

�1

k

2

2

kdHk

F

shows

kdLk

F

�

1

p

2

kLk

2

kL

�1

k

2

2

kdHk

F

: (1:4:4)

Let

A(t) = I + tH; �1 � t � 1:

From kHk

2

< 1 we see that A(t) is positive de�nite, and there is a unique Cholesky

fatorization

A(t) = L(t)L(t)

H

with L(0) = I and L(1) = I +G:

By (1.4.4), we have

kdL(t)k

F

�

1

p

2

kHk

F

kL(t)k

2

kL(t)

�1

k

2

2

dt: (1:4:5)

Let �

1

(t) � � � � � �

n

(t) be the eigenvalues of A(t). Obviously, �

j

(0) = 1 for all

j. From (1.4.5)

kGk

F

= kL(1) � L(0)k

F

=









Z

1

0

dL(t)









F

�

Z

1

0

kdL(t)k

F

�

kHk

F

p

2

Z

1

0

p

�

1

(t)

�

n

(t)

dt:

Observe that by the Weyl theorem [128℄ (or see Stewart and Sun [97, p.203℄),

�

1

(t) � 1 + kHk

2

t; �

n

(t) � 1� kHk

2

t:

Hene, we have

kGk

F

�

kHk

F

p

2

Z

1

0

p

1 + kHk

2

t

1� kHk

2

t

dt �

kHk

F

p

2

Z

1

0

dt

(1� kHk

2

t)

3=2

=

p

2kHk

F

1� kHk

2

+

p

1� kHk

2

:

The proof is ompleted. 2

The following result gives upper bounds for kX � Pk

F

and kX �Qk

F

, where P

and Q are the unitary polar fator and the unitary QR fator of X, respetively.

Theorem 1.4.2. Let X = PH and X = QR be the polar deomposition and the

QR fatorization of a full olumn rank matrix X, respetively. Then if

kX

H

X � Ik

2

< 1;
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we have

kX � Pk

F

�

kX

H

X � Ik

F

1 + �

min

(X)

; (1:4:6)

and

kX �Qk

F

�

p

2[1 + �

max

(X)℄

1� kX

H

X � Ik

2

+

q

1� kX

H

X � Ik

2

kX � Pk

F

: (1:4:7)

Proof. By the deomposition X = PH, we have

kX � Pk

F

= kH � Ik

F

= k(H + I)

�1

(H

2

� I)k

F

� kH

2

� Ik

F

=[1 + �

min

(H)℄ = kX

H

X � Ik

F

=[1 + �

min

(X)℄:

The estimate (1.4.6) is proved.

Observe that R

H

is the Cholesky fator of the Hermitian positive de�nite matrix

H

2

. Moreover, H

2

and R

H

an be regarded as perturbations of the identity matrix

I and its Cholesky fator I. Hene, by Theorem 1.4.1, if kH

2

� Ik

2

< 1 then

kR� Ik

F

�

p

2kH

2

� Ik

F

1� kH

2

� Ik

2

+

p

1� kH

2

� Ik

2

:

This together with

kR� Ik

F

= kX �Qk

F

; H

2

= X

H

X;

kH

2

� Ik

F

� [1 + �

max

(H)℄kH � Ik

F

= [1 + �

max

(X)℄kX � Pk

F

;

shows (1.4.7). 2

Substituting (1.4.6) into (1.4.7) gives

kX �Qk

F

�

p

2[1 + �

max

(X)℄kX

H

X � Ik

F

[1 + �

min

(X)℄

�

1� kX

H

X � Ik

2

+

q

1� kX

H

X � Ik

2

�

: (1:4:8)

It is evident that the estimates (1.4.6) and (1.4.8) imply the fat (1.4.1).

Note that for the unitary fator U of the singular value deomposition X =

U�V

H

, the assumption kX

H

X � Ik

F

� 1 doesn't guarantee kX � Uk

F

� 1.

Notes and Referenes
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NR 1.4{1. This setion is based on Sun [110, Theorem 1.4℄ and Sun [116,

Lemma 2.4℄.

NR 1.4{2. For the QR fatorization and the polar deomposition, as well as

the best approximation property of the unitary polar fator, see Fan and Ho�man

[37℄, Golub and Van Loan [41, Chapters 5 and 12℄, and Higham [47℄.

NR 1.4{3. Let X;P;Q be as in Theorem 1.4.2, where X = (x

1

; : : : ; x

l

). Chan-

drasekaran and Ipsen [18℄ prove that if kx

i

k

2

= 1 for all i, then

kX �Qk

F

� 5

p

lkX � Pk

2

: (1:4:9)

Obviously, the estimates (1.4.7) and (1.4.9) require di�erent onditions. Note that

if X satis�es kX

H

X � Ik

2

� 0:6755 � �, then the estimate (1.4.7) implies

kX �Qk

F

<

1 +

p

1 + �

p

2(1� �)

kX � Pk

F

< 5kX � Pk

F

� 5

p

lkX � Pk

2

:

NR 1.4{4. Theorem 1.4.1 gives a perturbation bound for the Cholesky fator

of the identity matrix. A nie perturbation analysis of the Cholesky fatorization is

given by Chang, Paige and Stewart [19℄.

1.5 Solutions of Some Matrix Equations

In this setion we onsider two kinds of matrix equations. The �rst one is

AEB = C; (1:5:1)

where A 2 C

p�m

; B 2 C

n�q

; C 2 C

p�q

, and E 2 C

m�n

is the unknown matrix. The

seond one is

HB = C; (1:5:2)

where B;C 2 C

n�l

, and H 2 H

n�n

is the unknown matrix.

The following result gives expliit expressions of the solutions to the equation

(1.5.1).

Theorem 1.5.1. Let A 2 C

p�m

; B 2 C

n�q

and C 2 C

p�q

be given. De�ne the

sets E and F by

E = fE 2 C

m�n

: AEB = Cg

and

F = fA

y

CB

y

+ Z � P

A

H

ZP

B

: Z 2 C

m�n

g;
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respetively. Then E 6= ; if and only if A;B and C satisfy

P

A

CP

B

H

= C; (1:5:3)

and in the ase of E 6= ;, we have E = F .

Proof. The relation (1.5.3) is obviously a neessary ondition for E 6= ;. We

now prove E = F under the ondition (1.5.3).

Assume E 2 E . Then we may represent the matrix E as

E = A

y

CB

y

+E � P

A

H

EP

B

:

This means that there exists a matrix Z (= E) 2 C

m�n

suh that the matrix E 2 E

may be expressed by

E = A

y

CB

y

+ Z � P

A

H

ZP

B

2 F : (1:5:4)

Thus, E � F .

Conversely, assume E 2 F , and let E be expressed by (1.5.4) with some Z 2

C

m�n

. Then the expression (1.5.4) and the ondition (1.5.3) imply AEB = C, i.e.,

E 2 E . Thus, F � E . Consequently, we have E = F . 2

The following result gives expliit expressions of the solutions to the equation

(1.5.2).

Theorem 1.5.2. Let B;C 2 C

n�l

be given. De�ne the sets H and G by

H = fH 2 H

n�n

: HB = Cg

and

G = fCB

y

+B

y

H

C

H

�B

y

H

C

H

P

B

+ P

?

B

TP

?

B

: T 2 H

n�n

g;

respetively. Then H 6= ; if and only if B and C satisfy

CP

B

H

= C and P

B

CB

y

2 H

n�n

; (1:5:5)

and in the ase of H 6= ;, we have H = G.

Proof. It an be veri�ed that the relations (1.5.5) are neessary onditions for

H 6= ;. We now prove H = G under the onditions (1.5.5).

Assume H 2 H. Then we may represent the matrix H as

H = CB

y

+B

y

H

C

H

�B

y

H

C

H

P

B

+ P

?

B

HP

?

B

:
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This means that there exists a matrix T (= H) 2 H

n�n

suh that the matrix H 2 H

may be expressed by

H = CB

y

+B

y

H

C

H

�B

y

H

C

H

P

B

+ P

?

B

TP

?

B

2 G: (1:5:6)

Thus, H � G.

Conversely, assume H 2 G, and let H be expressed by (1.5.6) with some T 2

H

n�n

. Then the expression (1.5.6) and the ondition (1.5.5) imply H 2 H

n�n

and

HB = C, i.e., H 2 H. Thus, G � H. Consequently, we have H = G. 2

Notes and Referenes

NR 1.5{1. This setion is based on Sun [115, Lemmas 1.3 and 1.4℄. The proofs

given in this setion are simpler.

NR 1.5{2. The following results are known (see Dennis and Mor�e [30℄, Higham

[49℄, and Bunh, Demmel, and Van Loan [11℄):

Proposition 1.5.3. let b;  be real vetors, and b 6= 0. Then

E =

b

T

b

T

b

is the smallest real matrix in the spetral norm and Frobenius norm for whih the

vetor b;  satisfy Eb = .

Proposition 1.5.4. Let b;  be real vetors, and b 6= 0. Then

H =

b

T

+ b

T

b

T

b

�

b

T



(b

T

b)

2

bb

T

is the smallest real symmetri matrix in the Frobenius norm for whih the vetor b; 

satisfy Hb = .

Propositions 1.5.3 and 1.5.4 an be obtained by applying Theorems 1.5.1 and

1.5.2, respetively.

NR 1.5{3. Let B;C 2 C

n�l

be given. De�ne the set U by

U = fU 2 C

n�n

: UB = Cg:

Expliit expressions of the elements of U are disussed by Sun [118℄.
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1.6 The Impliit Funtion Theorem

The impliit funtion theorem is an important existene theorem in analysis. In this

setion we ite the impliit funtion theorem on analyti funtions.

We �rst introdue the de�nition of an analyti funtion.

De�nition 1.6.1. Let x = (�

1

; : : : ; �

n

)

T

2 C

n

, and let f(x) be a omplex-valued

funtion de�ned in an open set D � C

n

. The funtion f(x) is said to be analyti at

a point a = (�

1

; : : : ; �

n

)

T

2 D if there is a neighborhood B(a) � D of a suh that

f(x) an be expressed as a onvergent power series

f(x) =

1

X

m

1

;:::m

n

=0



m

1

���m

n

(�

1

� �

1

)

m

1

� � � (�

n

� �

n

)

m

n

; (�

1

; : : : ; �

n

)

T

2 B(a):

(1:6:1)

If f(x) is analyti at any point a 2 D, then the funtion f(x) is said to be analyti

in D.

In the same way we an de�ne an analyti real-valued funtion f(x) in an open

set D � R

n

.

Note that a omplex-valued funtion f(x) = u(x)+iv(x) of x 2 R

n

with i =

p

�1

is said to be an analyti funtion of x if the real-valued funtions u(x) and v(x) are

analyti funtions of x.

A basi fat about analyti funtions is that if the omplex-valued (or real-

valued) funtion f(x) is analyti at a 2 C

n

(or R

n

), then there is a neighborhood

B(a) of a suh that f(x) has ontinuous partial derivatives

�

m

1

+���+m

n

f(x)

��

m

1

1

� � � ��

m

n

n

for m

1

; : : : ;m

n

� 0; x 2 B(a);

and the oeÆients 

m

1

���m

n

of the power series expansion (1.6.1) an be expressed

by



m

1

���m

n

=

1

m

1

! � � �m

n

!

"

�

m

1

+���+m

n

f(x)

��

m

1

1

� � � ��

m

n

n

#

x=a

:

Suppose that the funtion

f : D � C

n

! C

m

(or D � R

n

!R

m

);

with

f(x) = (f

1

(x); : : : ; f

m

(x))

T

; x = (x

1

; : : : ; x

n

)

T

;

is de�ned in an open subset D of C

n

(or R

n

), and that its omponent funtions

f

i

; i = 1; : : : ;m, have ontinuous �rst order partial derivatives on D. Then we de�ne
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the Jaobian matrix f

0

x

by

f

0

x

=

0

B

B

�

�f

1

(x)

�x

1

� � �

�f

1

(x)

�x

n

.

.

.

.

.

.

�f

m

(x)

�x

1

� � �

�f

m

(x)

�x

n

1

C

C

A

;

and in the ase of m = n, we de�ne the Jaobian

�(f

1

;:::;f

n

)

�(x

1

;:::;x

n

)

(or simply,

�f

�x

) by

�(f

1

; : : : ; f

n

)

�(x

1

; : : : ; x

n

)

= detf

0

x

:

The following impliit funtion theorem is a basi tool of this work for deriving

perturbation expansions for eigenvalues, singular values, generalized eigenvalues,

and ertain harateristi subspaes.

Theorem 1.6.2. If the omplex-valued (or real-valued) funtions

f

j

(�

1

; : : : ; �

k

; �

1

; : : : ; �

l

); j = 1; : : : ; k

are analyti funtions of k + l omplex (or real) variables in some neighborhood of

the origin of C

k+l

(or R

k+l

) if f

j

(0; 0) = 0; j = 1; : : : ; k, and if the Jaobian

�(f

1

; : : : ; f

k

)

�(�

1

; : : : ; �

k

)

6= 0 for �

1

= � � � = �

k

= �

1

= � � � = �

l

= 0;

then the equations

f

j

(�

1

; : : : ; �

k

; �

1

; : : : ; �

l

) = 0; j = 1; : : : ; k

have a unique solution

�

j

= g

j

(�

1

; : : : ; �

l

); j = 1; : : : ; k

vanishing for �

1

= � � � = �

l

= 0 and analyti in some neighborhood of the origin of

C

l

(or R

l

).

The following result is about the Jaobian.

Theorem 1.6.3. If f

j

(z

1

; : : : ; z

k

); j = 1; : : : ; k, are analyti funtions of omplex

variables z

1

; : : : ; z

k

, and if f

j

= u

j

+ iv

j

and z

j

= x

j

+ iy

j

with i =

p

�1, then

�(u

1

; v

1

; : : : ; u

k

; v

k

)

�(x

1

; y

1

; : : : ; x

k

; y

k

)

=

�

�

�

�

�(f

1

; : : : ; f

k

)

�(z

1

; : : : ; z

k

)

�

�

�

�

2

:

Notes and Referenes

NR 1.6{1. Most of the materials of this setion are ited from Bohner and Mar-

tin [8, Chapter II℄. Theorem 1.6.2 for real-valued funtion is ited from Dieudonn�e

[32, p.277℄.
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1.7 Fixed Point Theorems

Fixed point theorems are also important existene theorems in analysis. In this se-

tion we ite two results, the Brouwer �xed point theorem and Shauder �xed point

theorem, from the �xed point theory.

Theorem 1.7.1 (The Brouwer Fixed Point Theorem). Let S be a ompat

onvex set in R

n

, andM be a ontinuous mapping on S whih maps S into S. Then

M has a �xed point in S.

The Brouwer �xed point theorem extends to an arbitrary Banah spae; this is

the Shauder �xed point theorem.

Theorem 1.7.2 (The Shauder Fixed Point Theorem). Let S be a ompat

onvex set in a Banah spae B, and M be a ontinuous mapping on S whih maps

S into S. Then M has a �xed point in S.

Notes and Referenes

NR 1.7{1. The Brouwer �xed point theorem and the Shauder �xed point the-

orem are well known results of funtional analysis (see, e.g., Ortega and Rheinboldt

[81, x6.3℄, or E. Zeidler [137, x2.3 and x2.6℄).

1.8 Condition Numbers

In this setion, we shall introdue de�nitions of normwise ondition numbers.

Let x = �(a) be a solution of a matrix problem, where a 2 A and x 2 X , A

and X are �nite dimensional normed linear spaes with the norms �(�) and �(�),

respetively. A ondition number of x is a measure of the sensitivity of the solution

x to small hanges in a.

Let �a be any perturbation in a, and �x be the orresponding perturbation in

the solution x. Then by Rie [88℄, the ondition number (x) of x an be de�ned by

(x) = lim

Æ!0

sup

�(�a)

�

�Æ

�(�x)

�Æ

; (1:8:1)

where �; � are positive parameters. For instane, taking � = � = 1 we get the

absolute ondition number 

abs

(x), and taking � = �(a) and � = �(x) (if �(a) 6= 0

and �(x) 6= 0) we get the relative ondition number 

rel

(x).
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It is known that the onditioning of a problem is the sensitivity of the solution to

perturbations on the data. Consequently, the relative (absolute) ondition number



rel

(x) (

abs

(x)) is a measure of the relative (absolute) onditioning of the problem.

From the de�nition (1.8.1) it follows that in �rst order approximation the in-

equality

�(�x)

�

� (x)

�(�a)

�

(1:8:2)

holds.

More general, assume that A and X are �nite-dimensional metri spaes with

the metris d

A

(�; �) and d

X

(�; �). The ondition number (x) of x an be de�ned by

(x) = lim

Æ!0

sup

d

A

(a;~a)

�

�Æ

d

X

(x; ~x)

�Æ

; (1:8:3)

where ~x = �(~a), and �; � are positive parameters.

From the de�nition (1.8.3) it follows that in �rst order approximation the in-

equality

d

X

(x; ~x)

�

� (x)

d

A

(a; ~a)

�

holds.

If the data a have some speial struture (i.e., a 2 A

s

, a subset of A), and if

we are interested in the requirement that the perturbed elements ~a have the same

speial struture (i.e., ~a 2 A

s

) too, then we may de�ne the strutured ondition

number 

s

(x) of x by



s

(x) = lim

Æ!0

sup

~a 2 A

s

d

A

(a;~a)

�

� Æ

d

X

(x; ~x)

�Æ

;

where �; � are positive parameters.

If one is interested in the sensitivity of the solution x = �(a

1

; a

2

) to perturbations

in eah individual member of a

1

and a

2

, then we may de�ne the partial ondition

numbers 

a

1

(x) and 

a

2

(x) of x by



a

1

(x) = lim

Æ!0

sup

d

A

(a;~a)

�

1

�Æ; ~a

2

=a

2

d

X

(x; ~x)

�Æ

;



a

2

(x) = lim

Æ!0

sup

d

A

(a;~a)

�

2

�Æ; ~a

1

=a

1

d

X

(x; ~x)

�Æ

:

(1:8:4)
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where �

1

; �

2

and � are positive parameters.

We now onsider the ase of a = (a

1

; a

2

) 2 A

1

� A

2

, a produt spae. Assume

that A

1

� A

2

and X are �nite dimensional normed linear spaes with the norm

�(�) and �(�), respetively. Moreover, assume that the norms �

i

(�) are the restri-

tions of �(�) on A

i

for i = 1; 2, and write �

i

(�) as �(�), i.e., �(a

1

) = �(a

1

; 0) and

�(a

2

) = �(0; a

2

).

Let �a

1

and �a

2

be any perturbations in a

1

and a

2

, respetively, and �x be the

orresponding perturbation in the solution x. As a generalization of the de�nition

(1.8.1), we an de�ne the ondition number (x) of x by the following approah.

First, we de�ne the vetor v 2 R

2

by

v =

�

�(�a

1

)

�

1

;

�(�a

2

)

�

2

�

T

;

and then de�ne the ondition number (x) of x as

(x) = lim

Æ!0

sup

kvk�Æ

�(�x)

�Æ

; (1:8:5)

where k � k denotes any norm on R

2

, and �

1

; �

2

; � are positive parameters.

As another generalization of the de�nition (1.8.1), we an de�ne the ondition

number 

�

(x) of x by



�

(x) = lim

Æ!0

sup

�(�a

1

;�a

2

)

�

�Æ

�(�x)

�Æ

; (1:8:6)

where �; � are positive parameters.

The de�nitions (1.8.5) and (1.8.6) imply that in �rst order approximation the

inequalities

�(�x)

�

� (x)











�

�(�a

1

)

�

1

;

�(�a

2

)

�

2

�

T











(1:8:7)

and

�(�x)

�

� 

�

(x)

�(�a

1

;�a

2

)

�

(1:8:8)

hold.

From the de�nitions (1.8.5) and (1.8.6) we see that every ondition number of x

is de�ned with respet to a partiular lass of perturbations in a

1

and a

2

. Therefore,

di�erent ondition numbers have di�erent meanings, and the values of two di�erent

ondition numbers of the solution with the same data may be quite di�erent.
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Notes and Referenes

NR 1.8{1. The study of onditioning in matrix omputations is an important

subjet of matrix perturbation theory, on whih there is a very large literature. The

�rst general theory of ondition was developed by Rie [88℄.

NR 1.8{2. For the study of omponentwise ondition numbers and strutured

ondition numbers of some numerial linear algebra problems, see D. Higham and

N. Higham [45℄, [46℄, N. Higham [52, x7.2℄, and Chaitin-Chatelin and Frayss�e [17,

Chapter 3℄.

1.9 Bakward Errors

A matrix problem may be ast in the form of solving an equation r(a;x) = 0, where

a 2 A, and the solution x 2 X . For example, r(A;x; �) = �x�Ax for the eigenvalue

problem Ax = �x, where A 2 C

n�n

, and the solution (x; �) 2 C

n

� C, the produt

spae of C

n

and C.

Let ~x be an approximate solution of the problem r(a;x) = 0. For example, ~x

may ome from a numerial algorithm for approximating the solution. Then it may

well be asked: Is ~x the exat solution of a slightly perturbed problem?

For answering the question, we need the notion of bakward error of the prob-

lem r(a;x) = 0 with respet to the approximate solution ~x. In this setion we shall

introdue de�nitions of normwise bakward errors.

Let

E = f�a : a+�a 2 A and r(a+�a; ~x) = 0g:

In general, the set E has many (even an in�nity of) elements. The bakward error

�(~x) is de�ned by

�(~x) = min

�a2E

�(�a)

�

; (1:9:1)

where �(�) is a norm on A, and � is a positive parameter. For instane, taking

� = 1 yields the absolute bakward error, and taking � = �(a) (if �(a) 6= 0) yields

the relative bakward error. A small �(~x) means that the approximate solution ~x is

the exat solution of a slightly perturbed problem.

An algorithm for approximating the solution of the problem r(a;x) = 0 is de�ned

to be bakward stable if, for any a 2 A, it produes a omputed ~x with a small �(~x).

Consequently, a omputable formula of the bakward error �(~x) may be useful for

testing the stability of pratial algorithms.



26 CHAPTER 1. PRELIMINARIES

For the problem r(a;x) = 0, any element �a 2 E is alled a bakward perturba-

tion of a assoiated with ~x, and the element �a

opt

2 E satisfying �(~x) = �(�a

opt

)=�

is alled the optimal (minimum) bakward perturbation. Therefore, the bakward

error �(~x) is also known as the optimal bakward perturbation bound.

If the data a of the problem r(a;x) = 0 have some speial struture (i.e., a 2 A

s

,

a subset of A), and if we are interested in the requirement that the perturbed

elements a +�a have the same speial struture (i.e., a +�a 2 A

s

) too, then we

may de�ne a strutured bakward error. Let

E

s

� f�a : a+�a 2 A

s

and r(a+�a; ~x) = 0g:

In general, the set E

s

has many (even an in�nity of) elements. The strutured

bakward error �

s

(~x) is de�ned by

�

s

(~x) = min

�a2E

s

�(�a)

�

;

where �(�) is any norm on A, and � is a positive parameter.

Bunh [10℄ de�nes that an algorithm for solving r(a;x) = 0 is strongly bakward

stable if, for any a 2 A

s

, it produes a omputed ~x with a small �

s

(~x). Conse-

quently, a omputable formula of the strutured bakward error �

s

(~x) may be useful

for testing the strong stability of pratial algorithms.

We now onsider the ase of a = (a

1

; a

2

) 2 A

1

�A

2

, a produt spae. Let �(�) be

a norm on A

1

�A

2

. Assume that the norms �

i

(�) are the restritions of �(�) on A

i

for

i = 1; 2, and write �

i

(�) as �(�), i.e., �(a

1

) = �(a

1

; 0) and �(a

2

) = �(0; a

2

). In suh a

ase, there are various ways to de�ne normwise bakward errors. For instane, the

following de�nitions are advisable:

(i) De�ne the bakward error �

1

(~x) by

�

1

(~x) = min

8

>

>

>

>

>

<

>

>

>

>

>

:

� :

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0;

�

i

(�a

i

) � ��

i

; i = 1; 2

9

>

>

>

>

>

=

>

>

>

>

>

;

; (1:9:2)

where �

1

(�) and �

2

(�) are any norms on A

1

and A

2

, respetively, and �

1

; �

2

are

positive parameters.

(ii) De�ne the bakward error �

(!)

(~x) by

�

(!)

(~x) = min

8

>

<

>

:

�

 

�

1

(�a

1

)

!�

2

(�a

2

)

!

:

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0

9

>

=

>

;

; (1:9:3)
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where �

1

(�) and �

2

(�) are any norms on A

1

and A

2

, respetively, �(�) is any norm

on R

2

, and ! is a positive parameter.

(iii) De�ne the bakward error �

(�)

(~x) by

�

(�)

(~x) = min

8

>

<

>

:

�(�a

1

; ��a

2

) :

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0

9

>

=

>

;

; (1:9:4)

where �(�) is any norm on A

1

�A

2

, and � is a positive parameter.

It is worth pointing out that the parameters ! and � in (1.9.3) and (1.9.4) allow

us some exibility. We now note some examples:

Example 1.9.1. Let �

1

; �

2

be any positive salars (for instane, �

1

= �

2

= 1, or

�

i

= �

i

(a

i

) if �(a

i

) 6= 0 for i = 1; 2). Taking ! = �

1

=�

2

and �(�) = k � k (any norm on R

2

)

in (1.9.3), and multiplying �

(!)

(~x) by 1=�

1

, yields the bakward error

�(~x) �

1

�

1

�

(�

1

=�

2

)

(~x)

= min

8

<

:









�

�

1

(�a

1

)=�

1

�

2

(�a

2

)=�

2

�









:

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0

9

=

;

:

(1:9:5)

Partiularly, taking k �k = k �k

p

with p = 1; 2;1 in (1.9.5), yields the bakward errors �

1

(~x),

�

2

(~x), and �

1

(~x), respetively, where �

1

(~x) oinides with (1.9.2).

Example 1.9.2. Taking � = 1 in (1.9.4), and multiplying �

(�)

(~x) by 1=�, yields the

bakward error

�

�

(~x) �

1

�

�

(1)

(~x)

= min

8

<

:

�(�a

1

;�a

2

)

�

:

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0

9

=

;

;

(1:9:6)

where � is a positive parameter. For instane, � = 1, or � = �(a

1

; a

2

) if �(a

1

; a

2

) 6= 0.

Example 1.9.3. Let �

1

; �

2

be any positive salars (for instane, �

1

= �

2

= 1, or

�

i

= �

i

(a

i

) if �(a

i

) 6= 0 for i = 1; 2). Taking � = �

1

=�

2

in (1.9.4), and multiplying �

(�)

(~x)

by 1=�

1

, yields the bakward error

�̂(~x) �

1

�

1

�

(�

1

=�

2

)

(~x)

= min

8

<

:

�

�

�a

1

�

1

;

�a

2

�

2

�

:

(a

1

+�a

1

; a

2

+�a

2

) 2 A

1

�A

2

;

r(a

1

+�a

1

; a

2

+�a

2

; ~x) = 0

9

=

;

;

(1:9:7)
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Example 1.9.4. Taking � ! 1 fores �a

2

= 0 in (1.9.4), yields the bakward error

where only a

1

is perturbed.

We now assume the norm �(�) on A

1

� A

2

has the property that if �(a

i

) �

�(â

i

) (i = 1; 2) then �(a

1

; a

2

) � �(â

1

; â

2

). The following result reveals the relations

between �(~x) and �

p

(~x) for p = 1; 2;1. The proof is left as an exerise.

Theorem 1.9.5. Let �

p

(~x) (p = 1; 2;1) be the bakward errors de�ned by (1.9.5)

with k � k = k � k

p

, and �

�

(~x) be the bakward error de�ned by (1.9.6), where we take

�

1

= �(a

1

), �

2

= �(a

2

), � = �(a

1

; a

2

), and assume that �(a

1

) 6= 0 and �(a

2

) 6= 0.

Then

�

1

(~x) � �

1

(~x) � 2�

1

(~x);

1

p

2

�

1

(~x) � �

2

(~x) � �

1

(~x);

1

p

2

�

2

(~x) � �

1

(~x) � �

2

(~x);

(1:9:8)

and

minf�(a

1

); �(a

2

)g

�(a

1

; a

2

)

�

1

(~x) � �

�

(~x) �

maxf�(a

1

); �(a

2

)g

�(a

1

; a

2

)

�

1

(~x): (1:9:9)

Remark 1.9.6. From the de�nitions (1.9.5){(1.9.7) we see that every bakward

error of the problem r(a

1

; a

2

;x) = 0 with respet to ~x is de�ned with respet to

a partiular lass of bakward perturbations in a

1

and a

2

. Therefore, di�erent

bakward errors have di�erent meanings, and the values of two di�erent bakward

errors of the problem r(a

1

; a

2

;x) = 0 with respet to the same ~x may be quite

di�erent. For example, �

�

(~x) may be quite di�erent from �

p

(~x) for p = 1; 2;1. In

fat, the �rst inequality of (1.9.9) implies that if any one of �(a

1

) and �(a

2

) is muh

smaller than the other, then �

�

(~x) is bounded from below by ��

1

(~x), where � > 0

is a very small positive salar. This means that in some ases the quantity �

�

(~x)

may be muh smaller than �

p

(~x) for p = 1; 2;1. Note that a very small bakward

error �

�

(~x) may be uninformative for the following reason: In the ase that there is

a great disparity between �(a

1

) and �(a

2

), while the optimal bakward perturbation

(�a

1�

;�a

2�

) is very small ompared with (a

1

; a

2

), it may be making a large relative

perturbation in the small one of a

1

and a

2

.

Notes and Referenes

NR 1.9{1. This setion is based on the author's Tehnial Report \ Optimal

bakward perturbation bounds for linear systems and linear least squares problems",

UMINF 96.15, ISSN-0348-0542, Department of Computing Siene, Ume�a Univer-

sity, 1996.
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NR 1.9{2. The earlest results on omputable formulas of bakward errors for

linear systems are given by Oettli and Prager [80℄, and Rigal and Gahes [89℄.

NR 1.9{3. For historial omments on the development of bakward error anal-

ysis and bakward errors in numerial analysis, see Higham [52, x1.21 and x19.7℄.

For the importane of the study of omputable formulas of bakward errors, see

Stewart [94℄ and Higham [50℄.

NR 1.9{4. Let x = �(a) be a solution of a matrix problem r(a;x) = 0 with

a 2 A (or a = (a

1

; a

2

) 2 A

1

�A

2

), and let ~x be an approximation of x. Moreover,

let (x) be the ondition number de�ned by (1.8.1) (or (1.8.5)), and �(~x) be the

bakward error de�ned by (1.9.1) (or (1.9.5)). Then the relation (1.8.2) (or (1.8.7))

shows that in �rst order approximation we have

�(~x� x)

�

� (x)�(~x): (1:9:10)

Similarly, from (1.8.6), (1.8.8) and (1.9.6) it follows that in �rst order approximation

we have

�(~x� x)

�

� 

�

(x)�

�

(~x): (1:9:11)

One way to interpret the relation (1.9.10) (or (1.9.11)) is to say that the approxi-

mation ~x may not be lose to x if the ondition number (x) (or 

�

(x)) is very large,

even if the approximate solution ~x has a small bakward error �(~x) (or �

�

(~x)).

NR 1.9{5. For the study of omponentwise bakward errors and strutured

bakward errors of some numerial linear algebra problems, see D. Higham and

N. Higham [45℄, [46℄, N. Higham [52, x7.2℄, and Chaitin-Chatelin and Frayss�e [17,

Chapter 5℄.

NR 1.9{6. Let r(a;x) = 0 be a matrix omputation problem, and let ~x be

an approximation of the exat solution x to the problem. If the optimal bakward

perturbation �a

opt

is found, then we an apply an appropriate forward perturbation

result to the perturbation �a

opt

, and obtain an upper bound for �(~x � x). Gen-

erally speaking, the optimal bakward perturbation �a

opt

an be expressed by the

residual r(a; ~x), so the obtained upper bound for �(~x� x) is usually in the form of

residual bound, and the upper bound is alled a residual bound. Note that there are

di�erent ways to obtain upper bounds for �(~x� x); but usually, the upper bounds

are dependent on the residual r(a; ~x).
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Chapter 2

Eigenvalue Problems

This hapter is devoted to the eigenvalue problem Ax = �x, where A 2 C

n�n

.

We begin in x2.1 with perturbation expansions for eigenvalues and invariant sub-

spaes. On the basis of the results of x2.1 we derive expliit expressions of ondition

numbers for eigenvalues and invariant subspaes in x2.2. In x2.3 we present pertur-

bation bounds for invariant subspaes. In x2.4 we treat bakward errors and residual

bounds. The hapter onludes with a setion on Hermitian matries.

2.1 Perturbation Expansions

2.1.1 Simple Eigenvalues

Let A 2 C

n�n

. If

Ax = �x

for � 2 C and a nonzero x 2 C

n

, then � is alled an eigenvalue of A, and x a right

eigenvetor of A assoiated with �. Usually, we all x an eigenvetor of A assoiated

with �. The orresponding nonzero solution y 2 C

n

of the equation

y

H

A = �y

H

is alled a left eigenvetor of A assoiated with �.

Let p = (p

1

; : : : ; p

N

)

T

2 C

N

(or R

N

), and let A(p) = (�

jk

(p)) 2 C

n�n

(or R

n�n

)

be an analyti matrix-valued funtion in some neighborhood B(p

�

) of the point p

�

.

For simpliity, we assume p

�

= 0, the origin of C

N

(or R

N

). By De�nition 1.6.1, the

funtion A(p) an be expressed by

A(p) = A(0) +E(p); E(p) = (�

jk

(p));

where

�

jk

(p) =

1

X

r=1

X

P

t

i

=r

�

(jk)

t

1

���t

N

p

t

1

1

� � � p

t

N

N

; 1 � j; k � N; p 2 B(0);

31
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and

P

t

i

= t

1

+ � � �+ t

N

.

Let � be a simple eigenvalue of A(0), and x; y be assoiated right and left eigen-

vetors satisfying y

H

x = 1. Then, as a onsequene, there are X

2

; Y

2

2 C

n�(n�1)

suh that the matries

X = (x;X

2

); Y = (y; Y

2

) (2:1:1)

satisfy

Y

H

X = I (2:1:2)

and

Y

H

A(0)X =

 

� 0

0 A

2

!

; � 62 �(A

2

): (2:1:3)

First applying the impliit funtion theorem we prove the following result.

Theorem 2.1.1 Let p 2 C

N

, and let A(p) 2 C

n�n

be an analyti funtion of p

in some neighborhood B(0) of the origin. Assume that � is a simple eigenvalue of

A(0), and x; y are assoiated right and left eigenvetors satisfying y

H

x = 1. More-

over, assume that the relation (2.1.3) holds, in whih X and Y are the matries of

(2.1.1) and satisfy (2.1.2){(2.1.3). Then

1) there exists a simple eigenvalue �(p) of A(p) whih is an analyti funtion of

p in some neighborhood B

0

of the origin, and �(0) = �;

2) the funtion �(p) has a power series expansion at p = 0 of the form

�(p) = �+

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ; p 2 B

0

;

where

 

��(p)

�p

j

!

p=0

= y

H

 

�A(p)

�p

j

!

p=0

x; (2:1:4)

and

 

�

2

�(p)

�p

j

�p

k

!

p=0

= y

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x+ y

H

 

�A(p)

�p

j

!

p=0




�

�A(p)

�p

k

�

p=0

x

+y

H

�

�A(p)

�p

k

�

p=0




 

�A(p)

�p

j

!

p=0

x;

(2:1:5)

in whih


 = X

2

(�I �A

2

)

�1

Y

H

2

: (2:1:6)
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Proof. 1) By the hypotheses there are X;Y 2 C

n�n

suh that the relations

(2.1.1){(2.1.3) hold. For p 2 B(0) we set

~

A(p) = Y

H

A(p)X =

 

~a

11

(p) ~a

12

(p)

~a

21

(p)

~

A

22

(p)

!

; ~a

11

(p) 2 C; (2:1:7)

and introdue a vetor-valued funtion

f(z; p) = ~a

21

(p)� ~a

11

(p)z +

~

A

22

(p)z � z~a

12

(p)z; (2:1:8)

where

f = (f

1

; : : : ; f

n�1

)

T

; z = (�

1

; : : : ; �

n�1

)

T

2 C

n�1

; p 2 B(0):

Observe that the vetor-valued funtion f(z; p) is analyti for z 2 C

n�1

and p 2 B(0),

f

j

(0; 0) = 0 for j = 1; : : : ; n� 1, and

�

�(f

1

; : : : ; f

n�1

)

�(�

1

; : : : ; �

n�1

)

�

z=0; p=0

= det(A

2

� �I) 6= 0:

Hene, by the impliit funtion theorem (Theorem 1.6.2) the equation

(f

1

(z; p); : : : ; f

n�1

(z; p)) = (0; : : : ; 0) (2:1:9)

has a unique analyti solution z = z(p) 2 C

n�1

in some neighborhood B

0

� B(0) of

the origin, and z(0) = 0.

From (2.1.7){(2.1.9) it follows that for p 2 B

0

we have

 

1 0

z(p) I

!

�1

~

A(p)

 

1 0

z(p) I

!

=

 

�(p) �

0 �

!

; (2:1:10)

where

�(p) = ~a

11

(p) + ~a

12

(p)z(p): (2:1:11)

The relation (2.1.10) shows that �(p) is an eigenvalue of A(p), and the eigenvalue

is simple provided that the neighborhood B

0

is suÆiently small. Moreover, the

analytiity of the funtions ~a

11

(p), ~a

12

(p) and z(p) implies that �(p) is an analyti

funtion of p 2 B

0

, and from (2.1.11) it follows that �(0) = �.

2) From (2.1.11) and ~a

12

(0)

T

= z(0) = 0 we obtain

 

��(p)

�p

j

!

p=0

=

 

�~a

11

(p)

�p

j

!

p=0

; (2:1:12)

 

�

2

�(p)

�p

j

�p

k

!

p=0

=

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

+

 

�~a

12

(p)

�p

j

!

p=0

�

�z(p)

�p

k

�

p=0

+

�

�~a

12

(p)

�p

k

�

p=0

 

�z(p)

�p

j

!

p=0

:

(2:1:13)
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Moreover, from (2.1.7) we obtain

 

�~a

11

(p)

�p

j

!

p=0

= y

H

 

� A(p)

�p

j

!

p=0

x;

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

= y

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x;

 

�~a

12

(p)

�p

j

!

p=0

= y

H

 

� A(p)

�p

j

!

p=0

X

2

:

(2:1:14)

Combining (2.1.12) with the �rst formula of (2.1.14) shows (2.1.4). From (2.1.13)

and (2.1.14) we see that for obtaining the formula (2.1.5) we only need to �nd an

expliit expression of

�

�z(p)

�p

j

�

p=0

.

It is known that z(p) is the unique analyti solution of f(z; p) = 0 in B

0

, where

f(z; p) is de�ned by (2.1.8); i.e., z(p) satis�es the equation

~a

21

(p)� ~a

11

(p)z(p) +

~

A

22

(p)z(p)� ~a

12

(p)z(p)z(p) = 0; p 2 B

0

: (2:1:15)

Di�erentiating (2.1.15) at p = 0 gives

 

�z(p)

�p

j

!

p=0

= (�I �A

2

)

�1

 

�~a

21

(p)

�p

j

!

p=0

= (�I �A

2

)

�1

Y

H

2

 

�A(p)

�p

j

!

p=0

x:

(2:1:16)

Substituting (2.1.14) and (2.1.16) into (2.1.13) shows the formula (2.1.5). 2

Remark 2.1.2. From (2.1.10), (2.1.7) and (2.1.2) we get

A(p)x(p) = �(p)x(p); p 2 B

0

; (2:1:17)

where x(p) is de�ned by

x(p) = X

 

1

z(p)

!

: (2:1:18)

The relation (2.1.17) shows that the vetor x(p) is an eigenvetor of A(p) assoiated

with �(p), and the expression (2.1.18) shows that the eigenvetor is an analyti

funtion of p 2 B

0

satisfying x(0) = x. Moreover, the relations (2.1.18) and (2.1.16)

imply that the eigenvetor x(p) has the expansion of the form

x(p) = x+

N

X

j=1

 

�x(p)

�p

j

!

p=0

p

j

+ � � � ; p 2 B

0

;
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where

 

�x(p)

�p

j

!

p=0

= 


 

�A(p)

�p

j

!

p=0

x:

Remark 2.1.3. Without the assumption of y

H

x = 1 in Theorem 2.1.1, the

formula (2.1.4) beomes

 

��(p)

�p

j

!

p=0

=

y

H

�

�A(p)

�p

j

�

p=0

x

y

H

x

: (2:1:19)

Example 2.1.4. Consider the matrix

A(p) =

�

3

2

1+p

1

+p

2

�

4

1+p

1

�p

2

�3

�

; (p

1

; p

2

)

T

= p 2 R

2

:

Obviously, A(p) is an analyti matrix-valued funtion of p in a small neighborhood of the

origin of R

2

. Moreover,

A(0) =

�

3 2

�4 �3

�

;

and the real matries

X =

�

1 �1

�1 2

�

� (x

1

; x

2

) and Y =

�

2 1

1 1

�

� (y

1

; y

2

)

satisfy

Y

T

A(0)X =

�

1 0

0 �1

�

�

�

�

1

0

0 �

2

�

and

Y

T

X = I:

Observe that

�

�A(p)

�p

1

�

p=0

=

�

0 �2

4 0

�

;

�

�A(p)

�p

2

�

p=0

=

�

0 �2

�4 0

�

;

�

�

2

A(p)

�p

2

1

�

p=0

=

�

0 4

�8 0

�

;

�

�

2

A(p)

�p

2

2

�

p=0

=

�

0 4

�8 0

�

;

and

�

�

2

A(p)

�p

1

�p

2

�

p=0

=

�

0 4

8 0

�

:

Hene, if �

1

(p) and �

2

(p) denote the eigenvalues of A(p), then by the formulas (2.1.4){(2.1.6)

we have

�

��

1

(p)

�p

1

�

p=0

= 8;

�

��

1

(p)

�p

2

�

p=0

= 0;

�

��

2

(p)

�p

1

�

p=0

= �8;

�

��

2

(p)

�p

2

�

p=0

= 0;
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and

�

�

2

�

1

(p)

�p

2

1

�

p=0

= �88;

�

�

2

�

1

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

1

(p)

�p

2

2

�

p=0

= �8;

�

�

2

�

2

(p)

�p

2

1

�

p=0

= 88;

�

�

2

�

2

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

2

(p)

�p

2

2

�

p=0

= 8:

Consequently, �

1

(p) and �

2

(p) have the expansions

�

1

(p) = 1 + 8p

1

� 44p

2

1

� 4p

2

2

+O(kpk

3

2

) (2:1:20)

and

�

2

(p) = �1� 8p

1

+ 44p

2

1

+ 4p

2

2

+O(kpk

3

2

) (2:1:21)

as p! 0.

Note that the eigenvalues �

1

(p) and �

2

(p) have the expliit expressions

�

1

(p) =

s

9�

8

(1 + p

1

)

2

� p

2

2

; �

2

(p) = �

s

9�

8

(1 + p

1

)

2

� p

2

2

:

From the expressions we an also obtain the seond order perturbation expansions (2.1.20)

and (2.1.21).

2.1.2 Simple Invariant Subspaes

Let � be an eigenvalue of A 2 C

n�n

, and x 2 C

n

be an assoiated eigenvetor. Then

the one-dimensional subspae R(x) satis�es AR(x) � R(x), and whih is alled a

one-dimensional invariant subspae of A. This de�nition extends in a natural way

to higher dimensions.

Let A 2 C

n�n

and let X

1

� C

n

. If

dim(X

1

) = l and AX

1

� X

1

;

then X

1

is said to be an l-dimensional (right) invariant subspae of A.

The invariant subspae X

1

may be equivalently de�ned by X

1

= R(X

1

) with

X

1

2 C

n�l

satisfying

rank(X

1

) = l and AX

1

= X

1

A

1

for some A

1

2 C

l�l

. The matrix A

1

may be alled the (right) eigenmatrix of A

assoiated with X

1

.

Let X = (X

1

;X

2

) 2 U

n�n

with X

1

2 U

n�l

suh that

X

H

AX =

 

A

11

A

12

0 A

22

!

; A

11

2 C

l�l

: (2:1:22)
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Then the invariant subspae X

1

= R(X

1

) is alled a simple invariant subspae of A

if �(A

11

)

T

�(A

22

) = ;. In this hapter we only onsider simple invariant subspaes.

We now prove the following perturbation expansion theorem.

Theorem 2.1.5. Let A 2 C

n�n

, and let X = (X

1

;X

2

) 2 U

n�n

with X

1

2 U

n�l

suh that the relation (2.1.22) holds, and �(A

11

)

T

�(A

22

) = ;. Moreover, let X

1

=

R(X

1

), for M 2 C

n�n

let

X

H

MX =

 

M

11

M

12

M

21

M

22

!

;

and de�ne the linear operator T : C

(n�l)�l

! C

(n�l)�l

by

TP = PA

11

�A

22

P; P 2 C

(n�l)�l

: (2:1:23)

Then

1) there exists a unique l-dimensional simple invariant subspae X

1

(�) of A+�M

suh that X

1

(0) = X

1

, and the basis vetors x

1

(�); : : : ; x

l

(�) of X

1

(�) may be de�ned

to be analyti funtions of � in some neighborhood B(0) of the origin of C;

2) the analyti matrix-valued funtion X

1

(�) = (x

1

(�); : : : ; x

l

(�)) has the pertur-

bation expansion

X

1

(�) = X

1

+X

2

1

X

j=1

K

j

�

j

; � 2 B(0); (2:1:24)

in whih

K

1

= T

�1

M

21

;

K

2

= T

�1

[M

22

K

1

�K

1

M

11

�K

1

A

12

K

1

℄;

K

j

= T

�1

"

M

22

K

j�1

�K

j�1

M

11

�

j�2

P

k=1

K

j�1�k

M

12

K

k

�

j�1

P

k=1

K

j�k

A

12

K

k

#

;

j � 3:

(2:1:25)

Proof. 1) Let

A(�) = A+ �M

and

~

A(�) = X

H

A(�)X =

 

~

A

11

(�)

~

A

12

(�)

~

A

21

(�)

~

A

22

(�)

!

;

~

A

11

(�) 2 C

l�l

; (2:1:26)
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where

~

A

jk

(�) = A

jk

+ �M

jk

; 1 � j; k � 2; A

21

= 0: (2:1:27)

For Z 2 C

(n�l)�l

and � 2 C de�ne the funtion F by

F (Z; �) =

~

A

21

(�)� Z

~

A

11

(�) +

~

A

22

(�)Z � Z

~

A

12

(�)Z; (2:1:28)

and let

f = ve(F ); z = ve(Z):

Observe that by (2.1.28) and the hypothesis (2.1.22), we have

�

�f

�z

�

z=0; �=0

= det(I 
A

22

�A

T

11


 I) 6= 0:

Hene, by the impliit funtion theorem (Theorem 1.6.2) the equation

F (Z; �) = 0

has a unique analyti solution Z = Z(�) of � in some neighborhood B(0) of the

origin of C satisfying Z(0) = 0, or equivalently, we have

 

I 0

Z(�) I

!

�1

~

A(�)

 

I 0

Z(�) I

!

=

 

A

1

(�)

~

A

12

(�)

0 A

2

(�)

!

; (2:1:29)

where

A

1

(�) =

~

A

11

(�) +

~

A

12

(�)Z(�); A

2

(�) =

~

A

22

(�)� Z(�)

~

A

12

(�);

and �(A

1

(�))

T

�(A

2

(�)) = ; provided that the neighborhood B(0) is suÆiently

small.

De�ne

X

1

(�) = X

 

I

Z(�)

!

: (2:1:30)

Then from (2.1.29) and (2.1.26)

A(�)X

1

(�) = X

1

(�)A

1

(�):

Thus, we have proved that X

1

(�) � R(X

1

(�)) is the unique l-dimensional simple

invariant subspae of A(�) in B(0) satisfying X

1

(0) = X

1

, and X

1

(�) is an analyti

matrix-valued funtion of � 2 B(0).

2) Substituting the relations of (2.1.27) into F (Z(�); �) = 0, we get the basi

equation for Z(�):

Z(�)(A

12

+�M

12

)Z(�)+Z(�)(A

11

+�M

11

)�(A

22

+�M

22

)Z(�)��M

21

= 0; (2:1:31)
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where � 2 B(0).

Di�erentiating (2.1.31) at � = 0, and writing

Z

(j)

=

 

d

j

Z(�)

d�

j

!

�=0

; j = 1; 2; : : : ;

we get

TZ

(1)

=M

21

;

TZ

(2)

= 2

h

M

22

Z

(1)

� Z

(1)

M

11

� Z

(1)

A

12

Z

(1)

i

;

TZ

(j)

= j

"

M

22

Z

(j�1)

� Z

(j�1)

M

11

�

j�2

P

k=1

 

j � 1

k

!

Z

(j�1�k)

M

12

Z

(k)

#

�

j�1

P

k=1

 

j

k

!

Z

(j�k)

A

12

Z

(k)

; j � 3;

(2:1:32)

where T is the linear operator de�ned by (2.1.23), and

 

j

k

!

are binomial oeÆ-

ients.

Sine �(A

11

T

�(A

22

) = ;, the operator T is invertible. De�ne

K

k

=

1

k!

Z

(k)

; k = 1; 2; : : : :

Then from (2.1.32) we get the relations (2.1.25) and the power series expansion of

Z(�) at � = 0:

Z(�) =

1

X

j=1

1

j!

Z

(j)

�

j

=

1

X

j=1

K

j

�

j

:

Substituting it into (2.1.30) shows (2.1.24). 2

The following result, as a orollary of Theorem 2.1.5, gives a modi�ed form of

the �rst order perturbation expansion of a simple invariant subspae.

Corollary 2.1.6. Let A;X;A

11

; A

22

;X

1

and T be as in Theorem 2.1.5, and for

E 2 C

n�n

let

X

H

EX =

 

E

11

E

12

E

21

E

22

!

; E

11

2 C

l�l

:

If kEk

F

is suÆiently small, then there exists a unique l-dimensional simple invari-

ant subspae

~

X

1

= R(

~

X

1

) of A+E suh that

~

X

1

has the expansion

~

X

1

= X

1

+X

2

Z

1

+O(kEk

2

F

); (2:1:33)
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where E ! 0, and Z

1

2 C

(n�l)�l

is de�ned by

Z

1

= T

�1

E

21

: (2:1:34)

Let T be the linear operator de�ned by (2.1.23). Using the Kroneker produt

and ve operator, the matrix representation T of the operator T an be expressed

by

T = A

T

11


 I

n�l

� I

l


A

22

; (2:1:35)

and the relation (2.1.34) an be written

ve(Z

1

) = T

�1

ve(E

21

): (2:1:36)

Example 2.1.7. Let A 2 C

n�n

be a normal matrix, i.e., A satis�es A

H

A = AA

H

. Then

there is a matrix X = (x

1

; X

2

) 2 U

n�n

with X

2

= (x

2

; : : : ; x

n

) suh that

X

H

AX = diag(�

1

;�

2

); �

2

= diag(�

2

; : : : ; �

n

):

Let �

1

be a simple eigenvalue of A, and for M 2 C

n�n

let

X

H

MX =

�

�

11

m

T

2

m

1

M

22

�

= (�

ij

) ; �

11

2 C:

Then by Theorem 2.1.1 and Theorem 2.1.5, we have the following onlusions:

i) There is a simple eigenvalue �

1

(�) of A + �M whih is an analyti funtion of � in

some neighborhood B

0

of the origin of C, and �

1

(0) = �

1

;

ii) The funtion �

1

(�) has a power series expansion at � = 0 of the form

�

1

(�) = �

1

+ x

H

1

Mx

1

� + x

H

1

MX

2

(�

1

I � �

2

)

�1

X

H

2

Mx

1

�

2

+ � � � ; � 2 B

0

;

iii) There exists a unique 1-dimensional simple invariant subspae X

1

(�) of A+�M suh

that X

1

(0) = R(x

1

), and the basis vetor x

1

(�) of X

1

(�) may be de�ned to be an analyti

funtion of � in some neighborhood B(0) of the origin of C;

iv) The analyti vetor-valued funtion x

1

(�) has the perturbation expansion

x

1

(�) = x

1

+X

2

1

X

j=1

K

j

�

j

; � 2 B(0);

where the vetors K

j

2 C

n�1

are de�ned by (2.1.25). In partiular, the �rst-order term of

the perturbation in x

1

is given by

X

2

K

1

� = X

2

(�

1

I � �

2

)

�1

m

1

�

=

�

�

21

x

2

�

1

� �

2

+

�

31

x

3

�

1

� �

3

+ � � �+

�

n1

x

n

�

1

� �

n

�

�;
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and the seond-order term is given by

X

2

K

2

�

2

= X

2

(�

1

I � �

2

)

�1

(M

22

� �

11

I)(�

1

I � �

2

)

�1

m

1

�

2

=

0

�

n

X

j=2

(�

2j

� �

11

)�

j1

�

1

� �

j

�

x

2

�

1

� �

2

+

n

X

j=2

(�

3j

� �

11

)�

j1

�

1

� �

j

�

x

3

�

1

� �

3

+ � � �+

n

X

j=2

(�

nj

� �

11

)�

j1

�

1

� �

j

�

x

n

�

1

� �

n

1

A

�

2

:

Notes and Referenes

NR 2.1{1. This setion is based on Sun [102℄ and [109℄. The basi tool is

the impliit funtion theorem (Theorem 1.6.2). The approah of setting the (2,1)

submatries of the equations (2.1.10) and (2.1.29) equal to zero to obtain nonlinear

equations for a basis is due to Stewart [91℄. The tehnique desribed in this setion

will be used in hapters 3 and 4 for deriving perturbation expansions of singular

values, singular subspaes, generalized eigenvalues, and deating subspaes. This

tehnique is also used by Chu [21℄ for studying the mean of multiple eigenvalues and

the orresponding invariant subspaes, and by Andrew, Chu and Lanaster [1℄ for

studying eigenvalues and eigenvetors of matrix funtions. Reently, Lin and Sun

[71℄ study the eigenproblem of periodi matrix pairs by using the same tehnique.

NR 2.1{2. Let �

1

(p) and x

1

(p) be as in Theorem 2.1.1. By using (2.1.11),

(2.1.7) and (2.1.15), we an derive formulas of

 

�

k

�

1

(p)

�p

k

1

1

� � � �p

k

N

N

!

p=0

; k

1

+ � � �+ k

N

= k

for k � 3. Moreover, by using (2.1.8), (2.1.7) and (2.1.15), we an derive formulas

of

 

�

k

x

1

(p)

�p

k

1

1

� � � �p

k

N

N

!

p=0

; k

1

+ � � �+ k

N

= k

for k � 2 (see Sun [102℄ and Chu [21℄).

NR 2.1{3. A general matrix may only depend analytially on one parameter.

For suh matries, the derivatives of eigenvalues and assoiated eigenvetors are

studied by Rellih [86℄, Lanaster [66℄, and perturbation expansions of eigenvalues

and assoiated total projetions are studied by Kato [63℄ by using di�erent teh-

niques from that desribed in this setion.
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NR 2.1{4. Expliit expressions of the derivatives of the eigenvalues and eigen-

vetors of a general matrix depending analytially on one or several parameters have

important pratial and theoretial appliations, suh as in the perturbation theory

of eigenvalue problems (see Kato [63℄), inverse eigenvalue problems (see Sun [103℄,

Xu [134℄) and ontrol system and engineering designs (see Crossley and Porter [24℄).

Numerial methods for omputing the derivatives are studied by many authors, see,

e.g., Andrew, Hoog and Tan [2℄ and the referenes ontained therein.

NR 2.1{5. There are some situations in whih the use of the group inverse is

natural in the formulation of expliit formulas for derivatives of the eigenvetors.

This is demonstrated by Deutsh and Neumann [31℄, and Meyer and Stewart [77℄.

NR 2.1{6. Large vibration systems and ontrol systems are frequently depen-

dent on many physial and geometrial parameters p

1

; : : : ; p

N

, and it will generally

happen that several eigenvalues overlap at some points (p

1

; : : : ; p

N

). It is worth

pointing out that the loal behavior of the eigenvalues dependent on several pa-

rameters at the overlapping points is di�erent from that of the eigenvalues only

dependent on one parameter. Lanaster and Tismenetsky [67, Chapter 11, Theo-

rem 1℄ show that if A(�) is an analyti funtion of one parameter � in a neighborhood

of � = 0, and � is a nondefetive multiple eigenvalue of A(0) with multipliity r, then

A(�) has r eigenvalues �

1

(�), : : :, �

r

(�) suh that �

j

(0) = 0 for all j, and eah �

j

(�)

has derivative

d�

j

(�)

d�

at � = 0. However, if A(p) is an analyti funtion of several

parameters, then the situation beomes ompliated. For example, onsider the

matrix

A(p) =

 

1 + 2p

1

+ p

2

�2p

1

p

2

1� p

2

!

; p = (p

1

; p

2

)

T

2 R

2

:

The elements of A(p) are real analyti funtions of p 2 R

2

, the matrix A(0) has the

nondefetive multiple eigenvalue 1 with multipliity 2, and the eigenvalues of A(p)

are

�

1

(p) = 1 + p

1

+

q

p

2

1

+ p

2

2

; �

2

(p) = 1 + p

1

�

q

p

2

1

+ p

2

2

:

Obviously no arrangement of these eigenvalues ould make them that the rearranged

eigenvalues have partial derivatives at p = 0. Sun [113℄ studies the existene and

expressions of the diretional derivatives of nondefetive multiple eigenvalues of a

general matrix depending analytially on several parameters. The result of [113℄ are

used to disuss the ondition numbers of nondefetive multiple eigenvalues by Sun

[114℄ and [117℄.

NR 2.1{7. Lidskii [70℄ establishes a perturbation theory for eigenvalues of

matries with arbitrary Jordan struture (see Moro, Burke and Overton [79℄ for a

nie review and an alternative proof of Lidskii's main theorem). Let A be a omplex

matrix with arbitrary Jordan struture, and �

1

be an eigenvalue of A whose largest

Jordan blok has size m. Lidskii [70℄ shows that if A is perturbed to A+ �B with a

small parameter � then the splitting of �

1

is, generally, of order �

1=m

, and obtains
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expliit formulas for the leading oeÆients whih involves the perturbation matrix

and the eigenvetors of A.

2.2 Condition Numbers

2.2.1 Simple Eigenvalues

Let A 2 C

n�n

, and � be a simple eigenvalue of A. Let

~

A = A+E be a perturbation

of A, and

~

� be the orresponding perturbation of �. Then by (1.8.1) we de�ne the

ondition number (�) for � as

(�) = lim

Æ!0

sup

kEk

�

�Æ

j

~

�� �j

�Æ

; (2:2:1)

where � and � are positive parameters.

From the de�nition (2.2.1) we see that in �rst order approximation the inequality

j

~

�� �j

�

� (�)

kEk

�

holds.

Let x; y 2 C

n

be right and left eigenvetors of A assoiated with �. Then by

Theorem 2.1.1 and (2.1.19) we have

~

� = �+

y

H

Ex

y

H

x

+O(kEk

2

); E ! 0:

Substituting it into (2.2.1) gives

(�) = � sup

kEk�1

�

�

�

y

H

Ex

�

�

�

�jy

H

xj

=

�kxk

2

kyk

2

�jy

H

xj

: (2:2:2)

Taking � = � = 1 yields the absolute ondition number



abs

(�) =

kxk

2

kyk

2

jy

H

xj

; (2:2:3)

and taking � = kAk

2

and � = j�j (if � 6= 0) yields the relative ondition number



rel

(�) =

kAk

2

kxk

2

kyk

2

j�jjy

H

xj

: (2:2:4)

The following result shows an important fat that if � is a simple eigenvalue

of A, then the shortest distane from A to a matrix whih has an eigenvalue � of
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multipliity at least two is approximately bounded by kAk

2

=

abs

(�) for large 

abs

(�).

Theorem 2.2.1 (Wilkinson). Let � be a simple eigenvalue of A 2 C

n�n

with

right eigenvetor x and left eigenvetor y. If 

abs

(�) > 1 then there exists a matrix

E 2 C

n�n

suh that A+E has � as an eigenvalue of multipliity at least two and

kEk

2

�

kAk

2

q



2

abs

(�)� 1

: (2:2:5)

Proof. By the hypothesis, A has the Shur deomposition

A = U

 

� a

H

0 A

2

!

U

H

; (2:2:6)

where U = (u

1

; U

2

) 2 U

n�n

with u

1

2 C

n

, and � 62 �(A

2

). Thus, there is a w 2 C

n�1

suh that

 

1 �w

H

0 I

!

�1

 

� a

H

0 A

2

! 

1 �w

H

0 I

!

=

 

� 0

0 A

2

!

:

Combining it with (2.2.6) implies that

 

u

H

1

+ w

H

U

H

2

�

!

A (u

1

; �) =

 

� 0

0 A

2

!

;

whih shows that the vetors

x = u

1

and y = u

1

+ U

2

w (2:2:7)

are right and left eigenvetors of A belonging to �. Consequently, by (2.2.3) and

(2.2.7) we have



abs

(�) =

q

1 + kwk

2

2

: (2:2:8)

Moreover, ombining y

H

A = �y

H

with (2.2.6) gives

(1; w

H

)

 

� a

H

0 A

2

!

= �(1; w

H

);

or equivalently,

w

H

 

A

2

+

wa

H

kwk

2

2

!

= �w

H

:

Take

E = U

 

0 0

0

wa

H

kwk

2

2

!

U

H

: (2:2:9)

Then � is an eigenvalue of A+ E of multipliity at least two, and from (2.2.8) and

(2.2.9) we get the estimate (2.2.5). 2
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2.2.2 Invariant Subspaes

Let A 2 C

n�n

, and X

1

be a simple invariant subspae of A. Let

~

A = A + E be a

perturbation of A, and

~

X

1

be the orresponding perturbation of X

1

. Then by (1.8.3)

we de�ne the ondition number (X

1

) for X

1

as

(X

1

) = lim

Æ!0

sup

kEk

F

�

�Æ

�

F

(X

1

;

~

X

1

)

Æ

; (2:2:10)

where � is a positive parameter, and �

F

(�; �) is the generalized hordal metri de�ned

by (1.3.3).

From (2.2.10) we see that in �rst order approximation the inequality

�

F

(X

1

;

~

X

1

) � (X

1

)

kEk

F

�

holds.

By (2.2.10), (2.1.33) and Theorem 1.3.3 (see (1.3.17)), we have

(X

1

) = lim

Æ!0

sup

kEk

F

�

�Æ

kZ

1

k

F

Æ

; (2:2:11)

where Z

1

, as a funtion of E, is de�ned by (2.1.34). Combining (2.2.11) with (2.1.36)

gives

(X

1

) = lim

Æ!0

sup

kve(E)k

2

�

�Æ

kve(Z

1

)k

2

Æ

= � sup

kve(E)k

2

�1

kT

�1

ve(E

21

)k

2

= � sup

kve(E

21

)k

2

�1

kT

�1

ve(E

21

)k

2

= �kT

�1

k

2

;

(2:2:12)

where T is the matrix of (2.1.35).

Taking � = 1 yields the absolute ondition number



abs

(X

1

) = kT

�1

k

2

; (2:2:13)

and taking � = kAk

F

yields the relative ondition number



rel

(X

1

) = kAk

F

kT

�1

k

2

: (2:2:14)

Using the funtion sep introdued by Stewart [91℄, (2.2.13) an be written



abs

(X

1

) = sep

�1

F

(A

11

; A

22

);
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where the funtion sep

F

(A

11

; A

22

) is de�ned by

sep

F

(A

11

; A

22

) =

8

>

<

>

:

kT

�1

k

�1

if 0 62 �(T);

0 if 0 2 �(T);

in whih T is the operator de�ned by (2.1.23), k � k denotes the operator norm

indued by the Frobenius norm, and �(T) denotes the spetrum of T.

Notes and Referenes

NR 2.2{1. The expression (2.2.3) of the absolute ondition number 

abs

(�) is

a well known result (see Wilkinson [130℄). The expression (2.2.4) of the relative

ondition number 

rel

(�) is obtained by Geurts [40℄. Moreover, Geurts [40℄ gives the

omponentwise relative ondition number 

()

rel

(�) for the non-zero simple eigenvalue

�

1

:



()

rel

(�) =

jy

H

jjAjjxj

j�jjy

H

xj

;

where x and y are right and left eigenvetors of A assoiated with �, respetively.

Let �(�) be any vetor norm, and �

D

(�) be the dual norm of �(�). Then we an

obtain a more general expression of the ondition number (�):

(�) =

��(x)�

D

(y)

�jy

H

xj

:

Partiularly, taking � = � = 1 yields the absolute ondition number



abs

(�) =

�(x)�

D

(y)

jy

H

xj

;

and taking � = kAk and � = � (if � 6= 0) yields the relative ondition number



rel

(�) =

kAk�(x)�

D

(y)

j�jjy

H

xj

;

where k � k is a matrix norm onsistent with �(�).

NR 2.2{2. If an eigenvalue of a matrix has multipliity at least two, then the

orresponding eigenvalue problem is alled ill-posed for the eigenvalue. Theorem

2.2.1 (Wilkinson [131℄) shows that if � is a simple eigenvalue of A, then the shortest

distane from the eigenvalue problem to an ill-posed one is bounded by the reipro-

al of the ondition number of �. Demmel [29℄ gives and ompares various bounds

on the distane from a matrix to the nearest one with a multiple eigenvalue, and he

shows that for many problems of numerial analysis, there is the same relationship
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as for the eigenvalue problem between the ondition number of a problem and the

shortest distane from that problem to an ill-posed one.

NR 2.2{3. Assume that � is a nondefetive multiple eigenvalue of A 2 C

n�n

with multipliity r, i.e., there are matries X;Y 2 C

n�n

suh that

Y

H

AX =

 

�I

r

0

0 A

2

!

; Y

H

X = I; � 62 �(A

2

):

Generally speaking, the multiple eigenvalue � of A will split into r simple eigenvalues

~

�

j

(j = 1; : : : ; r) when A is slightly perturbed to

~

A. Hene, a multiple eigenvalue

of multipliity r an have r ondition numbers that reet the di�erent sensitivities

of its progeny. The typial behavior of the eigenvalues and orresponding ondition

numbers are studied by Stewart and Zhang [98℄, and Sun [114℄, [117℄.

NR 2.2{4. On the basis of Lidskii's perturbation theory for eigenvalues of ma-

tries with arbitrary Jordan struture (see NR 2.1{7), Moro, Burke and Overton

[79℄ suggest a notion of H�older ondition number for multiple eigenvalues, depend-

ing only on the onditioning of the assoiated eigenvetors.

NR 2.2{5. The ondition number 

abs

(X

1

) = sep

�1

F

(A

11

; A

22

) is given by Stew-

art [91℄. In x2.2.2 we present a proof by applying Rie's theory of ondition and

using the generalized hordal metri.

NR 2.2{6. Varah [124℄ disusses some properties of sep

F

(A

11

; A

22

), and gives

some examples to show how very small it an be for seemingly harmless prob-

lems. Sun [101℄ and Xu [133℄ give some theoretial estimates on lower bounds for

sep

F

(A

11

; A

22

).

NR 2.2{7. Byers [12℄ proposes an algorithm for estimating sep

F

(A

11

; A

22

) in

the style of the LINPACK ondition number estimator. K�agstr�om and Poromaa

[58℄ present estimators for sep

F

(A

11

; A

22

) by using distributed and shared memory

blok algorithms. For a nie survey on ondition estimation in general, see Higham

[48℄.

NR 2.2{8. Let A;A

11

; A

22

;X

1

be as in Theorem 2.1.5, where �(A

11

)

T

�(A

22

) =

;; the orresponding eigenvalue problem is alled well-posed for the invariant sub-

spae X

1

. If �(A

11

)

T

�(A

22

) 6= ;, then the orresponding eigenvalue problem is

alled ill-posed for the invariant subspae. Demmel [29℄ gives a lower bound on

the distane from a well-posed eigenvalue problem for an invariant subspae to the

nearest ill-posed one by means of the reiproal of the ondition number 

abs

(X

1

)

NR 2.2{9. Bai, Demmel and MKenney [3℄ review the theory of ondition num-

bers for the eigenvalue problem and give a tabular summary of bounds for eigenval-

ues, means of lusters of eigenvalues, eigenvetors, invariant subspaes, and related
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quantities. They desribe the design of algorithms for estimating these ondition

numbers.

2.3 Perturbation Bounds for Invariant Subspaes

We �rst prove a forward perturbation theorem for simple invariant subspaes. The

proof is based on the use of Stewart's tehnique [91℄ and Theorem 2.3.4 at the end

of this subsetion.

Theorem 2.3.1. Let X = (X

1

;X

2

) 2 U

n�n

, and suppose that X

1

= R(X

1

) is an

l-dimensional simple invariant subspae of A and (2.1.22) holds. For a perturbation

E we let

X

H

EX =

 

E

11

E

12

E

21

E

22

!

; (2:3:1)

and assume that �(A

11

+ E

11

)

T

�(A

22

+ E

22

) = ;. De�ne the linear operator L :

C

(n�l)�l

! C

(n�l)�l

by

LZ = Z(A

11

+E

11

)� (A

22

+E

22

)Z; Z 2 C

(n�l)�l

; (2:3:2)

and set

b = kL

�1

E

21

k;  = kL

�1

k; � = kA

12

+E

12

k

2

: (2:3:3)

If

4b� < 1; (2:3:4)

then there is a unique l-dimensional invariant subspae

~

X

1

= R(

~

X

1

) of A + E

satisfying

k tan�(X

1

;

~

X

1

)k �

2b

1 +

p

1� 4b�

; (2:3:5)

where

~

X

1

2 U

n�l

.

Proof. Consider the equation

LZ = E

21

+ �(Z); (2:3:6)

where L is the operator de�ned by (2.3.2), and the funtion � is de�ned by

�(Z) = �Z(A

12

+E

12

)Z; Z 2 C

(n�l)�l

:

Observe that the funtion � satis�es

k�(Z)k � �kZk

2

; k�(

~

Z)� �(Z)k � 2�maxfk

~

Zk; kZkgk

~

Z � Zk;

and the salars b; ; � de�ned by (2.3.3) satisfy (2.3.4). Hene, by Theorem 2.3.4

at the end of this subsetion there is a unique solution Z

�

of the equation (2.3.6)

satisfying

kZ

�

k �

2b

1 +

p

1� 4b�

: (2:3:7)
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It an be veri�ed that the relation

LZ

�

= E

21

+ �(Z

�

)

is equivalent to

 

I 0

Z

�

I

!

�1

(A+E)

 

I 0

Z

�

I

!

=

 

� �

0 �

!

:

Combining it with (2.1.22), (2.3.1), (2.3.7) and (1.3.16) shows that the subspae

~

X

1

de�ned by

~

X

1

= R(

~

X

1

) with

~

X

1

= X

 

I

Z

�

!

�

I + Z

�

H

Z

�

�

�

1

2

2 U

n�l

is the unique invariant subspae of A+E satisfying (2.3.5). 2

From Theorem 2.3.1 we get the following orollary.

Corollary 2.3.2. Let A;E;X;X

1

be as in Theorem 2.3.1, and assume that

E

11

= 0; E

12

= 0; E

22

= 0:

De�ne the linear operator T : C

(n�l)�l

! C

(n�l)�l

by

TZ = ZA

11

�A

22

Z; Z 2 C

(n�l)�l

; (2:3:8)

and assume �(A

11

)

T

�(A

22

) = ;. If

4kT

�1

kkT

�1

E

21

kkA

12

k

2

< 1;

then there is a unique l-dimensional invariant subspae

~

X

1

= R(

~

X

1

) of A + E

satisfying

k tan�(X

1

;

~

X

1

)k �

2kT

�1

E

21

k

1 +

p

1� 4kT

�1

kkT

�1

E

21

kkA

12

k

2

;

where

~

X

1

2 U

n�l

.

Moreover, if the perturbation matrix E itself is unknown but some upper bounds

for kE

jk

k are known, then we have the following well known result.

Theorem 2.3.3 (Stewart). Let A;E;X;X

1

be as in Theorem 2.3.1, and let T

be the linear operator de�ned by (2.3.8). Assume that

�(A

11

)

\

�(A

22

) = ; and kT

�1

k(kE

11

k+ kE

22

k) < 1;
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and set

~ =

kT

�1

k

1� kT

�1

k(kE

11

k+ kE

22

k)

;  = kE

21

k; ~� = kA

12

k

2

+ kE

12

k

2

:

If

4~

2

~� < 1;

then there is a unique l-dimensional invariant subspae

~

X

1

= R(

~

X

1

) of A + E

satisfying

k tan�(X

1

;

~

X

1

)k �

2~

1 +

p

1� 4~

2

~�

;

where

~

X

1

2 U

n�l

.

We now prove a general result on solution of a nonlinear equation, whih an be

used to establish the existene of Z

�

in Theorem 2.3.1. We state and prove it for a

Banah spae, whih the reader may take to be a �nite dimensional normed linear

spae.

Theorem 2.3.4. Let T be a bounded linear operator on a Banah spae B,

and let k � k be a norm on B and the indued operator norm. Assume that T has a

bounded inverse, and set

 = kT

�1

k: (2:3:9)

Let � : B ! B be a funtion that satis�es

k�(x)k � �kxk

2

; k�(~x)� �(x)k � 2�maxfk~xk; kxkgk~x � xk (2:3:10)

for any x; ~x 2 B and some � � 0. For any g 2 B, let

b = kT

�1

gk: (2:3:11)

If

4b� < 1; (2:3:12)

then there is a unique solution x

�

of the nonlinear equation

Tx = g + �(x) (2:3:13)

that satis�es

kx

�

k �

2b

1 +

p

1� 4b�

� �

�

: (2:3:14)

Proof. De�ne

S

�

�

= fx 2 B : kxk � �

�

g:

We �rst prove that if there is a solution of (2.3.13) in S

�

�

, then it is unique.
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Assume that the equation (2.3.13) has di�erent solutions x

�

; x̂ 2 S

�

�

. Then by

(2.3.9), (2.3.10), and (2.3.14), we have

kx

�

� x̂k � kT

�1

kk�(x

�

)� �(x̂)k

� 2�maxfkx

�

k; kx̂kgkx

�

� x̂k

� 2� �

2b

1 +

p

1� 4b�

kx

�

� x̂k

< 4b�kx

�

� x̂k < kx

�

� x̂k:

This ontradition shows that there is at most one solution of the equation (2.3.13)

in S

�

�

.

Now we prove the existene of a solution of (2.3.13) in S

�

�

.

Consider the ontinuous mappingM : B ! B de�ned by

y = T

�1

[g + �(x)℄: (2:3:15)

Sine any �xed point of the mapping M is a solution of the equation (2.3.13), the

problem of �nding a solution of (2.3.13) satisfying (2.3.14) redues to the problem

of showing that there is a �xed point of the mappingM in S

�

�

.

It is easy to verify that the salar �

�

de�ned by (2.3.14) is a solution of the

equation

��

2

� � + b = 0: (2:3:16)

From (2.3.15) we see that if x 2 B satis�es kxk � �

�

then y satis�es

kyk � kT

�1

gk+ kT

�1

kk�(x)k

� b+ �kxk

2

(by (2:3:9) � (2:3:11))

� b+ ��

�

2

= �

�

; (by (2:3:16))

whih means that for the mappingM de�ned by (2.3.15) we have

x 2 S

�

�

=) y 2 S

�

�

: (2:3:17)

Observe that S

�

�

is a bounded losed onvex set of B, and (2.3.17) shows that

the ontinuous mappingM maps S

�

�

into S

�

�

. Hene, by the Shauder �xed-point

theorem (Theorem 1.7.2) the mapping M has a �xed point in S

�

�

, and thus the

equation (2.3.13) has a solution in S

�

�

. 2
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Notes and Referenes

NR 2.3{1. Theorem 2.3.3 is given by Stewart [91℄. Theorem 2.3.1 and Corol-

lary 2.3.2 are new results, whih give perturbation bounds for invariant subspaes

when the perturbation matrix E itself is known.

NR 2.3{2. Theorem 2.3.4 is proved by Sun [121℄.

NR 2.3{3. A note on Theorem 2.3.4. Let  = kgk. Stewart [91, Theorem 3.1℄

shows that if the funtion � satis�es (2.3.10), and

4

2

� < 1;

then there is a unique solution x

�

of the equation (2.3.13) that satis�es

kx

�

k �

2

1 +

p

1� 4

2

�

: (2:3:18)

We now ompare the estimates (2.3.18) and (2.3.14). Assume that B is a �nite

dimensional Banah spae. Let T be the matrix representation of T, and let v

x

�

; v

g

be the vetor representations of x

�

; g, respetively. Then in �rst order approximation

the estimates (2.3.14) and (2.3.18) an be written

kv

x

�

k � kT

�1

v

g

k; kv

x

�

k � kT

�1

kkv

g

k; (2:3:19)

respetively, where k � k denotes any onsistent matrix norm and assoiated vetor

norm. The attration of the �rst bound of (2.3.19) is that if v

g

is known then large

elements in the jth olumn of T

�1

may be ountered by a small jth element of v

g

(or a large jth element of v

g

may be ountered by small elements in the jth olumn

of T

�1

), making the bound muh smaller than the seond bound of (2.3.19). This

fat is pointed out by Higham [51, setion 5℄. Note that if the vetor v

g

itself is

unknown but some upper bound for kv

g

k is known, then we are fored to use the

seond bound of (2.3.19), i.e., if the g itself is unknown but some upper bound for

kgk is known, then we are fored to use the bound (2.3.18).

2.4 Bakward Errors and Residual Bounds

2.4.1 Bakward Errors

In this subsetion we disuss several kinds of normwise bakward errors whih are

de�ned by using some information of approximate simple invariant subspaes and

assoiated eigenmatries of a matrix A. An approximate invariant subspae may

ome from a numerial algorithm (see, e.g., Dongarra, Hammarling, and Wilkinson

[33℄ for methods for omputing invariant subspaes).
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2.4.1.1 The Bakward Error �(

~

X

1

)

Let

~

X

1

approximate an l-dimensional simple invariant subspae of A 2 C

n�n

. By

x1.9, we de�ne the bakward error �(

~

X

1

) of A with respet to

~

X

1

by

�(

~

X

1

) = min

E2E

kEk; (2:4:1)

where the set E is de�ned by

E =

n

E 2 C

n�n

: (A+E)

~

X

1

�

~

X

1

o

: (2:4:2)

The following result gives a omputable formula of �(

~

X

1

).

Theorem 2.4.1. Choose

~

U

1

2 U

n�l

so that R(

~

U

1

) =

~

X

1

. Let

R =

~

U

1

(

~

U

H

1

A

~

U

1

)�A

~

U

1

(2:4:3)

be the residual of A with respet to

~

U

1

. Then the bakward error �(

~

X

1

) an be

expressed by

�(

~

X

1

) = kRk: (2:4:4)

The expressions (2.4.3) and (2.4.4) imply that the bakward error �(

~

X

1

) de�ned

by (2.4.1){(2.4.2) is independent of the hoie of the matrix

~

U

1

whose olumn ve-

tors form an orthonormal basis of

~

X

1

.

Proof of Theorem 2.4.1. From (2.4.2) it follows that a matrix E 2 E if and

only if E is a solution of the equation

(A+E)

~

U

1

=

~

U

1

A

1

for some A

1

2 C

l�l

; or equivalently, E satis�es

E

~

U

1

=

~

U

1

A

1

�A

~

U

1

: (2:4:5)

Applying Theorem 1.5.1 to the equation (2.4.5) we see that the equation is

solvable, and any solution E of the equation an be expressed by

E = (

~

U

1

A

1

�A

~

U

1

)

~

U

H

1

+ Z(I �

~

U

1

~

U

H

1

); (2:4:6)

where Z 2 C

n�n

.

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (2.4.6)

~

U

H

E

~

U =

 

A

1

�

~

U

H

1

A

~

U

1

~

U

H

1

Z

~

U

2

�

~

U

H

2

A

~

U

1

~

U

H

2

Z

~

U

2

!

=

 

A

1

�

~

U

H

1

A

~

U

1

~

U

H

1

Z

~

U

2

~

U

H

2

R

~

U

H

2

Z

~

U

2

!

:
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By the de�nition (2.4.1) and Theorem 1.2.1 we have

�(

~

X

1

) = kE

opt

k with E

opt

=

~

U

 

0 0

~

U

H

2

R 0

!

~

U

H

: (2:4:7)

Observe that the relation

~

U

H

R =

 

0

~

U

H

2

R

!

implies

�

+

(

~

U

H

2

R) = �

+

(R):

Hene, we have

�

+

 

0 0

~

U

H

2

R 0

!

= �

+

(R):

Combining it with (2.4.7) shows (2.4.4). 2

2.4.1.2 The Bakward Error �(

~

X

1

;

~

A

1

)

Let A 2 C

n�n

, and let X

1

be an l-dimensional subspae of C

n

. By the de�nition,

X

1

is an invariant subspae of A if and only if there are matries X

1

2 C

n�l

and

A

1

2 C

l�l

suh that

X

1

= R(X

1

) and AX

1

= X

1

A

1

:

The matrix A

1

may be alled the (right) eigenmatrix of A assoiated with X

1

.

Suppose that the olumn vetors of

~

X

1

2 C

n�l

form a basis of an approximate

invariant subspae of A, and

~

A

1

2 C

l�l

is the assoiated eigenmatrix. By x1.9, we

de�ne the bakward error �(

~

X

1

;

~

A

1

) of A with respet to

~

X

1

and

~

A

1

by

�(

~

X

1

;

~

A

1

) = min

E2E

kEk; (2:4:8)

where the set E is de�ned by

E =

n

E 2 C

n�n

: (A+E)

~

X

1

=

~

X

1

~

A

1

o

: (2:4:9)

The following result gives a omputable formula of �(

~

X

1

;

~

A

1

).

Theorem 2.4.2. Let

R =

~

X

1

~

A

1

�A

~

X

1

(2:4:10)

be the residual of A with respet to

~

X

1

and

~

A

1

. Then the bakward error �(

~

X

1

;

~

A

1

)

an be expressed by

�(

~

X

1

;

~

A

1

) =







R

~

X

y

1







: (2:4:11)
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Proof. From (2.4.9) it follows that a matrix E 2 E if and only if E satis�es

E

~

X

1

= R; (2:4:12)

where R is the residual de�ned by (2.4.10).

Applying Theorem 1.5.1 to the equation (2.4.12) we see that the equation is

solvable, and any solution E to the equation an be expressed by

E = R

~

X

y

+ Z(I �

~

X

~

X

y

); (2:4:13)

where Z 2 C

n�n

.

Take an orthogonal deomposition

~

X

1

=

~

U

1

L of

~

X

1

, where

~

U

1

2 U

n�l

and

L 2 C

l�l

. Further, hoose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (2.4.13)

E = RL

�1

~

U

H

1

+ Z(I �

~

U

1

~

U

H

1

) = (RL

�1

; Z

~

U

2

)

~

U

H

:

By the de�nition (2.4.8) and Theorem 1.2.1, we have

�(

~

X

1

;

~

A

1

) = kE

opt

k with E

opt

= RL

�1

1

~

U

H

1

= R

~

X

y

1

;

whih shows (2.4.11). 2

Remark 2.4.3. Let

~

�

1

2 C be an approximate eigenvalue of A 2 C

n�n

, and

~x

1

2 C

n

be an assoiated eigenvetor. Then by Theorem 2.4.2, the bakward error

�(~x

1

;

~

�

1

) of A with respet to ~x

1

and

~

�

1

an be expressed by

�(~x

1

;

~

�

1

) =

krk

2

k~x

1

k

2

; (2:4:14)

where

r =

~

�

1

~x

1

�A~x

1

be the residual of A with respet to ~x

1

and

~

�

1

. Moreover, the optimal bakward

perturbation E

opt

in A is expressed by

E

opt

= r~x

y

1

;

whih is the smallest perturbation of A (in any unitarily invariant norm) suh that

~

�

1

is an eigenvalue of A+E

opt

, and ~x

1

is an assoiated eigenvetor.

Example 2.4.4 (Yamamoto [135, Example 2℄). Consider the matrix

A =

0

B

B

B

B

�

14 9 6 4 2

�9 �4 �3 �2 �1

�2 �2 0 �1 �1

3 3 3 5 3

�9 �9 �9 �9 �4

1

C

C

C

C

A

;
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whih has the eigenvalues

�

1

= 1 +

p

2i; �

2

= 1�

p

2i; �

3

= 5; �

4

= �

5

= 2;

and assoiated eigenvetors

x

1

=

0

B

B

B

B

�

0

0

�1

2�

p

2i

�1 + 2

p

2i

1

C

C

C

C

A

; x

2

=

0

B

B

B

B

�

0

0

�1

2 +

p

2i

�1� 2

p

2i

1

C

C

C

C

A

; x

3

=

0

B

B

B

B

�

1

�1

0

0

0

1

C

C

C

C

A

; x

4

=

0

B

B

B

B

�

�1

2

�1

0

0

1

C

C

C

C

A

:

Using the MATLAB �le \eig" (whih is an implementation of the QR method) to the matrix

A, we get the omputed eigenvalues

~

�

j

and assoiated eigenvetors ~x

j

for j = 1; 2; 3; 4; 5,

among whih ~x

4

and ~x

5

are approximately linearly dependent. Applying (2.4.14) we get

�(~x

1

;

~

�

1

) � 6:94� 10

�15

; �(~x

2

;

~

�

2

) � 6:94� 10

�15

; �(~x

3

;

~

�

3

) � 3:38� 10

�15

;

�(~x

4

;

~

�

4

) � 4:22� 10

�15

; �(~x

5

;

~

�

5

) � 5:05� 10

�15

;

whih show that eah omputed eigenvalue

~

�

j

and assoiated eigenvetor ~x

j

are an exat

eigenvalue and an assoiated eigenvetor of a very slightly perturbed matrix of A; in other

words, the omputation has proeeded quite stably.

2.4.1.3 The Bakward Errors �

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) and �

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

)

Let A 2 C

n�n

. If Y

1

2 C

n�l

and C

1

2 C

l�l

satisfy

rank(Y

1

) = l and Y

H

1

A = C

1

Y

H

1

;

then Y

1

= R(Y

1

) is alled a left invariant subspae of A, and the matrix C

1

may be

alled the left eigenmatrix of A assoiated with Y

1

.

Let the olumn vetors of

~

X

1

2 C

n�l

form a basis of a subspae

~

X

1

whih

approximates an invariant subspae X

1

of A, and let

~

A

1

2 C

l�l

be the assoiated

approximate (right) eigenmatrix. Moreover, let the olumn vetors of

~

Y

1

2 C

n�l

form a basis of a subspae

~

Y

1

whih approximates a left invariant subspae Y

1

of

A, and

~

C

1

2 C

l�l

is the assoiated approximate left eigenmatrix. Suppose that the

invariant subspaes X

1

and Y

1

orrespond to the same eigenvalues of A. Therefore,

we may assume that

rank(

~

Y

H

1

~

X

1

) = l: (2:4:15)

By x1.9, we de�ne the bakward errors �

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) and �

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) of

A with respet to

~

X

1

,

~

Y

1

,

~

A

1

,

~

C

1

by

�

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) = min

E2E

kEk

F

; �

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) = min

E2E

kEk

2

; (2:4:16)

where the set E is de�ned by

E =

n

E 2 C

n�n

: (A+E)

~

X

1

=

~

X

1

~

A

1

;

~

Y

H

1

(A+E) =

~

C

1

~

Y

H

1

o

: (2:4:17)
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If the matries

~

X

1

and

~

Y

1

satisfy

~

X

H

1

~

X

1

=

~

Y

H

1

~

Y

1

= I, then the following result

gives omputable formulas of �

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) and �

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) in the ase

of E 6= ;.

Theorem 2.4.5 (Kahan, Parlett, and Jiang). If

~

X

1

;

~

Y

1

2 U

n�l

, and if

rank(

~

Y

H

1

~

X

1

) = l;

~

C

1

=

�

~

Y

H

1

~

X

1

�

~

A

1

�

~

Y

H

1

~

X

1

�

�1

: (2:4:18)

Then

�

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) =

q

kRk

2

F

+ kSk

2

F

� kS

~

X

1

k

2

F

; (2:4:19)

and

�

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) = maxfkRk

2

; kSk

2

g; (2:4:20)

where R;S are the residuals de�ned by

R =

~

X

1

~

A

1

�A

~

X

1

; S =

~

C

1

~

Y

H

1

�

~

Y

H

1

A: (2:4:21)

Proof. From (2.4.17) it follows that a matrix E 2 E if and only if E is a solution

of the equations

E

~

X

1

= R;

~

Y

H

1

E = S; (2:4:22)

where R and S are the residuals de�ned by (2.4.21).

Applying Theorem 1.5.1 to the �rst equation of (2.4.22) we see that the equation

is solvable, and any solution E to the equation an be expressed by

E = R

~

X

H

1

+ Z(I �

~

X

1

~

X

H

1

); (2:4:23)

where Z 2 C

n�n

. Combining (2.4.23) with (2.4.21) and the seond equation of

(2.4.22), shows that the matrix Z of (2.4.23) satis�es

~

Y

H

1

Z(I �

~

X

1

~

X

H

1

) =

~

C

1

~

Y

H

1

�

~

Y

H

1

A�

~

Y

H

1

~

X

1

~

A

1

~

X

H

1

+

~

Y

H

1

A

~

X

1

~

X

H

1

: (2:4:24)

Applying Theorem 1.5.1 to the equation (2.4.24) we see that the equation is solvable

if and only if

~

A

1

and

~

C

1

satisfy (2.4.18), and under the ondition (2.4.18) any solution

Z to the equation (2.4.24) an be expressed by

Z =

~

Y

1

S(I �

~

X

1

~

X

H

1

) +W �

~

Y

1

~

Y

H

1

W (I �

~

X

1

~

X

H

1

):

Substituting it into (2.4.23) gives

E = R

~

X

H

1

+

~

Y

1

S(I �

~

X

1

~

X

H

1

) + (I �

~

Y

1

~

Y

H

1

)W (I �

~

X

1

~

X

H

1

): (2:4:25)

Choose

~

X

2

;

~

Y

2

so that

~

X = (

~

X

1

;

~

X

2

);

~

Y = (

~

Y

1

;

~

Y

2

) 2 U

n�n

. Then any matrix E

of (2.4.25) satis�es

~

Y

H

E

~

X =

 

~

Y

H

1

R S

~

X

2

~

Y

H

2

R

~

Y

H

2

W

~

X

2

!

: (2:4:26)
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By the de�nition (2.4.16) and Theorem 1.2.1, we have

h

�

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

)

i

2

= kRk

2

F

+







S

~

X

2







2

F

:

Combining it with

kSk

2

F

=







S

~

X

1







2

F

+







S

~

X

2







2

F

shows (2.4.19).

Moreover, by the de�nition (2.4.16) and Theorem 1.2.4, from (2.4.26) we get

�

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) = max

n

kRk

2

;







�

~

Y

H

1

R; S

~

X

2

�







2

o

:

Combining it with







�

~

Y

H

1

R; S

~

X

2

�







2

=







S

�

~

X

1

;

~

X

2

�







2

= kSk

2

;

shows (2.4.20). 2

2.4.2 Residual Bounds

Let an approximate invariant subspae

~

X

1

= R(

~

U

1

) of A 2 C

n�n

be given, where

~

U

1

2 U

n�l

. Then by using Theorem 2.4.1 and an appropriate forward perturbation

result we an determine the auray of the approximate invariant subspae

~

X

1

.

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. By the proof of Theorem 2.4.1, the

optimal bakward perturbation E

opt

of (2.4.7) satis�es

~

U

H

(A+E

opt

)

~

U =

 

~

U

H

1

A

~

U

1

~

U

H

1

A

~

U

2

0

~

U

H

2

A

~

U

2

!

�

 

~

A

11

�S

~

U

2

0

~

A

22

!

; (2:4:27)

and

~

U

H

E

opt

~

U =

 

0 0

~

U

H

2

R 0

!

; (2:4:28)

where R is the residual de�ned by (2.4.3), and S is the residual of A with respet

to

~

U

H

1

de�ned by

S = (

~

U

H

1

A

~

U

1

)

~

U

H

1

�

~

U

H

1

A:

The relation (2.4.27) implies that the subspae

~

X

1

is an invariant subspae of

A+E

opt

.

Applying Corollary 2.3.2 to the matries A+E

opt

and A, and using the relations

S

~

U

1

= 0 and kS

~

U

2

k = kS

~

Uk = kSk, we obtain the following result whih gives a

residual bound for the approximate invariant subspae

~

X

1

of A.
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Theorem 2.4.6. Let

~

X

1

= R(

~

U

1

) be an approximate invariant subspae of A 2

C

n�n

, where

~

U

1

2 U

n�l

. Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. De�ne the

matries

~

A

11

;

~

A

22

by (2.4.27), and de�ne the linear operator T by

TZ = Z

~

A

11

�

~

A

22

Z; Z 2 C

(n�l)�l

:

Moreover, de�ne the residuals R and S by

R =

~

U

1

~

A

11

�A

~

U

1

; S =

~

A

11

~

U

H

1

�

~

U

H

1

A:

If

�(

~

A

11

)

\

�(

~

A

22

) = ; and 4kT

�1

kkT

�1

(

~

U

H

2

R)kkSk

2

< 1;

then there is a unique invariant subspae X

1

= R(U

1

) of A with U

1

2 U

n�l

suh that

�(X

1

;

~

X

1

) � k tan�(U

1

;

~

U

1

)k �

2kT

�1

(

~

U

H

2

R)k

1 +

q

1� 4kT

�1

kkT

�1

(

~

U

H

2

R)kkSk

2

: (2:4:29)

From the relation (2.4.27) we see that the eigenvalues

~

�

1

; : : : ;

~

�

l

of

~

U

H

1

A

~

U

1

, as l

approximate eigenvalues of A, are l eigenvalues of A + E

opt

. Applying the Henrii

theorem on perturbations of eigenvalues [44℄ (or see Stewart and Sun [97, Chapter

IV, Theorem 1.9℄) to the matries A and A+E

opt

, we an obtain a residual bound

for the approximate eigenvalues

~

�

1

; : : : ;

~

�

l

of A. Before the statement of the result

on a residual bound for

~

�

1

; : : : ;

~

�

l

, we �rst de�ne the 2-departure of a matrix from

normality by using the Shur deomposition.

It is well known that for any A 2 C

n�n

, there is the Shur deomposition A =

UTU

H

, where U 2 U

n�n

, and T 2 C

n�n

is upper triangular. Let A 2 C

n�n

, and let

U

A

be the set de�ned by

U

A

=

n

U 2 U

n�n

: U

H

AU is upper triangular

o

:

For eah U 2 U

A

write U

H

AU = �

U

+R

U

, where �

U

is diagonal, and R

U

is stritly

upper triangular. Then by Henrii [52℄, the 2-departure from normality of A is the

number

�

2

(A) � min

U2U

A

kR

U

k

2

;

and by the Henrii theorem [44, Theorem 4℄, for any eigenvalue

~

� of A + E with

E 6= 0, there is an eigenvalue � of A suh that

�

�

�

~

�� �

�

�

�

�

�

g(�)

kEk

2

; � �

�

2

(A)

kEk

2

; (2:4:30)

where g(�) is the unique nonnegative solution of the equation

g + g

2

+ � � �+ g

n

= � (� � 0):
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Applying Henrii's estimate (2.4.30) to the matries A and A+E

opt

of (2.4.27){

(2.4.28) yields the following result.

Theorem 2.4.7. Let

~

X

1

= R(

~

U

1

) be an approximate invariant subspae of A 2

C

n�n

, and R be the residual de�ned by (2.4.3), where

~

U

1

2 U

n�l

. Moreover, let

~

�

1

; : : : ;

~

�

l

be the eigenvalues of

~

U

H

1

A

~

U

1

. Then for any

~

�

k

(1 � k � l) there is an

eigenvalue �

j

k

of A suh that

�

�

�

~

�

k

� �

j

k

�

�

�

�

�

g(�)







~

U

H

2

R







2

; � �

�

2

(A)







~

U

H

2

R







2

;

where g(�) is the unique nonnegative solution of the equation

g + g

2

+ � � �+ g

n

= � (� � 0):

Example 2.4.8. Consider the matrix A of Example 2.4.4. The vetor

x

1

= (0; 0; �1; 2�

p

2i; �1 + 2

p

2i)

T

is an eigenvetor assoiated with the eigenvalue �

1

= 1 +

p

2i of A. Suppose that we have

an approximate eigenvetor

~x

1

= (0:0001; 0:0000; �0:9999; 1:9999� 1:4142i; �1:0001+ 2:8284i)

T

;

and let u

1

= x

1

=kx

1

k

2

, ~u

1

= ~x

1

=k~x

1

k

2

. A alulation gives

sin �(u

1

; ~u

1

) � 4:5453� 10

�5

; tan �(u

1

; ~u

1

) � 4:5453� 10

�5

; (2:4:31)

and

j~u

T

1

A~u

1

� �

1

j � 9:2454� 10

�5

; (2:4:32)

where �(u

1

; ~u

1

) denotes the angle between the two 1-dimensional subspaes R(u

1

) and

R(~u

1

).

Choose

~

U

2

so that (~u

1

;

~

U

2

) 2 U

5�5

. (See NR 2.4{4 for a simple algorithm for determining

suh a matrix

~

U

2

.) Compute

~

A

11

= ~u

T

1

A~u

1

;

~

A

22

=

~

U

T

2

A

~

U

2

;

and

r =

~

A

11

~u

1

�A~u

1

; s =

~

A

11

~u

H

1

� ~u

H

1

A; T =

~

A

11

I �

~

A

22

:

A alulation shows that

~

A

11

62 �(

~

A

22

), and

4kT

�1

k

2

kT

�1

(

~

U

T

2

r)k

2

ksk

2

� 1:3021� 10

�2

< 1:

Consequently, applying Theorem 2.4.6, there is a unit eigenvetor u of A suh that

tan �(u; ~u

1

) �

2kT

�1

(

~

U

T

2

r)k

2

1 +

q

1� 4kT

�1

k

2

kT

�1

(

~

U

T

2

r)k

2

ksk

2

� 4:5601� 10

�5

: (2:4:33)
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Comparing (2.4.33) with (2.4.31) shows that the estimate (2.4.33) is fairly sharp.

Observe that

4kT

�1

k

2

2

k

~

U

T

2

rk

2

ksk

2

� 4:6181� 10

�1

< 1:

Hene, applying Theorem 2.3.3, there is a unit eigenvetor u of A suh that

tan �(u; ~u

1

) �

2kT

�1

k

2

k

~

U

T

2

rk

2

1 +

q

1� 4kT

�1

k

2

2

k

~

U

T

2

rk

2

ksk

2

� 1:8597� 10

�3

;

whih is weaker than the estimate (2.4.33).

Moreover, by Theorem 2.4.7, we have

min

�

j

2�(A)

j~u

T

1

A~u

1

� �

j

j

<

�

6:8769� 10

�1

: (2:4:34)

Comparing (2.4.34) with (2.4.32) shows that the estimate (2.4.34) obtained by applying

Theorem 2.4.7 is a severe overestimate.

For improving the estimate (2.4.34), we �rst prove a lemma.

Lemma 2.4.9. Let � be an eigenvalue of A 2 C

n�n

and x be an assoiated

eigenvetor. De�ne G(x; �) by

G(x; �) = (�I �A; x):

Then � is simple if and only if rank(G(x; �)) = n.

Proof. Without loss of generality we may assume that the matrix A = J , the

Jordan anonial form of A.

If � is simple, then

J = diag(�; J

1

); � 62 �(J

1

);

and

x = �e

(n)

1

with nonzero � 2 C:

Thus, we have

G(x; �) =

 

0 0 1

0 �I

n�1

� J

1

0

!

;

and obviously, rank(G(x; �)) = n.

On the other hand, if � is a multiple eigenvalue of A with multipliity m > 1,

and x is an assoiated eigenvetor, then

J = diag(J

�

; J

1

);
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where J

�

2 C

m�m

is in Jordan anonial form and whose eigenvalues are only

� 62 �(J

1

). If J

�

only ontains one Jordan blok, then x = �e

(n)

1

with a nonzero

� 2 C, and the mth row of G(x; �) is (0; : : : ; 0), and so we have rank(G(x; �)) < n.

If J

�

ontains at least two Jordan bloks, then there are at least two zero olumns

among the �rstm olumns ofG(x; �), and so we have rank(G(x; �)) < n, too. 2

Let � be a simple eigenvalue of A 2 C

n�n

, and x be an assoiated eigenvetor.

Then from Lemma 2.4.8 we see that if (~u;

~

�) is a good approximation of (x; �), then

rank

�

~

�I �A; ~u

�

= n:

The following result gives a residual bound for an approximate eigenvalue and

assoiated eigenvetor of a matrix, in whih the approximate eigenvalue approxi-

mates a simple eigenvalue of the matrix.

Theorem 2.4.10. Let

~

� 2 C be an approximate eigenvalue of A 2 C

n

, and

~u 2 C

n

be an assoiated unit eigenvetor. De�ne the residual r by

r =

~

�~u�A~u; (2:4:35)

and let

T =

�

~

�I �A; ~u

�

; (2:4:36)

T

y

r =

 



d

!

; T

y

=

 

W

z

!

; ; z

T

2 C

n

; (2:4:37)

and

 = kk

2

; Æ = jdj; ! = kWk

2

; � = kzk

2

: (2:4:38)

If

rank(T ) = n (2:4:39)

and

(1 + � � Æ!)

2

� 4� > 0; (2:4:40)

then there exist an eigenvalue � of A and an assoiated unit eigenvetor u suh that

sin �(u; ~u) �

2

1 + � � Æ! +

p

(1 + � � Æ!)

2

� 4�

� �

�

1

(2:4:41)

and

j

~

�� �j �

2Æ

1� � + Æ! +

p

(1� � + Æ!)

2

� 4Æ!

� �

�

2

: (2:4:42)

Proof. By theorem 1.3.2 (see (1.3.9)), we only need to prove the following

onlusion: Under the onditions (2.4.39) and (2.4.40), there exist � 2 C and x 2 C

n

suh that

Ax = �x; (2:4:43)
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and

k~u� xk

2

� �

�

1

; j

~

�� �j � �

�

2

; (2:4:44)

where �

�

1

and �

�

2

are de�ned by (2.4.41) and (2.4.42), respetively.

Suppose that x and � satisfy (2.4.43). Let

�x = ~u� x; �� =

~

�� �:

Combining it with (2.4.35) and (2.4.43) shows that �x and �� satisfy

T

 

�x

��

!

= r +���x; (2:4:45)

where T is the matrix de�ned by (2.4.36).

Consider the nonlinear equation

 

�x

��

!

= T

y

(r +���x) ; (2:4:46)

where �� and the elements of �x are independent variables. By (2.4.39), we have

TT

y

= I, so multiplying the equation (2.4.46) on the left by T yields (2.4.45). This

shows that any solution of (2.4.46) is a solution of (2.4.45). De�ne the funtion f

by

f(�x;��) = T

y

(r +���x) ; (2:4:47)

whih an be regarded as a ontinuous mappingM : C

n+1

! C

n+1

. Sine any �xed

point of the mapping M is a solution of (2.4.46), the problem of proving (2.4.44)

redues to the problem of showing the existene of a �xed point of the ontinuous

mappingM and then determining an upper bound on its size.

Let f = (g

T

; h)

T

, where g 2 C

n

. Then by using (2.4.37), the mapping (2.4.47)

an be expressed by

8

>

<

>

:

g(�x;��) = +W���x;

h(�x;��) = d+ z���x:

(2:4:48)

Consider the nonlinear system

8

>

<

>

:

�

1

=  + !�

1

�

2

;

�

2

= Æ + ��

1

�

2

:

(2:4:49)

It is easy to verify that under the ondition (2.4.40), (�

�

1

; �

�

2

) is a solution of (2.4.49).

We now de�ne

S

�

�

1

;�

�

2

=

( 

�x

��

!

: k�xk

2

� �

�

1

; j��j � �

�

2

)

:
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S

�

�

1

;�

�

2

is obviously a bounded losed onvex set of C

n+1

. Moreover, (2.4.48) and

(2.4.49) imply

 

�x

��

!

2 S

�

�

1

;�

�

2

=)

 

g(�x;��)

h(�x;��)

!

2 S

�

�

1

;�

�

2

;

whih shows that the ontinuous mapping M expressed by (2.4.48) maps S

�

�

1

;�

�

2

into S

�

�

1

;�

�

2

. Therefore, by the Brouwer �xed-point theorem (Theorem 1.7.1), the

mappingM has a �xed point in S

�

�

1

;�

�

2

. Thus, we have proved that under the ondi-

tions (2.4.39) and (2.4.40) the equation (2.4.45) has a solution

 

�x

�

��

�

!

satisfying

k�x

�

k

2

� �

�

1

and j��

�

j � �

�

2

. Let x = ~u � �x

�

and � =

~

� � ��

�

, then x and �

satisfy (2.4.43) and (2.4.44). 2

Sine �

�

1

and �

�

2

satisfy (2.4.49), we an �rst ompute �

�

1

by (2.4.41), and then

ompute �

�

2

by

�

�

2

=

Æ

1� ��

�

1

:

Example 2.4.11. Let A; u

1

; �

1

; ~x

1

; ~u

1

be as in Example 2.4.8, and let

~

�

1

= ~u

T

1

A~u

1

:

Suppose that we have the approximation (~u

1

;

~

�

1

). Applying Theorem 2.4.10, there exist an

eigenvalue � of A and an assoiated unit eigenvetor u suh that

sin �(u; ~u

1

) � 5:4826� 10

�5

; j

~

�

1

� �j � 9:2495� 10

�5

: (2:4:50)

Comparing (2.4.50) with (2.4.31) and (2.4.32) shows that the error bounds obtained by ap-

plying Theorem 2.4.10 are fairly sharp.

Example 2.4.12. Consider the matrix A of Example 2.4.4. Let

~

�

j

and ~x

j

be the

omputed eigenvalues and assoiated eigenvetors of A by using the MATLAB �le \eig", and

let ~u

j

= ~x

j

=k~x

j

k

2

. Applying Theorem 2.4.10, there exist simple eigenvalues �

j

(j = 1; 2; 3)

and assoiated unit eigenvetors u

j

of A suh that

sin �(u

1

; ~u

1

) � 4:26� 10

�15

; j

~

�

1

� �

1

j � 1:02� 10

�14

;

sin �(u

2

; ~u

2

) � 4:26� 10

�15

; j

~

�

2

� �

2

j � 1:02� 10

�14

;

sin �(u

3

; ~u

3

) � 7:25� 10

�16

; j

~

�

3

� �

3

j � 3:02� 10

�15

;

whih mean that the omputed simple eigenvalues and assoiated eigenvetors of A by using

the MATLAB �le \eig" have very high preision. Note that �

4

= 2 is a multiple eigenvalue

of A, we annot use (2.4.41) and (2.4.42) to give appropriate estimates of error bounds for

the omputed eigenvalue

~

�

4

and assoiated eigenvetor ~x

4

. (In fat, the ondition (2.4.40)

is violated for

~

�

4

and ~x

4

.)
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Remark 2.4.13. An obvious drawbak of Theorem 2.4.10 is that it needs to

ompute the Moore-Penrose inverse of an n� (n+ 1) matrix. The problem of how

to �nd nearly optimal residual bounds with less e�ort for omputed eigenvalues and

assoiated eigenvetors is worth studying.

Notes and Referenes

NR 2.4{1. Theorem 2.4.1 is proved by Sun [115℄.

NR 2.4{2. Theorem 2.4.5 is established by Kahan, Parlett and Jiang [62, Main

Theorem℄, and the result is used to derive a useful set of riteria for terminating the

two-sided Lanzos algorithm.

NR 2.4{3. If the assumption

~

X

H

1

~

X

1

=

~

Y

H

1

~

Y

1

= I of Theorem 2.4.5 is removed,

then we have the following result. (The proof is left as an exerise.)

Theorem 2.4.14. Let �

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) and �

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) be the bakward

errors de�ned by (2.4.16), where E is the set de�ned by (2.4.17), and assume that

the ondition (2.4.15) is satis�ed. Then E 6= ; if and only if the matries

~

A

1

and

~

C

1

satisfy

~

C

1

=

�

~

Y

H

1

~

X

1

�

~

A

1

�

~

Y

H

1

~

X

1

�

�1

;

and in the ase of E 6= ;, we have the formulas

�

F

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) =

r







R

~

X

y

1







2

F

+







~

Y

y

H

1

S







2

F

�







~

Y

y

H

1

SP

~

X

1







2

F

;

and

�

2

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

C

1

) = max

n







R

~

X

y

1







2

;







~

Y

y

H

1

S







2

o

;

where

R =

~

X

1

~

A

1

�A

~

X

1

; S =

~

C

1

~

Y

H

1

�

~

Y

H

1

A

are the residuals.

If

~

X

1

and

~

Y

1

satisfy

~

X

H

1

~

X

1

=

~

Y

H

1

~

Y

1

= I, then Theorem 2.4.14 is redued to 2.4.5.

Theorem 2.4.2 an be regarded as a one-sided version of Theorem 2.4.14. Whether

one needs to use the one-sided or the two-sided result depends on whether one is

interested in the left and right invariant subspaes simultaneously or in the right

invariant subspae only.

NR 2.4{4. Suppose that ~u

1

2 R

n

is a unit vetor. We now present a simple

algorithm for determining a matrix

~

U

2

suh that (~u

1

;

~

U

2

) 2 U

n�n

: Let

v = ~u

1

� e

(n)

1

;
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and

~

U = I

n

�

vv

T

v

T

v

:

Then

~

U = (~u

1

;

~

U

2

) 2 U

n�n

:

In fat, the matrix

~

U is a Householder reetion whih satis�es

~

U

T

~

U = I

n

;

~

U

T

=

~

U;

and

~

U

T

~u

1

= e

(n)

1

:

(See, e.g., [48, x5.1℄.)

NR 2.4{5. A omponentwise error bound for omputed eigenvalues and assoi-

ated eigenvetors is given by Yamamoto [135℄ and [136℄. For applying Yamamoto's

result it needs to ompute the inverse of an (n+ 1)� (n+ 1) matrix.

NR 2.4{6. Suppose that one has an approximation for an invariant subspae

of a matrix, and one also has an approximation for the orresponding eigenvalues.

Haviv and Ritov [43℄ develop bounds on the angle between the approximating sub-

spae and the invariant subspae itself. These bounds are funtions of the following

three terms: (1) the residual of the approximations; (2) singular value separation in

an assoiated matrix; and (3) the goodness of the approximations to the eigenvalues.

2.5 Hermitian Matries

In this setion we treat perturbation analysis of the Hermitian eigenvalue problem

Ax = �x, where A 2 H

n�n

.

2.5.1 Perturbation Expansions

Let p = (p

1

; : : : ; p

N

)

T

2 R

N

, and let A(p) 2 H

n�n

be an analyti matrix-valued

funtion in some neighborhood B(0) of the origin. It is well known that the eigen-

values of A(p) are real.

Let � 2 R be a simple eigenvalue of A(0), and x 2 C

n

be an assoiated unit

eigenvetor. Then there is a matrix X

2

suh that

X = (x;X

2

) 2 U

n�n

;

and

X

H

A(0)X =

 

� 0

0 A

2

!

; �

1

62 �(A

2

): (2:5:1)
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In this subsetion we �rst apply the impliit funtion theorem to prove the follow-

ing result whih gives perturbation expansions for simple eigenvalues of a Hermitian

matrix..

Theorem 2.5.1. Let p 2 R

N

and let A(p) 2 H

n�n

be an analyti matrix-valued

funtion of p in some neighborhood B(0) of the origin. Suppose that � is a simple

eigenvalue of A(0), and x is an assoiated unit eigenvetor. Then

1) there exists a simple eigenvalue �(p) of A(p) whih is a real analyti funtion

of p in some neighborhood B

0

� B(0) of the origin, and �(0) = �;

2) the funtion �(p) has a power series expansion at p = 0 of the form

�(p) = �+

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ; p 2 B

0

;

where

 

��(p)

�p

j

!

p=0

= x

H

 

�A(p)

�p

j

!

p=0

x; (2:5:2)

and

 

�

2

�(p)

�p

j

�p

k

!

p=0

= x

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x+ x

H

 

�A(p)

�p

j

!

p=0




H

�

�A(p)

�p

k

�

p=0

x

+x

H

�

�A(p)

�p

k

�

p=0




H

 

�A(p)

�p

j

!

p=0

x;

(2:5:3)

in whih




H

= X

2

(�I �A

2

)

�1

X

H

2

: (2:5:4)

Proof. 1) By the hypotheses there is a matrix X = (x;X

2

) 2 U

n�n

suh that

the relation (2.5.1) holds. For p 2 B(0) we set

~

A(p) = X

H

A(p)X =

 

~a

11

(p) ~a

21

(p)

H

~a

21

(p)

~

A

22

(p)

!

; ~a

11

(p) 2 R; (2:5:5)

and introdue a vetor-valued funtion

f(z; p) = ~a

21

(p)� ~a

11

(p)z +

~

A

22

(p)z � z~a

21

(p)

H

z; (2:5:6)

where

f = (f

1

; : : : ; f

n�1

)

T

; z = (�

1

; : : : ; �

n�1

)

T

2 C

n�1

; p 2 B(0):

Let

f

j

= �

j

+ i 

j

; �

j

= �

j

+ i�

j

; i =

p

�1; j = 1; : : : ; n� 1;
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and

u = (�

1

; : : : ; �

n�1

)

T

; v = (�

1

; : : : ; �

n�1

)

T

2 R

n�1

:

Obviously, �

j

(u; v; p) and  

j

(u; v; p) are real analyti funtions of the real variables

u; v 2 R

n�1

and p 2 B(0), and the funtions satisfy

�(0; 0; 0) = 0;  (0; 0; 0) = 0; j = 1; : : : ; n� 1:

Sine f

1

; : : : ; f

n�1

are omplex analyti funtions of the omplex variables �

1

; : : : ; �

n�1

for any p 2 B(0), by Theorem 1.6.3 we have

�

�(�

1

; : : : ; �

n�1

;  

1

; : : : ;  

n�1

)

�(�

1

; : : : ; �

n�1

; �

1

; : : : ; �

n�1

)

�

u=v=0; p=0

=

�

�

�

�

�(f

1

; : : : ; f

n�1

)

�(�

1

; : : : ; �

n�1

)

�

�

�

�

2

z=0; p=0

= jdet(A

2

� �I)j

2

> 0:

Therefore, by the impliit funtion theorem (Theorem 1.6.2) the system of equations

�

j

(u; v; p) = 0;  

j

(u; v; p) = 0; j = 1; : : : ; n� 1

has a unique real analyti solution u = u(p); v = v(p) in some neighborhood

B

0

� B(0) of the origin, and u(0) = v(0) = 0. In other words, the equation

f(z; p) = 0 has a unique analyti solution z = z(p) in B

0

, and z(0) = 0. Moreover,

we may hoose B

0

so small that 1 + z(p)

H

z(p) > 0 for any p 2 B

0

.

De�ne

Q(p) =

 

1 �z(p)

H

z(p) I

!

0

B

�

�

1 + z(p)

H

z(p)

�

�

1

2

0

0

�

I + z(p)z(p)

H

�

�

1

2

1

C

A

2 U

n�n

:

Then we have

Q(p)

H

~

A(p)Q(p) =

 

�(p) 0

0 �

!

; p 2 B

0

:

Combining it with (2.5.5) gives

A(p)x(p) = �(p)x(p); (2:5:7)

where

�(p) =

�

~a

11

(p) + z(p)

H

~a

21

(p) + ~a

21

(p)

H

z(p) + z(p)

H

~

A

22

(p)z(p)

�

�

�

1 + z(p)

H

z(p)

�

�1

;

(2:5:8)

and

x(p) = X

 

1

z(p)

!

�

1 + z(p)

H

z(p)

�

�

1

2

; (2:5:9)
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in whih the analyti vetor-valued funtion z(p) satis�es the equation

~a

21

(p)� ~a

11

(p)z(p) +

~

A

22

(p)z(p)� z(p)~a

21

(p)

H

z(p) = 0; p 2 B

0

: (2:5:10)

From (2.5.7){(2.5.9) we see the following fats: (i) �(p) is an eigenvalue of A(p)

and x(p) is an assoiated eigenvetor; (ii) �(p) and x(p) are analyti funtions of

p in B

0

, and �(0) = �, x(0) = x; (iii) the eigenvalue �(p) of A(p) is simple in B

0

provided that B

0

is suÆiently small.

2) From (2.5.8), (2.5.5) and ~a

21

(0) = z(0) = 0, we get

 

��(p)

�p

j

!

p=0

=

 

�~a

11

(p)

�p

j

!

p=0

; (2:5:11)

and

 

�

2

�(p)

�p

j

�p

k

!

p=0

=

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

+

 

�z(p)

�p

j

!

H

p=0

�

�~a

21

(p)

�p

k

�

p=0

+

�

�z(p)

�p

k

�

H

p=0

 

�~a

21

(p)

�p

j

!

p=0

+

 

�~a

21

(p)

�p

j

!

H

p=0

�

�z(p)

�p

k

�

p=0

+

�

�~a

21

(p)

�p

k

�

H

p=0

 

�z(p)

�p

j

!

p=0

+

 

�z(p)

�p

j

!

H

p=0

A

2

�

�z(p)

�p

k

�

p=0

+

�

�z(p)

�p

k

�

H

p=0

A

2

 

�z(p)

�p

j

!

p=0

��

1

2

4

 

�z(p)

�p

j

!

H

p=0

�

�z(p)

�p

k

�

p=0

+

�

�z(p)

�p

k

�

H

p=0

 

�z(p)

�p

j

!

p=0

3

5

:

(2:5:12)

Moreover, from (2.5.10)

 

�z(p)

�p

j

!

p=0

= (�I �A

2

)

�1

X

H

2

 

�A(p)

�p

j

!

p=0

x: (2:5:13)
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Combining (2.5.11){(2.5.13) with

 

�~a

11

(p)

�p

j

!

p=0

= x

H

 

�A(p)

�p

j

!

p=0

x;

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

= x

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x;

 

�~a

21

(p)

�p

j

!

p=0

= X

H

2

 

�A(p)

�p

j

!

p=0

x;

and using the relation

X

2

(�I �A

2

)

�1

X

H

2

+X

2

(�I �A

2

)

�1

A

2

(�I �A

2

)

�1

X

H

2

= �X

2

(�I �A

2

)

�2

X

H

2

;

we obtain the formulas (2.5.2){(2.5.4). 2

Note that the relations (2.5.9) and (2.5.13) imply that the eigenvetor x(p) has

the expansion of the form

x(p) = x+


H

N

X

j=1

 

�A(p)

�p

j

!

p=0

xp

j

+ � � � ; p 2 B

0

;

where 


H

is the matrix de�ned by (2.5.4).

Example 2.5.2. Consider the Hermitian matrix

A(p) =

�

2

1

p

1

�ip

2

+1

1

p

1

+ip

2

+1

2

�

; (p

1

; p

2

)

T

= p 2 R

2

; i =

p

�1:

Obviously, A(p) is an analyti matrix-valued funtion of p in a small neighborhood of the

origin of R

2

. Moreover,

A(0) =

�

2 1

1 2

�

;

and the real orthogonal matrix

X =

1

p

2

�

1 �1

1 1

�

� (x

1

; x

2

)

satis�es

X

T

A(0)X =

�

3 0

0 1

�

�

�

�

1

0

0 �

2

�

:

Observe that

�

�A(p)

�p

1

�

p=0

=

�

0 �1

�1 0

�

;

�

�A(p)

�p

2

�

p=0

=

�

0 i

�i 0

�

;
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�

�

2

A(p)

�p

2

1

�

p=0

=

�

0 2

2 0

�

;

�

�

2

A(p)

�p

2

2

�

p=0

=

�

0 �2

�2 0

�

;

and

�

�

2

A(p)

�p

1

�p

2

�

p=0

=

�

0 �2i

2i 0

�

:

Hene, if �

1

(p) and �

2

(p) denote the eigenvalues of A(p), then by the formulas (2.5.2){(2.5.4)

we have

�

��

1

(p)

�p

1

�

p=0

= �1;

�

��

1

(p)

�p

2

�

p=0

= 0;

�

��

2

(p)

�p

1

�

p=0

= 1;

�

��

2

(p)

�p

2

�

p=0

= 0;

and

�

�

2

�

1

(p)

�p

2

1

�

p=0

= 2;

�

�

2

�

1

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

1

(p)

�p

2

2

�

p=0

= �1;

�

�

2

�

2

(p)

�p

2

1

�

p=0

= �2;

�

�

2

�

2

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

2

(p)

�p

2

2

�

p=0

= 1:

Consequently, �

1

(p) and �

2

(p) have the expansions

�

1

(p) = 3� p

1

+ p

2

1

�

1

2

p

2

2

+O(kpk

3

2

) (2:5:14)

and

�

2

(p) = 1 + p

1

� p

2

1

+

1

2

p

2

2

+O(kpk

3

2

) (2:5:15)

as p! 0.

Note that the eigenvalues �

1

(p) and �

2

(p) have the expliit expressions

�

1

(p) = 2 +

1

p

(1 + p

1

)

2

+ p

2

2

; �

2

(p) = 2�

1

p

(1 + p

1

)

2

+ p

2

2

:

From the expressions we an also obtain the seond order perturbation expansions (2.5.14)

and (2.5.15).

Let A 2 H

n�n

and let X

1

� C

n

. If

dim(X

1

) = l and AX

1

� X

1

;

then X

1

is said to be an l-dimensional eigenspae of A.

The eigenspae X

1

an be equivalently de�ned by X

1

= R(X

1

) withX

1

satisfying

X

1

2 U

n�l

; and AX

1

= X

1

A

1

for some A

1

2 H

l�l

.
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Let X

1

2 U

n�l

. It an be veri�ed that the subspae X

1

= R(X

1

) is an eigenspae

of A 2 H

n�n

if and only if there exists a matrix X = (X

1

;X

2

) 2 U

n�n

suh that

X

H

AX =

 

A

11

0

0 A

22

!

; A

11

2 H

l�l

: (2:5:16)

If �(A

11

)

T

�(A

22

) = ;, then the eigenspae X

1

is alled a simple eigenspae of

A. In this setion we only onsider simple eigenspaes.

Using the same tehnique desribed in the proofs of Theorems 2.1.5 and 2.5.1,

we obtain the following result whih gives perturbation expansions for eigenspaes.

Theorem 2.5.3. Let A 2 H

n�n

, and let X = (X

1

;X

2

) 2 U

n�n

with X

1

2 U

n�l

suh that

X

H

AX =

 

A

11

0

0 A

22

!

; A

11

2 H

l�l

; �(A

11

)

\

�(A

22

) = ;:

Moreover, let X

1

= R(X

1

), for H 2 H

n�n

let

X

H

HX =

 

H

11

H

H

21

H

21

H

22

!

;

and de�ne a linear operator T : C

(n�l)�l

! C

(n�l)�l

by

TP = PA

11

�A

22

P; P 2 C

(n�l)�l

: (2:5:17)

Then

1) there exists a unique l-dimensional simple eigenspae X

1

(�) of A + �H suh

that X

1

(0) = X

1

, and the basis vetors x

1

(�); : : : ; x

l

(�) of X

1

(�) may be de�ned to

be analyti funtions of � in some neighborhood B(0) of the origin of R;

2) the analyti matrix-valued funtion X

1

(�) = (x

1

(�); : : : ; x

l

(�)) has the pertur-

bation expansion

X

1

(�) = X

1

+X

2

1

X

j=1

K

j

�

j

; � 2 B(0);

in whih

K

1

= T

�1

H

21

;

K

2

= T

�1

(H

22

K

1

�K

1

H

11

);

K

j

= T

�1

"

H

22

K

j�1

�K

j�1

H

11

�

j�2

P

k=1

K

j�1�k

H

12

K

k

#

; j � 3:



2.5. HERMITIAN MATRICES 73

2.5.2 Strutured Condition Numbers

Let A 2 H

n�n

, and � be a simple eigenvalue of A. Let

~

A = A + H 2 H

n�n

be a

perturbation of A, and

~

� be the orresponding perturbation of �. Then by x1.8 we

de�ne the strutured ondition number (�) for � as (2.2.1), but the perturbation

matries E 2 C

n�n

are replaed by H 2 H

n�n

.

Let x 2 C

n

be the unit eigenvetor of A assoiated with �. Then by Theorem

2.5.1 we have

~

� = �+ x

H

Hx+O(kHk

2

):

Combining it with the de�nition (2.2.1) yields

(�) =

�

�

;

where � and � are positive parameters. Obviously, we have the absolute ondition

number 

abs

(�) = 1, and the relative ondition number 

rel

(�) = kAk=j�j if � 6= 0.

Let X

1

be a simple eigenspae of A 2 H

n�n

. Let

~

A = A + H 2 H

n�n

be

a perturbation of A, and

~

X

1

be the orresponding perturbation of X

1

. Then by

x1.8 we de�ne the strutured ondition number (X

1

) for X

1

as (2.2.10), but the

perturbation matries E 2 C

n�n

are replaed by H 2 H

n�n

. By the same argument

as in x2.2,2, we obtain

(X

1

) = �kT

�1

k

2

;

where � is a positive parameter, and T is the matrix representation of the linear

operator T de�ned by (2.5.17).

Let

�(A

11

) = f�

1

; : : : ; �

l

g; �(A

22

) = f�

l+1

; : : : ; �

n

g:

Then (X

1

) has the expression

(X

1

) =

�

min

1 � j � l

l + 1 � k � n

j�

j

� �

k

j

:

2.5.3 Perturbation Bounds for Eigenspaes

In this subsetion we give perturbation bounds for eigenspaes. The proofs of the

following three results are similar to those of Theorem 2.3.1, Corollary 2.3.2 and

Theorem 2.3.3, and left as exerises.

Theorem 2.5.4. Let A 2 H

n�n

. Let X = (X

1

;X

2

) 2 U

n�n

, and suppose that

X

1

= R(X

1

) is an l-dimensional simple eigenspae of A and (2.5.16) holds. For a



74 CHAPTER 2. EIGENVALUE PROBLEMS

Hermitian perturbation H we let

X

H

HX =

 

H

11

H

H

21

H

21

H

22

!

;

and assume that �(A

11

+ H

11

)

T

�(A

22

+ H

22

) = ;. De�ne the linear operator

L : C

(n�l)�l

! C

(n�l)�l

by

LZ = Z(A

11

+H

11

)� (A

22

+H

22

)Z; Z 2 C

(n�l)�l

;

and set

b = kL

�1

H

21

k;  = kL

�1

k; � = kH

21

k

2

:

If

4b� < 1;

then there is a unique l-dimensional eigenspae

~

X

1

= R(

~

X

1

) of A+H satisfying

k tan�(X

1

;

~

X

1

)k �

2b

1 +

p

1� 4b�

;

where

~

X

1

2 U

n�l

.

From Theorem 2.5.4 we get the following orollary.

Corollary 2.5.5. Let A;H;X;X

1

be as in Theorem 2.5.4, and assume that

H

11

= 0; H

22

= 0:

De�ne the linear operator T : C

(n�l)�l

! C

(n�l)�l

by

TZ = ZA

11

�A

22

Z; Z 2 C

(n�l)�l

:

If

4kT

�1

kkT

�1

H

21

kkH

21

k

2

< 1;

then there is a unique l-dimensional eigenspae

~

X

1

= R(

~

X

1

) of A+H satisfying

k tan�(X

1

;

~

X

1

)k �

2kT

�1

H

21

k

1 +

p

1� 4kT

�1

kkT

�1

H

21

kkH

21

k

2

;

where

~

X

1

2 U

n�l

.

Moreover, if the perturbation matrixH itself is unknown but some upper bounds

for kH

jk

k are known, then we have the following well known result.
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Theorem 2.5.6 (Stewart). Let A;H;X;X

1

be as in Theorem 2.5.4, and let T

be the linear operator as in Corollary 2.5.5. Set

~ =

kT

�1

k

1� kT

�1

k(kH

11

k+ kH

22

k)

;  = kH

21

k:

If

2~ < 1;

then there is a unique l-dimensional eigenspae

~

X

1

= R(

~

X

1

) of A+H satisfying

k tan�(X

1

;

~

X

1

)k �

2~

1 +

p

1� (2~)

2

;

where

~

X

1

2 U

n�l

.

2.5.4 Strutured Bakward Errors

2.5.4.1 The Bakward Error �

H

(

~

X

1

)

Let

~

X

1

approximate an l-dimensional eigenspae of A 2 H

n�n

. Then there are

various ways to de�ne bakward errors of A with respet to

~

X

1

. For example, we

may de�ne the bakward error �(

~

X

1

) by (2.4.1), in whih the set E onsists of bak-

ward general perturbations E 2 C

n�n

of A. An expliit expression of �(

~

X

1

) is given

by (2.4.4).

The expression (2.4.4) gives a distane from the Hermitian matrix A to the near-

est matrix A+E

opt

for whih the given approximate eigenspae

~

X

1

of A is an exat

invariant subspae of A+E

opt

. However, from the expression (2.4.7) of the optimal

bakward (general) perturbationE

opt

we see that the perturbed matrix A+E

opt

may

not be Hermitian. Consequently, if we are interested in the requirement that the

perturbed matries are Hermitian too, then the de�nition (2.4.1) has to be modi�ed.

We now de�ne the strutured bakward error �

H

(

~

X

1

) of A with respet to

~

X

1

by

�

H

(

~

X

1

) = min

H2H

kHk; (2:5:18)

where the set H is de�ned by

H =

n

H 2 H

n�n

: (A+H)

~

X

1

�

~

X

1

o

: (2:5:19)

The following result gives a omputable formula of �

H

(

~

X

1

).

Theorem 2.5.7. Choose

~

U

1

2 U

n�l

so that

~

X

1

= R(

~

U

1

). Let

R =

~

U

1

(

~

U

H

1

A

~

U

1

)�A

~

U

1

(2:5:20)
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be the residual of A with respet to

~

U

1

. Then the bakward error �

H

(

~

X

1

) an be

expressed by

�

H

(

~

X

1

) =











 

0 R

H

R 0

!











: (2:5:21)

The expressions (2.5.20) and (2.5.21) imply that the bakward error �

H

(

~

X

1

) de-

�ned by (2.5.18) is independent of the hoie of the matrix

~

U

1

whose olumn vetors

form an orthonormal basis of

~

X

1

.

Proof of Theorem 2.5.7. From (2.5.19) it follows that a matrix H 2 H if and

only if H is a solution of the equation

(A+H)

~

U

1

=

~

U

1

A

1

for some A

1

2 H

l�l

, or equivalently, H satis�es

H

~

U

1

=

~

U

1

A

1

�A

~

U

1

: (2:5:22)

Applying Theorem 1.5.2 to the equation (2.5.22) we see that the equation is

solvable, and any solution H to the equation an be expressed by

H = (

~

U

1

A

1

�A

~

U

1

)

~

U

H

1

+

~

U

1

(

~

U

1

A

1

�A

~

U

1

)

H

�

~

U

1

(A

1

�

~

U

H

1

A

~

U

1

)

~

U

H

1

+ P

?

~

U

1

TP

?

~

U

1

;

(2:5:23)

where T 2 H

n�n

.

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (2.5.23)

~

U

H

H

~

U =

 

A

1

�

~

U

H

1

A

~

U

1

�

~

U

H

1

A

~

U

2

�

~

U

H

2

A

~

U

1

~

U

H

2

T

~

U

2

!

=

 

A

1

�

~

U

H

1

A

~

U

1

R

H

~

U

2

~

U

H

2

R

~

U

2

T

~

U

2

!

:

By the de�nition (2.5.18) and Theorem 1.2.1, we have

�

H

(

~

X

1

) = kH

opt

k with H

opt

=

~

U

 

0 R

H

~

U

2

~

U

H

2

R 0

!

~

U

H

: (2:5:24)

Observe that the relation

~

U

H

R =

 

0

~

U

H

2

R

!

implies

�

+

(

~

U

H

2

R) = �

+

(R); �

+

(R

H

~

U

2

) = �

+

(R):

Hene, we have

�

+

 

0 R

H

~

U

2

~

U

H

2

R 0

!

= �

+

 

0 R

H

R 0

!
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Combining it with (2.5.24) shows (2.5.21). 2

Comparing the optimal bakward Hermitian perturbation H

opt

of (2.5.24) with

the optimal bakward general perturbation E

opt

of (2.4.7) we obtain the following

Corollary.

Corollary 2.5.8. Let A 2 H

n�n

, and

~

X

1

= R(

~

U

1

) approximate an eigenspae

of A. Moreover, let H

opt

be the optimal bakward Hermitian perturbation , and E

opt

the optimal bakward general perturbation. Then we have

kE

opt

k � kH

opt

k � 2kE

opt

k;

and partiularly,

kH

opt

k

F

=

p

2kE

opt

k

F

; kH

opt

k

2

= kE

opt

k

2

:

2.5.4.2 The Bakward Errors �

H,F

(

~

U

1

;

~

�

1

) and �

H,2

(

~

U

1

;

~

�

1

)

Let

~

�

1

; : : : ;

~

�

l

2 R (l � n) be approximate eigenvalues of A 2 H

n�n

, and

~x

1

; : : : ; ~x

l

be assoiated approximate eigenvetors. Generally speaking, the approx-

imate eigenvetors are linearly independent but not neessarily orthonormal. An

important question assoiated with the approximate eigensystem is: How an we

de�ne a bakward error of A with respet to the approximate eigensystem, and how

an we obtain a omputable formula of the bakward error? In this subsetion we

disuss the question.

Assume that the vetors ~x

1

; : : : ; ~x

l

are lose to orthonormal, i.e., the matrix

~

X

1

= (~x

1

; : : : ; ~x

l

) satis�es

� � k

~

X

H

1

~

X

1

� Ik

F

� 1: (2:5:25)

Let

~

X

1

=

~

U

1

~

L

1

(2:5:26)

be an orthogonal deomposition of

~

X

1

, i.e.,

~

U

1

2 U

n�l

, and

~

L

1

2 C

l�l

is nonsingu-

lar. If the olumn vetors of

~

U

1

are approximate eigenvetors of A assoiated with

~

�

1

; : : : ;

~

�

l

, then through the orthogonal deomposition (2.5.26) we may de�ne the

bakward errors �

H,F

(

~

U

1

;

~

�

1

) and �

H,2

(

~

U

1

;

~

�

1

) of A with respet to

~

U

1

and

~

�

1

by

�

H,F

(

~

U

1

;

~

�

1

) = min

H2H

kHk

F

; �

H,2

(

~

U

1

;

~

�

1

) = min

H2H

kHk

2

; (2:5:27)

where the set H is de�ned by

H =

n

H 2 H

n�n

: (A+H)

~

U

1

=

~

U

1

~

�

1

o

: (2:5:28)

Note that there exist orthogonal deompositions (2.5.26) of

~

X

1

suh that under

the hypothesis (2.5.25) the olumn vetors of

~

U

1

are approximate eigenvetors of
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A assoiated with

~

�

1

; : : : ;

~

�

l

. For example, the polar deomposition and the QR

fatorization of

~

X

1

are suh deompositions. In fat, if

~

X

1

= P

1

H

1

;

~

X

1

= Q

1

R

1

are the polar deomposition and the QR fatorization of

~

X

1

, respetively, where

P

1

; Q

1

2 U

n�l

, H

1

2 C

l�l

is Hermitian positive de�nite, and R

1

2 C

l�l

is upper

triangular with positive diagonal elements, then by Theorem 1.4.2 we have

k

~

X � P

1

k

F

�

�

1 + �

min

(

~

X

1

)

�

�

1 +

p

1� �

� 1; (2:5:29)

and

k

~

X

1

�Q

1

k

F

�

p

2

�

1 + k

~

X

1

k

2

�

�

�

1 + �

min

(

~

X

1

)

�

�

1� k

~

X

H

1

~

X

1

� Ik

2

+

q

1� k

~

X

H

1

~

X

1

� Ik

2

�

�

p

2(1 +

p

1 + �)�

(1 +

p

1� �)(1� �+

p

1� �)

� 1:

(2:5:30)

The relations (2.5.29) and (2.5.30) show that if the approximate eigenvetors ~x

1

; : : : ; ~x

l

of A are lose to orthonormal, then the olumn vetors of P

1

and Q

1

are also ap-

proximate eigenvetors of A assoiated with the same eigenvalues.

Let �

H,F

(

~

U

1

;

~

�

1

) and �

H,2

(

~

U

1

;

~

�

1

) be the bakward errors de�ned by (2.5.27).

The following result gives omputable formulas of the bakward errors �

H,F

(

~

U

1

;

~

�

1

)

and �

H,2

(

~

U

1

;

~

�

1

).

Theorem 2.5.9. Let A 2 H

n�n

, and let

~

U

1

2 U

n�l

and

~

�

1

= diag(

~

�

1

; : : : ;

~

�

l

)

be given, where

~

�

j

2 R (1 � j � l). Moreover, let

R =

~

U

1

~

�

1

�A

~

U

1

(2:5:31)

be the residuals of A with respet to

~

U

1

and

~

�

1

. Then the bakward errors �

H,F

(

~

U

1

;

~

�

1

)

and �

H,2

(

~

U

1

;

~

�

1

) an be expressed by

�

H,F

(

~

U

1

;

~

�

1

) =

q

2kRk

2

F

� k

~

U

H

1

Rk

2

F

; (2:5:32)

and

�

H,2

(

~

U

1

;

~

�

1

) = kRk

2

: (2:5:33)

Proof. From (2.5.28) it follows that a matrix H 2 H if and only if H satis�es

H

~

U

1

= R; (2:5:34)
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where R is the residual de�ned by (2.5.31).

Applying Theorem 1.5.2 to the equation (2.5.34) we see that the equation is

solvable, and any solution H of the equation an be expressed by

H = R

~

U

H

1

+

~

U

1

R

H

�

~

U

1

R

H

~

U

1

~

U

H

1

+ P

?

~

U

1

TP

?

~

U

1

; (2:5:35)

where T 2 H

n�n

.

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (2.5.35)

~

U

H

H

~

U =

 

~

U

H

1

R R

H

~

U

2

~

U

H

2

R

~

U

H

2

T

~

U

2

!

: (2:5:36)

Consequently, by the de�nition (2.5.27) we have

�

H,F

(

~

U

1

;

~

�

1

) = kH

opt

k with H

opt

=

~

U

 

~

U

H

1

R R

H

~

U

2

~

U

H

2

R 0

!

~

U

H

;

whih shows (2.5.32).

Moreover, by (2.5.27), (2.5.36) and Theorem 1.2.3, we have

�

H,2

(

~

U

1

;

~

�

1

) = maxfkRk

2

; k(

~

U

H

1

R; R

H

~

U

2

)kg:

Combining it with

k(

~

U

H

1

R; R

H

~

U

2

)k = kR

H

(

~

U

1

;

~

U

2

)k

2

= kRk

2

;

shows (2.5.33). 2

Remark 2.5.10. Let

~

�

1

2 R be an approximate eigenvalue of A 2 H

n�n

, and

~u

1

2 C

n

be an assoiated unit eigenvetor. Then the bakward errors �

H,F

(~u

1

;

~

�

1

)

and �

H,2

(~u

1

;

~

�

1

) of A with respet to ~x

1

and

~

�

1

has the expressions

�

H,F

(~u

1

;

~

�

1

) =

q

2krk

2

2

� j~u

H

1

rj

2

; �

H,2

(~u

1

;

~

�

1

) = krk

2

;

where

r =

~

�

1

~u

1

�A~u

1

is the residual of A with respet to ~x

1

and

~

�

1

. Moreover, the optimal bakward

Hermitian perturbation H

opt

of A assoiated with �

H,F

(~u

1

;

~

�

1

) has the expression

H

opt

= r~u

H

1

+ ~u

1

r

H

�

�

~

�

1

� ~u

H

1

A~u

1

�

~u

1

~u

H

1

:

Let P

1

be the unitary polar fator of

~

X

1

. Take

~

U

1

= P

1

in (2.5.28). We now

disuss the bakward error �

H,F

(P

1

;

~

�

1

).
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The following result shows that the Frobenius norm of the residual

~

X

1

~

�

1

�A

~

X

1

an be used to bound the bakward error �

H,F

(P

1

;

~

�

1

).

Theorem 2.5.11. Let A;

~

�

1

be as in Theorem 2.5.9, and let P

1

be the unitary

polar fator of

~

X

1

. Then

�

H,F

(P

1

;

~

�

1

) �

p

2kR

~

X

1

k

F

�

min

(

~

X

1

)

; (2:5:37)

where

R

~

X

1

=

~

X

1

~

�

1

�A

~

X

1

is the residual of A with respet to

~

X

1

and

~

�

1

.

The estimate (2.5.37) shows that if kR

~

X

1

k

F

is small and if ~x

1

; : : : ; ~x

l

are lose to

orthonormal, then there is a Hermitian matrix A + H

opt

with small kH

opt

k

F

suh

that

~

�

1

; : : : ;

~

�

l

and the olumn vetors of P

1

(the unitary polar fator of

~

X

1

) are l

exat eigenvalues and assoiated eigenvetors of A+H

opt

.

Proof of Theorem 2.5.11. By (2.5.32) we only need to prove the inequality

kRk

F

� kR

~

X

1

k

F

=�

min

(

~

X

1

); (2:5:38)

where

R = P

1

~

�

1

�AP

1

:

Let

~

X

1

= U

 

�

1

0

!

V

H

be the singular value deomposition of

~

X

1

, where U =

(U

1

; U

2

) 2 U

n�n

with U

1

2 U

n�l

, V 2 U

l�l

, and �

1

= diag(�

1

; : : : ; �

l

) with �

1

�

� � � � �

l

> 0. Then the unitary polar fator P

1

of

~

X

1

an be expressed by P

1

=

U

1

V

H

. Thus, we have

kR

~

X

1

k

F

= kA

~

X

1

�

~

X

1

~

�

1

k

F

=











U

H

AU

 

�

1

0

!

�

 

�

1

0

!

V

H

~

�

1

V











F

� �

l











U

H

AU

 

I

1

0

!

�

 

I

1

0

!

V

H

~

�

1

V











F

(by Theorem 1:2:2)

= �

min

(

~

X

1

)kAP

1

� P

1

~

�

1

k

F

;

whih shows the inequality (2.5.38). 2

2.5.5 Residual Bounds

Let an approximate eigenspae

~

X

1

= R(

~

U

1

) of A 2 H

n�n

be given, where

~

U

1

2 U

n�l

.

Then by using Theorem 2.5.7 and appropriate forward perturbation results we an
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determine how the eigenvalues

~

�

1

; : : : ;

~

�

l

of

~

U

H

1

A

~

U

1

relate to those of A, and deter-

mine the auray of the approximate eigenspae

~

X

1

.

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. By the proof of Theorem 2.5.7, the

optimal bakward perturbation H

opt

of (2.5.27) satis�es

~

U

H

(A+H

opt

)

~

U =

 

~

U

H

1

A

~

U

1

0

0

~

U

H

2

A

~

U

2

!

�

 

~

A

11

0

0

~

A

22

!

; (2:5:39)

and

~

U

H

H

opt

~

U =

 

0 R

H

~

U

2

~

U

H

2

R 0

!

: (2:5:40)

where R is the residual de�ned by (2.5.20). The relation (2.5.39) implies that the

eigenvalues

~

�

1

; : : : ;

~

�

l

of

~

U

H

1

A

~

U

1

, as l approximate eigenvalues of A, are l eigenvalues

of A+H

opt

, and the subspae

~

X

1

is an eigenspae of A+H

opt

.

Applying the Mirsky theorem [78℄ (see below NR 2.5{8) to the Hermitian ma-

tries A+H

opt

and A, we obtain the following result whih gives a residual bound

for the approximate eigenvalues

~

�

1

; : : : ;

~

�

l

.

Theorem 2.5.12. Let A 2 H

n�n

, and let

~

X

1

= R(

~

U

1

) be an approximate

eigenspae of A, where

~

U

1

2 U

n�l

. If the eigenvalues of A are �

1

� � � � � �

n

, and the

eigenvalues of

~

U

H

1

A

~

U

1

are

~

�

1

� � � � �

~

�

l

, then there are integers j

1

< j

2

< � � � < j

l

suh that

kdiag(

~

�

1

� �

j

1

; : : : ;

~

�

l

� �

j

l

)k �











 

0 R

H

R 0

!











; (2:5:41)

where R is the residual de�ned by

R =

~

U

1

~

A

11

�A

~

U

1

: (2:5:42)

Applying Corollary 2.5.5 to the Hermitian matries A +H

opt

and A shows the

following result whih gives a residual bound for the approximate eigenspae

~

X

1

of A.

Theorem 2.5.13. Let A;

~

X

1

;

~

U

1

be as in Theorem 2.5.12. Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. De�ne the matries

~

A

11

;

~

A

22

by (2.5.39), de�ne the residual

R by (2.5.42), and de�ne the linear operator T by

TZ = Z

~

A

11

�

~

A

22

Z; Z 2 C

(n�l)�l

:

If

�(

~

A

11

)

\

�(

~

A

22

) = ; and 4kT

�1

kkT

�1

(

~

U

H

2

R)kkRk

2

< 1;
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then there is a unique eigenspae X

1

= R(U

1

) of A with U

1

2 U

n�l

suh that

�(X

1

;

~

X

1

) � k tan�(U

1

;

~

U

1

)k �

2kT

�1

(

~

U

H

2

R)k

1 +

q

1� 4kT

�1

kkT

�1

(

~

U

H

2

R)kkRk

2

� �(R):

(2:5:43)

It is worth noting that by using Theorem 2.5.13 and Theorem 2.5.17 of the next

subsetion (x2.5.6), we obtain the following result on residual bounds for eigenvalues

whih may be sharper than the estimate (2.5.41).

Theorem 2.5.14. Let A;

~

X

1

;

~

U

1

;

~

U

2

;T and R be as in Theorem 2.5.13. Let the

eigenvalues of A be �

1

� � � � � �

n

, and the eigenvalues of

~

U

H

1

A

~

U

1

be

~

�

1

� � � � �

~

�

l

.

If the salar �

2

(R) de�ned by (2.5.43) with k � k = k � k

2

satis�es

�

2

(R) < 1; (2:5:44)

then there are integers j

1

< j

2

< � � � < j

l

suh that

kdiag(

~

�

1

� �

j

1

; : : : ;

~

�

l

� �

j

l

)k �

�

2

(R)kRk

p

1� (�

2

(R))

2

: (2:5:45)

Proof. By Theorem 2.5.17 of the next subsetion (x2.5.6), there are integers

j

1

< j

2

< � � � < j

l

suh that

kdiag(

~

�

1

� �

j

1

; : : : ;

~

�

l

� �

j

l

)k �

�

2

(X

1

;

~

X

1

)kRk

q

1� �

2

2

(X

1

;

~

X

1

)

; (2:5:46)

where �

2

(�; �) is the generalized hordal metri de�ned by (1.3.3). Substituting

(2.5.43) into (2.5.46) shows (2.5.45). 2

De�ne Æ

2

by

1

Æ

2

= sup

W 2 C

(n�l)�l

W 6= 0

kT

�1

Wk

2

kWk

2

:

Then from (2.5.43)

�

2

(X

1

;

~

X

1

) < 2kT

�1

(

~

U

H

2

R)k

2

�

2kRk

2

Æ

2

:

Consequently, if

! �

2kRk

2

Æ

2

< 1;

then from (2.5.46) we get a weaker estimate

kdiag(

~

�

1

� �

J

1

; : : : ;

~

�

l

� �

J

l

)k �

2

p

1� !

2

kRk

2

kRk

Æ

2

: (2:5:47)
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Example 2.5.15. Consider the real symmetri matrix

A =

0

B

B

�

1 0 0 0

0 1 10

5

1

0 10

5

1 1

0 1 1 2

1

C

C

A

:

The vetor u

1

= (1; 0; 0; 0)

T

is learly a unit eigenvetor of A assoiated with the eigenvalue

�

1

= 1. Suppose that we have an approximate eigenvetor

~x

1

= (1; 10

�6

; 10

�7

; 10

�8

)

T

;

and let ~u

1

= ~x

1

=k~x

1

k

2

. A alulation gives

sin �(u

1

; ~u

1

) � 1:0049� 10

�6

; tan �(u

1

; ~u

1

) � 1:0049� 10

�6

; (2:5:48)

and

�(A) = f1:0; �1:0� 10

5

; 1:0� 10

5

; 2:0g;

j~u

T

1

A~u

1

� �

1

j � 2:0000� 10

�8

;

(2:5:49)

where �(u

1

; ~u

1

) denotes the angle between the two 1-dimensional subspaes R(u

1

) and

R(~u

1

).

Choose

~

U

2

so that (~u

1

;

~

U

2

) 2 O

4�4

. Compute

~

A

11

,

~

A

22

, r and T by

~

A

11

= ~u

T

1

A~u

1

;

~

A

22

=

~

U

T

2

A

~

U

2

;

and

r =

~

A

11

~u

1

�A~u

1

; T =

~

A

11

I �

~

A

22

:

alulation shows that

~

A

11

62 �(

~

A

22

), and

4kT

�1

k

2

kT

�1

(

~

U

T

2

r)k

2

krk

2

� 4:0403� 10

�7

< 1;

�

2

(r) �

2kT

�1

(

~

U

T

2

r)k

2

1 +

q

1� 4kT

�1

k

2

kT

�1

(

~

U

T

2

r)k

2

krk

2

� 1:0100� 10

�6

< 1:

Consequently, applying Theorem 2.5.13, there is a unit eigenvetor u of A suh that

tan �(u; ~u

1

) � �

2

(r) � 1:0100� 10

�6

; (2:5:50)

and applying Theorem 2.5.14 (see (2.5.45)), there is an eigenvalue �(= u

H

Au) of A suh

that

j~u

T

1

A~u

1

� �j �

�

2

(r)krk

2

p

1� (�

2

(r))

2

� 1:0100� 10

�7

: (2:5:51)

Comparing (2.5.50) and (2.5.51) with (2.5.48) and (2.5.49) we see that the estimates

obtained by applying Theorems 2.5.13 and 2.5.14 are fairly sharp.

It is worth pointing out that by Theorem 2.5.12 (see (2.5.41)) there is an eigenvalue �

of A suh that

j~u

T

1

A~u

1

� �j � krk

2

� 1:0050� 10

�1

;
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and by (2.5.47) there is an eigenvalue � of A suh that

j~u

T

1

A~u

1

� �j �

2kT

�1

k

2

krk

2

2

p

1� (2kT

�1

k

2

krk

2

)

2

� 2:0621� 10

�2

:

The estimates obtained by (2.5.41) and (2.5.47) are obviously severe overestimates.

Example 2.5.16 (Saad [90, Example 3.4℄). Consider the real symmetri matrix

A =

0

B

B

B

B

�

1:00 0:0055 0:10 0:10 0:00

0:0055 2:00 �0:05 0:00 �0:10

0:10 �0:05 3:00 0:10 0:05

0:10 0:00 0:10 4:00 0:00

0:00 �0:10 0:05 0:00 500

1

C

C

C

C

A

:

Sine the o�-diagonal elements of A are small, the diagonal elements an be onsidered

approximations to the eigenvalues of A. The question is: How good auray an be ex-

peted? We now apply Theorem 2.5.12, (2.5.47), and Theorem 2.5.14, to give estimates on

the auray.

For any �xed integer k 2 [1; 5℄ let ~u

1

= e

(5)

k

, the kth olumn of the identity matrix I

5

,

and then ompute

~

A

11

= ~u

T

1

A~u

1

= k. Let �

k

(k = 1; : : : ; 5) be the eigenvalues of A. By

Theorem 2.5.12 (see (2.5.41)) we get the estimates

j�

1

� 1:0j � 0:14153; j�

2

� 2:0j � 0:11194; j�

3

� 3:0j � 0:15811;

j�

4

� 4:0j � 0:14142; j�

5

� 5:0j � 0:11180:

By (2.5.47) we get the estimates

j�

1

� 1:0j � 0:04203; j�

2

� 2:0j � 0:02591; j�

3

� 3:0j � 0:05251;

j�

4

� 4:0j � 0:04197; j�

5

� 5:0j � 0:02603:

By Theorem 2.5.14 (see (2.5.45)) we get the estimates

j�

1

� 1:0j � 0:00838; j�

2

� 2:0j � 0:00662; j�

3

� 3:0j � 0:02050;

j�

4

� 4:0j � 0:01591; j�

5

� 5:0j � 0:00480:

Note that the atual errors are

j�

1

� 1:0j � 0:00805; j�

2

� 2:0j � 0:00556; j�

3

� 3:0j � 0:00492;

j�

4

� 4:0j � 0:01386; j�

5

� 5:0j � 0:00467:

Obviously, the estimates obtained by applying Theorem 2.5.14 are fairly sharp.

By the way, the vetors e

(5)

1

; : : : ; e

(5)

5

an be onsidered approximations to the eigenve-

tors of A. Let u

k

be an eigenvetor of A assoiated with �

k

, k = 1; : : : ; 5. Then by Theorem

2.5.13 (see (2.5.43)) we get the estimates

tan �(u

1

; e

(5)

1

) � 0:05908; tan �(u

2

; e

(5)

2

) � 0:05903; tan �(u

3

; e

(5)

3

) � 0:12856;

tan �(u

4

; e

(5)

4

) � 0:11179; tan �(u

5

; e

(5)

5

) � 0:04292:
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2.5.6 Eigenvalues of Rayleigh Quotient Matries

In this subsetion we shall reveal an approximation property of the eigenvalues of

a Rayleigh quotient matrix that an be used to establish the estimate (2.5.45) of

Theorem 2.5.14.

Let X

1

= R(X

1

) be an eigenspae of A 2 H

n�n

, and Y

1

= R(Y

1

) approximate

X

1

, where X

1

; Y

1

2 U

n�l

. Let

A

1

= X

H

1

AX

1

; H

1

= Y

H

1

AY

1

: (2:5:52)

The matries A

1

and H

1

are alled the Rayleigh quotient matries of A with respet

to X

1

and Y

1

, respetively.

It is easy to see that

AX

1

= X

1

A

1

; �(A

1

) � �(A):

However, in general, AY

1

6= Y

1

H

1

and �(H

1

) 6� �(A). In suh a ase, we introdue

the residual R of A with respet to Y

1

de�ned by

R = Y

1

H

1

�AY

1

: (2:5:53)

In this subsetion we prove the following result (Theorem 2.5.17) whih gives an

upper bound for the distane between the sets �(H

1

) and �(A

1

) in terms of kRk and

�

2

(X

1

;Y

1

). Here �

2

(�; �) is the generalized hordal metri de�ned by (1.3.3), i.e.,

�

2

(X

1

;Y

1

) = k sin�k

2

;

in whih the matrix � is de�ned by

� = �(X

1

; Y

1

) = aros(X

H

1

Y

1

Y

H

1

X

1

)

1

2

� 0:

Theorem 2.5.17. Let A;X

1

; Y

1

; A

1

;H

1

; R and X

1

;Y

1

be the above-mentioned

matries and subspaes. Let

�(A

1

) = f�

j

g

l

j=1

; �

1

� � � � � �

l

;

�(H

1

) = f�

j

g

l

j=1

; �

1

� � � � � �

l

;

and

�

1

= diag(�

1

; : : : ; �

l

); M

1

= diag(�

1

; : : : ; �

l

):

If �

2

(X

1

;Y

1

) < 1, then

k�

1

�M

1

k �

�

2

(X

1

;Y

1

)kRk

q

1� �

2

2

(X

1

;Y

1

)

: (2:5:54)
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Proof. 1) By Stewart [93, Appendix℄ (or see Stewart and Sun [97, Chapter I,

Theorem 5.2℄), there are unitary matries Q;U

1

and V

1

suh that

QX

1

U

1

=

 

I

l

0

!

and QY

1

V

1

=

 

�

�

!

;

where

� =

8

>

<

>

:

�

1

= diag(

1

; : : : ; 

l

) if 2l � n

diag(�

1

; I

2l�n

); �

1

= diag(

1

; : : : ; 

n�l

) if 2l > n;

(2:5:55)

� =

8

>

>

>

<

>

>

>

:

 

�

1

0

!

2 R

(n�l)�l

; �

1

= diag(�

1

; : : : ; �

l

) if 2l � n;

(�

1

; 0) 2 R

(n�l)�l

; �

1

= diag(�

1

; : : : ; �

n�l

) if 2l > n;

(2:5:56)

and

0 � 

1

� 

2

� � � � � 1; 1 � �

1

� �

2

� � � � � 0; 

2

j

+ �

2

j

= 1 8j: (2:5:57)

Without loss of generality we may assume that the matries A;X

1

and Y

1

have the

following redued forms:

A =

 

A

1

0

0 A

2

!

; X

1

=

 

I

l

0

!

; Y

1

=

 

�

�

!

; (2:5:58)

where �;� are the matries of (2.5.55) and (2.5.56). Thus, we have

�

2

(X

1

;Y

1

) = k sin�k

2

= k�k

2

; (2:5:59)

and

R =

 

�H

1

�A

1

�

�H

1

�A

2

�

!

: (2:5:60)

2) Let

^

� =

8

>

<

>

:

diag(�

1

; I

n�2l

) if 2l � n;

�

1

if 2l > n:

(2:5:61)

Combining it with (2.5.55) and (2.5.56) shows

�� =

^

��: (2:5:62)

Moreover, let

Y

2

=

 

��

T

^

�

!

; Y = (Y

1

; Y

2

): (2:5:63)
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Then from (2.5.62) we see that Y 2 U

n�n

, and the relations (2.5.60), (2.5.63) and

H

1

= Y

H

1

AY

1

imply

Y

H

R =

 

0

B

!

: (2:5:64)

Thus,

kRk = kBk: (2:5:65)

From (2.5.60), (2.5.63) and (2.5.64)

�H

1

�A

1

� = (I

l

; 0)R = (I

l

; 0)Y

 

0

B

!

= (I

l

; 0)Y

2

B = ��

T

B:

Combining it with (2.5.65) gives

k�H

1

�A

1

�k � k�k

2

kBk = k�k

2

kRk: (2:5:66)

3) Applying a result due to Bhatia, Davis and Kittaneh [9℄ (see below NR 2.5{5),

and using the expressions (2.5.55){(2.5.57), for the Hermitian matries H

1

and A

1

we have

k�H

1

�A

1

�k � 

1

kH

1

�A

1

k =

q

1� k�k

2

2

kA

1

�H

1

k: (2:5:67)

Moreover, by the Mirsky theorem [78℄ (see below NR 2.5{8), we have

kA

1

�H

1

k � k�

1

�M

1

k:

Substituting it into (2.5.67) gives

k�H

1

�A

1

�k �

q

1� k�k

2

2

k�

1

�M

1

k: (2:5:68)

Combining (2.5.68) with (2.5.66), (2.5.59) and the assumption �

2

(X

1

;Y

1

) < 1,

shows (2.5.54). 2

Notes and Referenes

NR 2.5{1. x2.5.1 is based on Sun [102℄. Theorem 2.5.6 is proved by Stewart [91℄.

NR 2.5{2. x2.5.4 and x2.5.5 are based on Sun [115℄ and [116℄.

NR 2.5{3. For the spetral norm, the residual bound (2.5.41) of Theorem 2.5.12

is due to Kahan [61℄ (or see Parlett [83, p.219{220℄). If l = 1 and if we write

~

U

1

= ~u

1

and R = r, then (2.5.41) beomes

j

~

�

1

� �

j

1

j � krk

2

;
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whih is a well known inlusion theorem (see, e.g., Wielandt [129℄).

NR 2.5{4. Theorem 2.5.17 is proved by Sun [111℄.

NR 2.5{5. Bhatia, Davis, and Kittaneh [6℄ prove the following result: Let

A;H;Z 2 C

n�n

, in whih A and H are Hermitian. Then for any unitarily invariant

norm k � k

kAZ � ZHk � �

min

(Z)kA�Hk:

NR 2.5{6. Let A;X

1

; Y

1

; A

1

;H

1

; R be the matries as in Theorem 2.5.17. It

is easy to see that for any X = (X

1

;X

2

) 2 U

n�n

the matrix A has the spetral

resolution

X

H

AX = diag(A

1

; A

2

):

Davis and Kahan [26℄ show that if

�(H

1

) � [�; �℄ (2:5:69)

and for some Æ > 0,

�(A

2

) � Rn[�� Æ; � + Æ℄; (2:5:70)

then

k sin�(X

1

; Y

1

)k �

kRk

Æ

:

This is the Davis-Kahan sin � theorem.

Combining the Davis-Kahan sin � theorem with Theorem 2.5.17 we see that

under the assumptions (2.5.69) and (2.5.70) we have the following orollary: If

� �

kRk

2

Æ

< 1;

then

k�

1

�M

1

k �

kRk

2

kRk

Æ

p

1� �

2

; (2:5:71)

where �

1

and M

1

are the diagonal matries of Theorem 2.5.17.

An estimate similar to (2.5.71) is �rst given by Stewart [96℄. Reently, Mathias

[76℄ obtains stronger and more general O(kRk

2

) bounds for the Hermitian eigen-

value problem, and the results are extended to singular values, eigenvalues of non-

Hermitian matries, and generalized eigenvalues.

NR 2.5{7. More results on Rayleigh quotients and eigenvalues of Rayleigh quo-

tient matries are given by Kahan [61℄, Paige [82℄, Parlett [83℄, Chatelin [16℄, Li [68℄,

Liu and Xu [73℄, Sun [111℄, and Cao, Xie and Li [14℄.
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NR 2.5{8. Mirsky Theorem [78℄. Let A and

~

A be Hermitian matries of the

same dimension with eigenvalues

�

1

� �

2

� � � � � �

n

;

~

�

1

�

~

�

2

� � � � �

~

�

n

:

Then for any unitarily invariant norm k � k,

kdiag(

~

�

i

� �

i

)k � k

~

A�Ak:

(See, e.g., Stewart and Sun [97, Chapter IV, Corollary 4.12.)

NR 2.5{9. In reent years, perturbation theory for the unitary eigenproblem

has been developed; see, e.g., Bhatia and Davis [5℄, Elsner and He [35℄, and Bohn-

horst, Bunse-Gerstner and Fassbender [9℄. Bakward errors and residual bounds are

disussed by Sun [118℄ and [120℄.
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Chapter 3

The Singular Value

Deomposition

In this hapter we will be onerned with perturbation analysis of the singular value

deomposition of A 2 C

m�n

: A = U�V

H

, where U and V are unitary matries and

� is a diagonal matrix with nonnegative diagonal elements. Perturbation expan-

sions and ondition numbers of singular values and singular subspaes, perturbation

bounds for singular subspaes, and bakward errors and residual bounds, will be

studied in x3.1 { x3.4, separately.

3.1 Perturbation Expansions

3.1.1 Simple Non-Zero Singular Values

Let A 2 C

m�n

. If

Av = �u and A

H

u = �v

for � � 0 and unit vetors v 2 C

n

and u 2 C

m

, then � is alled a singular value of

A, and v and u are alled unit right and left singular vetors of A assoiated with

�. Without loss of generality we may assume that m � n.

Let A 2 C

m�n

, and let

A = U�V

H

be an singular value deomposition of A 2 C

m�n

, where

V = (v

1

; : : : ; v

n

) 2 U

n�n

; U = (u

1

; : : : ; u

m

) 2 U

m�m

;

and

� = diag(�

1

; �

2

; � � �) 2 R

m�n

with �

1

; : : : ; �

n

� 0:

Then �

1

; : : : ; �

n

are the singular values of A, and v

j

and u

j

are unit right and left

singular vetors of A assoiated with �

j

; j = 1; : : : ; n.

91
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Let p = (p

1

; : : : ; p

N

)

T

, and let A(p) 2 C

m�n

be a matrix-valued funtion in some

neighborhood B(p

�

) of the point p

�

. For simpliity, we assume that p

�

= 0, and

p

1

; : : : ; p

N

are real parameters.

Let � > 0 be a simple singular value of A(0), and v and u be the assoiated unit

right and left singular vetors. Then, as a onsequene, there are matries

U = (u;U

2

) 2 U

m�m

; V = (v; V

2

) 2 U

n�n

; (3:1:1)

and

� =

 

� 0

0 �

2

!

; �

2

=

0

B

B

B

B

�

�

2

.

.

.

�

n

0

1

C

C

C

C

A

2 R

(m�1)�(n�1)

(3:1:2)

with �; �

2

; : : : ; �

n

� 0 and �

j

6= � > 0 for j = 2; : : : ; n, suh that A(0) has the

singular value deomposition

A(0) = U�V

H

:

First applying the impliit funtion theorem we prove the following result.

Theorem 3.1.1. Let p 2 R

N

and A(p) 2 C

m�n

. Suppose that Re[A(p)℄ and

Im[A(p)℄ are real analyti matrix-valued funtions of p in some neighborhood B(0)

of the origin. If A(0) has a singular value deomposition A(0) = U�V

H

, where U; V

and � are the matries of (3.1.1) and (3.1.2). Then

1) there exists a simple singular value �(p) of A(p) whih is a real analyti fun-

tion of p in some neighborhood B

0

of the origin, and �(0) = �; the unit right singular

vetor v(p) and the unit left singular vetor u(p) of A(p) assoiated with �(p) may be

so de�ned that Re[v(p)℄, Im[v(p)℄, Re[u(p)℄ and Im[u(p)℄ are real analyti funtions

of p in B

0

, v(0) = v and u(0) = u;

2) the funtion �(p) has a power series expansion at p = 0 of the form

�(p) = � +

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ; p 2 B

0

;

where

 

��(p)

�p

j

!

p=0

= Re

2

4

u

H

 

�A(p)

�p

j

!

p=0

v

3

5

; (3:1:3)
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and

 

�

2

�(p)

�p

j

�p

k

!

p=0

= Re

2

4

u

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

v +

 

u

v

!

H

D

H

k

SD

j

 

u

v

!

3

5

+

1

�

Im

2

4

u

H

 

�A(p)

�p

j

!

p=0

v

3

5

Im

"

u

H

�

�A(p)

�p

k

�

p=0

v

#

;

(3:1:4)

where

D

j

= diag

0

�

 

�A(p)

�p

j

!

H

p=0

;

 

�A(p)

�p

j

!

p=0

1

A

; (3:1:5)

and

S =

 

V

2

�

1

V

H

2

V

2




T

U

H

2

U

2


V

H

2

U

2

�

2

U

H

2

!

; (3:1:6)

in whih

�

1

= �(�

2

I � �

T

2

�

2

)

�1

; �

2

= �(�

2

I � �

2

�

T

2

)

�1

;


 = �

2

(�

2

I ��

T

2

�

2

)

�1

;

(3:1:7)

and u; v; U

2

; V

2

; � and �

2

are de�ned by (3.1.1) and (3.1.2).

Proof. 1) De�ne

~

A(p) by

~

A(p) = V

H

A(p)

H

A(p)V =

 

~a

11

(p) ~a

21

(p)

H

~a

21

(p)

~

A

22

(p)

!

; ~a

11

(p) 2 R;

and introdue a vetor-valued funtion

f(z; p) = ~a

21

(p) + [

~

A

22

(p)� ~a

11

(p)I℄z � z~a

21

(p)

H

z;

where

f = (f

1

; : : : ; f

n�1

)

T

; z = (�

1

; : : : ; �

n�1

)

T

2 C

n�1

; p 2 R

N

:

Let

f

j

= �

j

+ i 

j

; �

j

= �

j

+ i�

j

; i =

p

�1; j = 1; : : : ; n� 1;

and

x = (�

1

; : : : ; �

n�1

)

T

; y = (�

1

; : : : ; �

n�1

)

T

2 R

n�1

:

Obviously, �

j

(x; y; p) and  

j

(x; y; p) are real analyti funtions of the real variables

x; y 2 R

n�1

and p 2 B(0), and the funtions satisfy

�(0; 0; 0) = 0;  (0; 0; 0) = 0; j = 1; : : : ; n� 1:
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Sine f

1

; : : : ; f

n�1

are omplex analyti funtions of the omplex variables �

1

; : : : ; �

n�1

for any p 2 B(0), by Theorem 1.6.3 we have

�

�(�

1

; : : : ; �

n�1

;  

1

; : : : ;  

n�1

)

�(�

1

; : : : ; �

n�1

; �

1

; : : : ; �

n�1

)

�

x=y=0; p=0

=

�

�

�

�

�(f

1

; : : : ; f

n�1

)

�(�

1

; : : : ; �

n�1

)

�

�

�

�

2

z=0; p=0

=

�

�

�

det(

~

A

22

(0)� ~a

11

(0)I)

�

�

�

2

=

�

�

�

det(�

T

2

�

2

� �

2

I)

�

�

�

2

=

n

Y

l=2

(�

2

l

� �

2

)

2

> 0:

Therefore, by the impliit funtion theorem (Theorem 1.6.2) the system of equations

�

j

(x; y; p) = 0;  

j

(x; y; p) = 0; j = 1; : : : ; n� 1

has a unique real analyti solution x = x(p); y = y(p) in some neighborhood B

0

�

B(0) of the origin, and x(0) = y(0) = 0. In other words, the equation f(z; p) = 0

has a unique analyti solution z = z(p) in B

0

, and z(0) = 0. Moreover, we may

hoose B

0

so small that 1 + z(p)

H

z(p) > 0 for any p 2 B

0

. As a result, we have

 

1 �z(p)

H

z(p) I

!

H

~

A(p)

 

1 �z(p)

H

z(p) I

!

=

 

~a

11

(p) + z(p)

H

~a

21

(p) + ~a

21

(p)

H

z(p) + z(p)

H

~

A

22

(p)z(p) 0

0 �

!

; p 2 B

0

;

and from this relation we get

V

H

A(p)

H

A(p)V

 

1

z(p)

!

�

1 + z(p)

H

z(p)

�

�

1

2

=

�

~a

11

(p) + z(p)

H

~a

21

(p) + ~a

21

(p)

H

z(p) + z(p)

H

~

A

22

(p)z(p)

� �

1 + z(p)

H

z(p)

�

�1

�

 

1

z(p)

!

�

1 + z(p)

H

z(p)

�

�

1

2

:

(3:1:8)

Sine

~a

11

(p) + z(p)

H

~a

21

(p) + ~a

21

(p)

H

z(p) + z(p)

H

~

A

22

(p)z(p) > 0

for p 2 B

0

provided that B

0

is suÆiently small, we may de�ne a positive valued

analyti funtion �

1

(p) by

�(p) =

h�

~a

11

(p) + z(p)

H

~a

21

(p) + ~a

21

(p)

H

z(p)

+z(p)

H

~

A

22

(p)z(p)

� �

1 + z(p)

H

z(p)

�

�1

�

1=2

; p 2 B

0

:
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Further, for p 2 B

0

we de�ne two vetor-valued analyti funtions v(p) and u(p) by

v(p) = V

 

1

z(p)

!

�

1 + z(p)

H

z(p)

�

�1=2

; u(p) = A(p)v(p)=�(p): (3:1:9)

Then the relation (3.1.8) implies that for p 2 B

0

the funtions �(p); v(p) and u(p)

satisfy

A(p)v(p) = �(p)u(p); A(p)

H

u(p) = �(p)v(p);

ku(p)k

2

= kv(p)k

2

= 1;

(3:1:10)

whih means that �(p) is a singular value of A(p), and u(p) and v(p) are assoiated

unit right and unit left singular vetors. Moreover, we have

�(0) = �; v(0) = v; u(0) = u; (3:1:11)

and the singular value �(p) is simple provided that the neighborhood B

0

is suÆ-

iently small.

2-1) By (3.1.10) and (3.1.11),

�(p) = u(p)

H

A(p)v(p) = v(p)

H

A(p)

H

u(p):

Thus, we have

��(p)

�p

j

= �(p)

 

�u(p)

�p

j

!

H

u(p) + u(p)

H

�A(p)

�p

j

v(p) + �(p)v(p)

H

�v(p)

�p

j

; (3:1:12)

and

��(p)

�p

j

= �(p)

 

�v(p)

�p

j

!

H

v(p)+v(p)

H

 

�A(p)

�p

j

!

H

u(p)+�(p)u(p)

H

�u(p)

�p

j

: (3:1:13)

From (3.1.12), (3.1.13) and

u(p)

H

u(p) = v(p)

H

v(p) = 1;

we get

��(p)

�p

j

=

1

2

2

4

u(p)

H

�A(p)

�p

j

v(p) + v(p)

H

 

�A(p)

�p

j

!

H

u(p)

3

5

: (3:1:14)

Substituting p = 0 into (3.1.14) gives (3.1.3).

2-2) From

A(p)

H

A(p)v(p) = �(p)

2

v(p)
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it follows that

�

�

2

I �A(0)

H

A(0)

�

 

�v(p)

�p

j

!

p=0

=

2

4

 

�A(p)

�p

j

!

H

p=0

A(0) +A(0)

H

 

�A(p)

�p

j

!

p=0

� 2�

 

��(p)

�p

j

!

p=0

I

3

5

v:

Combining it with (3.1.2), (3.1.9) and z(0) = 0 gives

 

0 0

0 �

2

I � �

T

2

�

2

!

0

�

0

�

�z(p)

�p

j

�

p=0

1

A

= �V

H

 

�A(p)

�p

j

!

H

p=0

u

+

 

� 0

0 �

T

2

!

U

H

 

�A(p)

�p

j

!

p=0

v � 2�

 

��(p)

�p

j

!

p=0

e

(n)

1

and

 

�z(p)

�p

j

!

p=0

=

�

�

2

I � �

T

2

�

2

�

�1

2

4

�V

H

2

 

�A(p)

�p

j

!

H

p=0

u+�

T

2

U

H

2

 

�A(p)

�p

j

!

p=0

v

3

5

:

(3:1:15)

Substituting (3.1.15) into

 

�v(p)

�p

j

!

p=0

= V

2

 

�z(p)

�p

j

!

p=0

;

and using the matries �

1

and 
 de�ned by (3.1.7), we get

 

�v(p)

�p

j

!

p=0

= V

2

0

�

�

1

V

H

2

 

�A(p)

�p

j

!

H

p=0

; 


T

U

H

2

 

�A(p)

�p

j

!

p=0

1

A

 

u

v

!

: (3:1:16)

2-3) From A(p)v(p) = �(p)u(p) we obtain

 

�u(p)

�p

j

!

p=0

=

1

�

2

4

 

�A(p)

�p

j

!

p=0

v +A(0)

 

�v(p)

�p

j

!

p=0

�

 

��(p)

�p

j

!

p=0

u

3

5

:

Combining it with (3.1.3), (3.1.16), and using the relations

1

�

A(0)V

2

�

1

V

H

2

= U

2


V

H

2

;

1

�

A(0)V

2




T

U

H

2

= U

2

�

2

U

H

2

�

1

�

1

U

2

U

H

2

;
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we get

 

�u(p)

�p

j

!

p=0

= U

2

0

�


V

H

2

 

�A(p)

�p

j

!

H

p=0

; �

2

U

H

2

 

�A(p)

�p

j

!

p=0

1

A

 

u

v

!

+

i

�

Im

2

4

u

H

 

�A(p)

�p

j

!

p=0

v

3

5

u; i =

p

�1:

(3:1:17)

2-4) From (3.1.14) it follows that

 

�

2

�(p)

�p

j

�p

k

!

p=0

= Re

2

4

u

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

v

3

5

+ Re

2

4

�

�u(p)

�p

k

�

H

p=0

 

�A(p)

�p

j

!

p=0

v

+

�

�v(p)

�p

k

�

H

p=0

 

�A(p)

�p

j

!

H

p=0

u

3

5

:

Combining it with (3.1.16) and (3.1.17) shows

 

�

2

�(p)

�p

j

�p

k

!

p=0

= Re

2

4

u

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

v

3

5

+Re

2

6

6

4

 

u

v

!

H

0

B

�

�

�A(p)

�p

k

�

H

p=0

0

0

�

�A(p)

�p

k

�

p=0

1

C

A

H

�

 

V

2

�

1

V

H

2

V

2




T

U

H

2

U

2


V

H

2

U

2

�

2

U

H

2

!

0

B

�

�

�A(p)

�p

j

�

H

p=0

0

0

�

�A(p)

�p

j

�

p=0

1

C

A

 

u

v

!

3

7

5

+

1

�

Im

2

4

u

H

 

�A(p)

�p

j

!

p=0

v

3

5

Im

"

u

H

�

�A(p)

�p

k

�

p=0

v

#

:

(3:1:18)

Using the matries D

j

and S de�ned by (3.1.5) and (3.1.6), the formula (3.1.18) an

be written as (3.1.4). 2

Example 3.1.2 [74℄. Consider the matrix

A(p) =

�

1 �1

1

p

1

+ip

2

+2

1

�

; p = (p

1

; p

2

)

T

2 R

2

; i =

p

�1:

Obviously, A(p) is an analyti matrix-valued funtion of p in a neighborhood of the origin.

Moreover, the matrix A(0) =

�

1 �1

1

2

1

�

has a singular value deompositionA(0) = U�V

H
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with

U =

1

p

5

�

2 1

�1 2

�

= (u

1

; u

2

); V =

1

p

5

�

1 2

�2 1

�

= (v

1

; v

2

); � =

�

3

2

0

0 1

�

:

Thus, we have

�

1

=

3

2

; �

2

= 1; �

1

= �

2

=

6

5

; 
 =

4

5

;

�

�A(p)

�p

1

�

p=0

=

�

0 0

�

1

4

0

�

;

�

�A(p)

�p

2

�

p=0

=

�

0 0

�

i

4

0

�

;

�

�

2

A(p)

�p

2

1

�

p=0

=

�

0 0

1

4

0

�

;

�

�

2

A(p)

�p

2

2

�

p=0

=

�

0 0

�

1

4

0

�

;

and

�

�

2

A(p)

�p

1

�p

2

�

p=0

=

�

0 0

i

4

0

�

:

Using the formulas (3.1.3) and (3.1.4), we get

�

��

1

(p)

�p

1

�

p=0

= 0:05;

�

��

1

(p)

�p

2

�

p=0

= 0;

�

��

2

(p)

�p

1

�

p=0

= �0:2;

�

��

2

(p)

�p

2

�

p=0

= 0;

and

�

�

2

�

1

(p)

�p

2

1

�

p=0

= �0:042;

�

�

2

�

1

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

1

(p)

�p

2

2

�

p=0

= 0:098

_

3;

�

�

2

�

2

(p)

�p

2

1

�

p=0

= 0:208;

�

�

2

�

2

(p)

�p

1

�p

2

�

p=0

= 0;

�

�

2

�

2

(p)

�p

2

2

�

p=0

= �0:12:

Consequently, �

1

(p) and �

2

(p) have the expansions

�

1

(p) = 1:5 + 0:05p

1

� 0:021p

2

1

+ 0:0491

_

6p

2

2

+O(kpk

3

2

);

and

�

2

(p) = 1:0� 0:2p

1

+ 0:104p

2

1

� 0:06p

2

2

+O(kpk

3

2

);

where p 2 B

0

, a neighborhood of the origin.

From Theorem 3.1.1 we obtain the following result.

Theorem 3.1.3. Let A(p) 2 R

m�n

with p 2 R

N

. Suppose that A(p) is a real

analyti matrix-valued funtion of p in some neighborhood B(0) of the origin. If

A(0) has a singular value deomposition A(0) = U�V

T

, where U; V and � are ex-

pressed by (3.1.1) and (3.1.2), among whih U and V are real orthogonal matries,

and �; �

2

; : : : ; �

n

� 0 with �

j

6= � > 0 for j = 2; : : : ; n. Then
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1) there exists a simple singular value �(p) of A(p) whih is a real analyti fun-

tion of p in some neighborhood B

0

of the origin, and �(0) = �; the unit right singular

vetor v(p) and the unit left singular vetor u(p) of A(p) assoiated with �(p) may

be so de�ned that v(p) and u(p) are real analyti funtions of p in B

0

, v(0) = v and

u(0) = u;

2) the funtion �(p) has a power series expansion at p = 0 of the form

�(p) = � +

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ; p 2 B

0

;

where

 

��(p)

�p

j

!

p=0

= u

T

 

�A(p)

�p

j

!

p=0

v; (3:1:19)

and

 

�

2

�(p)

�p

j

�p

k

!

p=0

= u

T

 

�

2

A(p)

�p

j

�p

k

!

p=0

v +

 

u

v

!

T

D

T

k

SD

j

 

u

v

!

; (3:1:20)

in whih

S =

 

V

2

�

1

V

T

2

V

2




T

U

T

2

U

2


V

T

2

U

2

�

2

U

T

2

!

;

D

j

= diag

0

�

 

�A(p)

�p

j

!

T

p=0

;

 

�A(p)

�p

j

!

p=0

1

A

;

and �

1

;�

2

;
 are de�ned by (3.1.7).

Note that for the singular vetors v(p) and u(p) we have the formula

0

B

�

�

�v(p)

�p

j

�

p=0

�

�u(p)

�p

j

�

p=0

1

C

A

= SD

j

 

u

v

!

:

The following two results, as orollaries of Theorems 3.1.1 and 3.1.3, give seond

order perturbation expansions of any non-zero simple singular value. The proofs are

left as exerises.

Corollary 3.1.4. Let A = U�V

H

be a singular value deomposition of A 2

C

m�n

, where the unitary matries U; V and the diagonal matrix � are expressed by

(3.1.1) and (3.1.2), in whih �; �

2

; : : : ; �

n

� 0 and �

j

6= � > 0 for j = 2; : : : ; n.

Moreover, let E 2 C

m�n

. Then as E ! 0 the matrix A + E has a simple singular
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value ~� satisfying

~� = � + Re(u

H

Ev)

+

1

2

Re

 

u

v

!

H

 

EV

2

�

1

V

H

2

E

H

EV

2




T

U

H

2

E

E

H

U

2


V

H

2

E

H

E

H

U

2

�

2

U

H

2

E

! 

u

v

!

+

1

2�

h

Im(u

H

Ev)

i

2

+O(kEk

3

F

);

(3:1:21)

and the assoiated right and left singular vetors ~v and ~u satisfy

~v = v + V

2

(�

1

V

H

2

E

H

; 


T

U

H

2

E)

 

u

v

!

+O(kEk

2

F

);

~u = u+ U

2

(
V

H

2

E

H

; �

2

U

H

2

E)

 

u

v

!

+

i

�

Im(u

H

Ev)u +O(kEk

2

F

);

(3:1:22)

where �

1

;�

2

;
 are the matries de�ned by (3.1.7).

Corollary 3.1.5. Let A = U�V

T

be a singular value deomposition of A 2

R

m�n

, where the real orthogonal matries U; V and the diagonal matrix � are ex-

pressed by (3.1.1) and (3.1.2), in whih �; �

2

; : : : ; �

n

� 0 and �

j

6= � > 0 for

j = 2; : : : ; n. Moreover, let E 2 R

m�n

. Then as E ! 0 the matrix A + E has a

simple singular value ~� satisfying

~� = � + u

T

Ev

+

1

2

 

u

v

!

T

 

EV

2

�

1

V

T

2

E

T

EV

2




T

U

T

2

E

E

T

U

2


V

T

2

E

T

E

T

U

2

�

2

U

T

2

E

! 

u

v

!

+O(kEk

3

F

);

and the assoiated right and left singular vetors ~v and ~u satisfy

~v = v + V

2

(�

1

V

T

2

E

T

; 


T

U

T

2

E)

 

u

v

!

+O(kEk

2

F

);

~u = u+ U

2

(
V

T

2

E

T

; �

2

U

T

2

E)

 

u

v

!

+O(kEk

2

F

);

where �

1

;�

2

;
 are the matries de�ned by (3.1.7).

3.1.2 Singular Subspaes

Let A 2 C

m�n

, and let v 2 C

n

and u 2 C

m

be unit right and unit left singular ve-

tors of A assoiated with the same singular value. Then the pair of one-dimensional
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subspaes R(v), R(u) satisfy AR(v) � R(u) and A

H

R(u) � R(v), and the pair

fR(v);R(u)g is alled a pair of one-dimensional singular subspaes of A. This de�-

nition extends in a natural way to higher dimensions.

Let X

1

be a subspae of C

n

, Y

1

be a subspae of C

m

with the same dimension as

X

1

. The pair of subspaes X

1

;Y

1

is alled a pair of singular subspaes of A 2 C

m�n

if AX

1

� Y

1

and A

H

Y

1

� X

1

.

Let X

1

2 U

n�l

; Y

1

2 U

m�l

, and let the olumns of X

1

; Y

1

form bases for sub-

spaes X

1

;Y

1

, respetively. Then it is easy to see that the pair fX

1

;Y

1

g is a pair

of singular subspaes of A if and only if there is a matrix A

1

2 C

l�l

suh that

AX

1

= Y

1

A

1

and A

H

Y

1

= X

1

A

H

1

.

Let X

1

2 U

n�l

; Y

1

2 U

m�l

. It an be proved that the pair of the subspaes

X

1

= R(X

1

) and Y

1

= R(Y

1

) is a singular subspae pair of A 2 C

m�n

if and only if

there are matries X = (X

1

;X

2

) 2 U

n�n

and Y = (Y

1

; Y

2

) 2 U

m�m

suh that

Y

H

AX =

 

A

1

0

0 A

2

!

; A

1

2 C

l�l

: (3:1:23)

De�ne the matrix

^

A

2

by

^

A

2

=

8

>

<

>

:

A

2

if m = n;

(A

2

; 0) 2 C

(m�l)�(m�l)

if m > n:

(3:1:24)

If �(A

1

)

T

�(

^

A

2

) = ;, then the singular subspae pair fX

1

;Y

1

g is alled a simple

singular subspae pair. The ondition �(A

1

)

T

�(

^

A

2

) = ; means that

�(A

1

)

T

�(A

2

) = ; if m = n;

�(A

1

)

T

�(A

2

) = ; and 0 62 �(A

1

) if m > n:

In this hapter we only onsider simple singular subspaes.

In this subsetion we prove the following perturbation expansion theorem.

Theorem 3.1.6. Let A 2 C

m�n

(m � n) have the deomposition (3.1.23), where

X = (X

1

;X

2

) 2 U

n�n

and Y = (Y

1

; Y

2

) 2 U

m�m

with X

1

2 U

n�l

and Y

1

2 U

m�l

,

and

�(A

1

)

\

�(

^

A

2

) = ;; (3:1:25)

in whih the matrix

^

A

2

is de�ned by (3.1.24). Moreover, let X

1

= R(X

1

);Y

1

=

R(Y

1

), for M 2 C

m�n

let

Y

H

MX =

 

M

11

M

12

M

21

M

22

!

; M

11

2 C

l�l

; (3:1:26)
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and de�ne the linear operator T : C

(n�l)�l

� C

(m�l)�l

! C

(n�l)�l

� C

(m�l)�l

by

T

 

Z

W

!

=

 

ZA

H

1

�A

H

2

W

�A

2

Z +WA

1

!

; Z 2 C

(n�l)�l

; W 2 C

(m�l)�l

: (3:1:27)

Then

(1) there is a unique l-dimensional simple singular subspae pair fX

1

(�);Y

1

(�)g

of A + �M (� 2 R) suh that X

1

(0) = X

1

; Y

1

(0) = Y

1

, and the basis vetors

x

1

(�); : : : ; x

l

(�) of X

1

(�) and the basis vetors y

1

(�); : : : ; y

l

(�) of Y

1

(�) may be ho-

sen to be analyti funtions of � 2 (�Æ; Æ) for some Æ > 0;

(2) the analyti matrix-valued funtions

X

1

(�) = (x

1

(�); : : : ; x

l

(�)); Y

1

(�) = (y

1

(�); : : : ; y

l

(�))

have the perturbation expansions

X

1

(�) = X

1

+X

2

1

X

j=1

K

j

�

j

; Y

1

(�) = Y

1

+ Y

2

1

X

j=1

L

j

�

j

; � 2 (�Æ; Æ); (3:1:28)

in whih

 

K

1

L

1

!

= T

�1

 

M

H

12

M

21

!

;

 

K

2

L

2

!

= T

�1

 

�K

1

M

H

11

+M

H

22

L

1

M

22

K

1

� L

1

M

11

!

;

 

K

j

L

j

!

= T

�1

0

B

B

B

�

�K

j�1

M

H

11

+M

H

22

L

j�1

�

j�2

P

k=1

K

k

M

H

21

L

j�1�k

M

22

K

j�1

� L

j�1

M

11

�

j�2

P

k=1

L

k

M

12

K

j�1�k

1

C

C

C

A

; j � 3:

(3:1:29)

Proof. Let

A(�) = A+ �M;

~

A(�) = Y

H

A(�)X =

 

~

A

11

(�)

~

A

12

(�)

~

A

21

(�)

~

A

22

(�)

!

; (3:1:30)

where

~

A

11

(�) 2 C

l�l

, and

~

A

jj

(�) = A

j

+ �M

jj

; j = 1; 2;

~

A

jk

(�) = �M

jk

; j 6= k: (3:1:31)

For Z 2 C

(n�l)�l

;W 2 C

(m�l)�l

and � 2 R de�ne the funtions � and 	 by

�(Z;W; �) =

~

A

12

(�)

H

� Z

~

A

11

(�)

H

+

~

A

22

(�)

H

W � Z

~

A

21

(�)

H

W;

	(Z;W; �) =

~

A

21

(�) +

~

A

22

(�)Z �W

~

A

11

(�)�W

~

A

12

(�)Z;

(3:1:32)
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and let

� = ve(�) = f + ig;  = ve(	) = p+ iq;

z = ve(Z) = x+ iy; w = ve(W ) = u+ iv;

where f; g; p; q are real analyti vetor-valued funtions of x; y; u; v; � . Applying

Theorem 1.6.3 and using the expressions (3.1.31) and (3.1.32) we get

�

�(f; g; p; q)

�(x; y; u; v)

�

x = y = 0

u = v = 0

� = 0

=

�

�

�

�

�(�;  )

�(z; w)

�

�

�

�

2

z=0; w=0

=

�

�

�

�

�

det

 

�A

1


 I

n�l

I

l


A

H

2

I

l


A

2

�A

T

1


 I

m�l

!

�

�

�

�

�

2

:

Let A

j

= U

j

�

j

V

H

j

be singular value deompositions of A

j

for j = 1; 2, where U

j

; V

j

are unitary matries, and

�

1

= diag(�

1

; : : : ; �

l

); �

2

= diag(�

l+1

; �

l+2

; : : :):

Then

�

�(f; g; p; q)

�(x; y; u; v)

�

x = y = 0

u = v = 0

� = 0

=

�

�

�

�

�

det

 

��

1


 I

n�l

I

l


 �

T

2

I

l


 �

2

��

1


 I

m�l

!

�

�

�

�

�

2

=

2

4

0

�

l

Y

j=1

�

j

1

A

m�n

l

Y

j=1

n

Y

k=l+1

(�

2

j

� �

2

k

)

3

5

2

> 0;

where we have used the assumption (3.1.25). Therefore, by the impliit funtion

theorem (Theorem 1.6.2) the equations

�(Z;W; �) = 0; 	(Z;W; �) = 0

have a unique analyti solution Z = Z(�);W =W (�) of � 2 (�Æ; Æ) for some Æ > 0

satisfying Z(0) = 0 and W (0) = 0. Moreover, we may hoose Æ so small that the

matries I + Z(�)

H

Z(�) and I +W (�)

H

W (�) are nonsingular. Thus, we have

 

I W (�)

H

�W (�) I

!

~

A(�)

 

I �Z(�)

H

Z(�) I

!

=

 

A

1

(�) 0

0 A

2

(�)

!

; (3:1:33)

where

A

1

(�) =

~

A

11

(�) +

~

A

12

(�)Z(�) +W (�)

H

~

A

21

(�) +W (�)

H

~

A

22

(�)Z(�);
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A

2

(�) =

~

A

22

(�)�

~

A

21

(�)Z(�)

H

�W (�)

~

A

12

(�) +W (�)

~

A

11

(�)Z(�)

H

;

and �(A

1

(�))

T

�(

^

A

2

(�)) = ; for � 2 (�Æ; Æ) provided that the positive salar Æ is

suÆiently small, in whih

^

A

2

(�) �

8

>

<

>

:

A

2

(�) if m = n;

(A

2

(�); 0) 2 C

(m�l)�(m�l)

if m > n:

From the relations (3.1.33) and (3.1.30) it follows that if we de�ne

X

1

(�) = X

 

I

Z(�)

!

; Y

1

(�) = Y

 

I

W (�)

!

(3:1:34)

and

X

1

(�) = R(X

1

(�)); Y

1

(�) = R(Y

1

(�));

then the pair fX

1

(�);Y

1

(�)g is the unique l-dimensional simple singular subspae

pair of A(�) in (�Æ; Æ) satisfying X

1

(0) = X

1

and Y

1

(0) = Y

1

, and X

1

(�); Y

1

(�) are

analyti matrix-valued funtions of � 2 (�Æ; Æ).

Observe that Z(�);W (�) satisfy

�(Z(�);W (�); �) = 0; 	(Z(�);W (�); �) = 0;

where �(Z;W; �) and 	(Z;W; �) are de�ned by (3.1.32), in whih

~

A

jk

(�) are ex-

pressed by (3.1.31). Hene, we get the basi equations for Z(�);W (�):

8

>

<

>

:

�Z(�)M

H

21

W (�) + Z(�)(A

1

+ �M

11

)

H

� (A

2

+ �M

22

)

H

W (�)� �M

H

12

= 0;

�W (�)M

12

Z(�)� (A

2

+ �M

22

)Z(�) +W (�)(A

1

+ �M

11

)� �M

21

= 0;

(3:1:35)

where � 2 (�Æ; Æ).

Di�erentiating (3.1.35) at � = 0, and writing

Z

(j)

=

 

d

j

Z(�)

d�

j

!

�=0

; W

(j)

=

 

d

j

W (�)

d�

j

!

�=0

; j = 1; 2; : : : ;
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we get

T

 

Z

(1)

W

(1)

!

=

 

M

H

12

M

21

!

;

T

 

Z

(2)

W

(2)

!

= 2

 

�Z

(1)

M

H

11

+M

H

22

W

(1)

M

22

Z

(1)

�W

(1)

M

11

!

;

T

 

Z

(j)

W

(j)

!

= j

0

B

B

B

B

�

�Z

(j�1)

M

H

11

+M

H

22

W

(j�1)

�

j�2

P

k=1

 

j � 1

k

!

Z

(k)

M

H

21

W

(j�1�k)

M

22

Z

(j�1)

�W

(j�1)

M

11

�

j�2

P

k=1

 

j � 1

k

!

W

(k)

M

12

Z

(j�1�k)

1

C

C

C

C

A

;

(3:1:36)

where j � 3, and T is the linear operator de�ned by (3.1.27).

The assumption (3.1.25) implies that the operator T is invertible. De�ne

K

j

=

1

j!

Z

(j)

; L

j

=

1

j!

W

(j)

; j = 1; 2; : : : :

Then from (3.1.36) we get the relations (3.1.29) and the power series expansions of

Z(�);W (�) at � = 0:

Z(�) =

1

X

j=1

1

j!

Z

(j)

�

j

=

1

X

j=1

K

j

�

j

; W (�) =

1

X

j=1

1

j!

W

(j)

�

j

=

1

X

j=1

L

j

�

j

:

This together with (3.1.34) gives (3.1.28). 2

We now onsider a speial ase where

A

1

= �

1

= diag(�

1

; : : : ; �

l

) with �

1

; : : : ; �

l

> 0; and A

2

= 0: (3:1:37)

In suh a ase, the operator T de�ned by (3.1.27) an be written

T

 

Z

W

!

=

 

Z

W

!

�

1

; Z 2 C

(n�l)�l

; W 2 C

(m�l)�l

;
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and the relations of (3.1.29) beome

 

K

1

L

1

!

=

 

M

H

12

M

21

!

�

�1

1

;

 

K

2

L

2

!

=

 

�K

1

M

H

11

+M

H

22

L

1

M

22

K

1

� L

1

M

11

!

�

�1

1

;

 

K

j

L

j

!

=

0

B

B

B

�

�K

j�1

M

H

11

+M

H

22

L

j�1

�

j�2

P

k=1

K

k

M

H

21

L

j�1�k

M

22

K

j�1

� L

j�1

M

11

�

j�2

P

k=1

L

k

M

12

K

j�1�k

1

C

C

C

A

�

�1

1

; j � 3:

(3:1:38)

Observe that from (3.1.26) M

jk

= Y

H

j

MX

k

for j; k = 1; 2. Hene, if we let

E = �M;

~

X

1

= X

1

(�) and

~

Y

1

= Y

1

(�), then from (3.1.28), (3.1.29) and (3.1.38) we

get the following orollary.

Corollary 3.1.7 (Vaaro). Let A;X; Y;X

1

;Y

1

be as in Theorem 3.1.6, and let

A

1

and A

2

be the matries of (3.1.37). If kEk is suÆiently small, then there is

a unique l-dimensional singular subspae pair f

~

X

1

;

~

Y

1

g of A + E with

~

X

1

= R(

~

X

1

)

and

~

Y

1

= R(

~

Y

1

) that

~

X

1

and

~

Y

1

have the seond-order perturbation expansions

~

X

1

= X

1

+X

2

X

H

2

E

H

Y

1

�

�1

1

�X

2

X

H

2

E

H

�

Y

1

�

�1

1

X

H

1

E

H

Y

1

� Y

2

Y

H

2

EX

1

�

�1

1

�

�

�1

1

+O(kEk

3

F

);

(3:1:39)

and

~

Y

1

= Y

1

+ Y

2

Y

H

2

EX

1

�

�1

1

�Y

2

Y

H

2

E

�

X

1

�

�1

1

Y

H

1

EX

1

�X

2

X

H

2

E

H

Y

1

�

�1

1

�

�

�1

1

+O(kEk

3

F

);

(3:1:40)

where E ! 0.

The following result, as a orollary of Theorem 3.1.6, gives modi�ed forms of the

�rst order perturbation expansions of X

1

(�) and Y

1

(�).

Corollary 3.1.8. Let A;X; Y and T be as in Theorem 3.1.6, and let X

1

=

R(X

1

);Y

1

= R(Y

1

). Moreover, for E 2 C

m�n

let

Y

H

EX =

 

E

11

E

12

E

21

E

22

!

; E

11

2 C

l�l

:

If kEk

F

is suÆiently small, then there exists a unique l-dimensional singular sub-

spae pair f

~

X

1

;

~

Y

1

g of A+E with

~

X

1

= R(

~

X

1

) and

~

Y

1

= R(

~

Y

1

) that

~

X

1

and

~

Y

1

have
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the expansions

~

X

1

= X

1

+X

2

Z

1

+O(kEk

2

F

);

~

Y

1

= Y

1

+X

2

W

1

+O(kEk

2

F

); (3:1:41)

where E ! 0, and Z

1

;W

1

2 C

(n�l)�l

are de�ned by

 

Z

1

W

1

!

= T

�1

 

E

H

12

E

21

!

: (3:1:42)

Observe that by using the Kroneker produt and ve operator, the matrix rep-

resentation T of the linear operator T de�ned by (3.1.27) an be expressed by

T =

 

A

1


 I

n�l

�I

l


A

H

2

�I

l


A

2

A

T

1


 I

m�l

!

:

Hene, the relation (3.1.42) an be written

 

ve(Z

1

)

ve(W

1

)

!

= C

 

ve(E

H

12

)

ve(E

21

)

!

; (3:1:43)

where

C � T

�1

=

 

C

1

C

2

!

; (3:1:44)

in whih

C

1

=

�

(A

T

1


 I

n�l

)K

�1

; (I

l


A

H

2

)L

�1

�

;

C

2

=

�

(I

l


A

2

)K

�1

; (A

1


 I

m�l

)L

�1

�

;

(3:1:45)

and

K = A

1

A

T

1


 I

n�l

� I

l


A

H

2

A

2

; L = A

T

1

A

1


 I

m�l

� I

l


A

2

A

H

2

: (3:1:46)

Notes and Referenes

NR 3.1{1. This setion is based on Sun [105℄ and [119℄.

NR 3.1{2. MaFarlane and Hung [74℄ onsider the singular values of a rational

matrix-valued funtion of a omplex variable. Analyti properties and Taylor series

expansions of the singular values are studied. The tehnique used in [74℄ is di�erent

from that in x3.2.1.

NR 3.1{3. A seond order perturbation expansion for small singular values of a

matrix A is derived by Stewart [95℄. The key step is to work with the ross-produt

matrix A

H

A and to get a seond order perturbation expansion of the orresponding
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small eigenvalues of A

H

A.

NR 3.1{4. Elsner and He [34℄ onsider the matrix G(s) = G

1

+ sG

2

, where s

is a real parameter, G

1

and G

2

are omplex matries. The smallest singular value

�(s) of G(s) is assumed positive and simple. Expliit expressions of the �rst and

seond order derivatives of �(s) are obtained in [34℄, whih oinide with the results

of Theorem 3.1.1 with N = 1. The expliit expressions of derivatives serve as a basis

for an algorithm to ompute the distane to unontrollability.

NR 3.1{5. Let A(p) and B(0) be as in Theorem 3.1.1. If �

�

is a zero singular

value or a multiple singular value of A(0), then, in general, there is no a real dif-

ferentiable funtion �(p) � 0 de�ned in some neighborhood B

0

� B(0) of the origin

suh that �(p) is a singular value of A(p) in B

0

, and �(0) = �

�

. Sun [106℄ studies

the existene and expressions of the diretional derivatives of zero singular values

and multiple singular values.

NR 3.1{6. The seond order perturbation expansions (3.1.39) and (3.1.40)

are derived by Vaaro [123℄ in another way. Vaaro [123℄ points out that the

expressions an be used to analyze the performane of diretion-�nding algorithms

in array signal proessing.

3.2 Condition Numbers

3.2.1 Simple Non-Zero Singular Values

Let A 2 C

m�n

, and � > 0 be a simple singular value of A. Let

~

A = A + E be a

perturbation of A, and ~� be the orresponding perturbation of �. Then by (1.8.1)

we de�ne the ondition number (�) for � as

(�) = lim

Æ!0

sup

kEk

�

�Æ

j~� � �j

�Æ

;

where � and � are positive parameters.

From the de�nition of (�) we see that in �rst order approximation the inequality

j~� � �j

�

� (�)

kEk

�

holds.

Let v 2 C

n

and u 2 C

m

be the unit right and unit left singular vetors of A

assoiated with �, respetively. Then from Corollary 3.1.4

~� = � + Re(u

H

Ev) +O(kEk

2

):
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Consequently,

(�) = � sup

kEk�1

�

�

�

Re(u

H

Ev)

�

�

�

�

=

�

�

:

Taking � = � = 1 yields the absolute ondition number 

abs

(�) = 1, and taking

� = kAk and � = � yields the relative ondition number 

rel

(�) = kAk=�.

Note that the formula of the ondition number (�) is generalized to simple

generalized singular values by Sun [122℄.

3.2.2 Singular Subspaes

Let A 2 C

m�n

, and fX

1

;Y

1

g be a simple singular subspae pair of A. Let

~

A = A+E

be a perturbation of A, and f

~

X

1

;

~

Y

1

g be the orresponding perturbation of fX

1

;Y

1

g.

Then by (1.8.3) we de�ne the ondition numbers (X

1

); (Y

1

) for X

1

;Y

1

as

(X

1

) = lim

Æ!0

sup

kEk

F

�

�Æ

�

F

(X

1

;

~

X

1

)

Æ

; (Y

1

) = lim

Æ!0

sup

kEk

F

�

�Æ

�

F

(Y

1

;

~

Y

1

)

Æ

; (3:2:1)

where  is a positive parameter, and �

F

(�; �) is the generalized hordal metri de�ned

by (1.3.3).

From the de�nition (3.2.1) we see that in �rst order approximation the inequal-

ities

�

F

(X

1

;

~

X

1

) � (X

1

)

kEk

F

�

; �

F

(Y

1

;

~

Y

1

) � (Y

1

)

kEk

F

�

hold.

By (3.2.1), (3.1.41) and Theorem 1.3.3 (see (1.3.17)),

(X

1

) = lim

Æ!0

sup

kEk

F

�

�Æ

kZ

1

k

F

Æ

; (3:2:2)

where Z

1

is de�ned by (3.1.42). Combining (3.2.2) with (3.1.43){(3.1.46) gives

(X

1

) = lim

Æ!0

sup

kve(E)k

2

�

�Æ

kve(Z

1

)k

2

Æ

= � sup

kve(E)k

2

�1











C

1

 

ve(E

H

12

)

ve(E

21

)

!











2

= � sup











 

ve(E

H

12

)

ve(E

21

)

!











2

�1











C

1

 

ve(E

H

12

)

ve(E

21

)

!











2

= �kC

1

k

2

:

Similarly, we have (Y

1

) = �kC

2

k

2

.
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Let A

j

= U

j

�

j

V

H

j

be the singular value deomposition of A

j

for j = 1; 2, and

let

C

10

=

�

(�

1


 I

n�l

)K

�1

0

; (I

l


 �

T

2

)L

�1

0

�

;

C

20

=

�

(I

l


 �

2

)K

�1

0

; (�

1


 I

m�l

)L

�1

0

�

;

where

�

1

= diag(�

1

; : : : ; �

l

); �

2

= diag(�

l+1

; �

l+2

; : : :);

K

0

= �

2

1


 I

n�l

� I

l


 �

T

2

�

2

; L

0

= �

2

1


 I

m�l

� I

l


 �

2

�

T

2

:

Then we have

(X

1

) = �kC

1

k

2

= �kC

10

k

2

= � max

1 � j � l

l + 1 � k � n

q

�

2

j

+ �

2

k

j�

2

j

� �

2

k

j

; (3:2:3)

and

(Y

1

) = �kC

2

k

2

= �kC

20

k

2

= � max

1 � j � l

l + 1 � k � m

q

�

2

j

+ �

2

k

j�

2

j

� �

2

k

j

; (3:2:4)

where we de�ne

�

n+1

= � � � = �

m

= 0 if m > n:

From (3.2.3) and (3.2.4) we see that

(Y

1

) =

8

>

>

<

>

>

:

(X

1

) if m = n;

max

�

(X

1

); � max

1�j�l

1

�

j

�

if m > n:

Consequently, the expressions (3.2.3) and (3.2.4) reveal an important fat: If m > n

then, in general, the singular subspaes X

1

and Y

1

have di�erent ondition numbers

(X

1

) and (Y

1

), respetively.

Taking � = 1 yields the absolute ondition numbers



abs

(X

1

) = max

1 � j � l

l + 1 � k � n

q

�

2

j

+ �

2

k

j�

2

j

� �

2

k

j

(3:2:5)

and



abs

(Y

1

) = max

1 � j � l

l + 1 � k � m

q

�

2

j

+ �

2

k

j�

2

j

� �

2

k

j

; (3:2:6)
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and taking � = kAk

F

yields the relative ondition numbers



rel

(X

1

) = kAk

F



abs

(X

1

); 

rel

(Y

1

) = kAk

F



abs

(Y

1

): (3:2:7)

Remark 3.2.1. Let T be the operator de�ned by (3.1.27), and de�ne

kTk = max

Z 2 C

(n�l)�l

;W 2 C

(m�l)�l











 

Z

W

!











F

= 1











T

 

Z

W

!











F

:

Then

kT

�1

k = kCk

2

= max

1 � j � l

l + 1 � k � m

1

j�

j

� �

k

j

� (X

1

;Y

1

); (3:2:8)

where C, the matrix representation of T

�1

, is expressed by (3.1.44){(3.1.46), and

�

n+1

= � � � = �

m

= 0 if m > n. Usually, by Stewart [96, Theorems 6.3 and 6.4℄, the

quantity (X

1

;Y

1

) de�ned by (3.2.8) is regarded as the (absolute) ondition number

of the singular subspaes X

1

;Y

1

of A. However, observe that the expressions (3.2.5),

(3.2.6) and (3.2.8) imply that

1

p

2

(X

1

;Y

1

) � 

abs

(X

1

) = 

abs

(Y

1

) � (X

1

;Y

1

) if m = n; (3:2:9)

and in the ase of m > n,



abs

(X

1

) � 

abs

(Y

1

) � (X

1

;Y

1

);



abs

(X

1

)� 

abs

(Y

1

) � (X

1

;Y

1

) if 

abs

(X

1

)� max

1�j�l

1

�

j

;

1

p

2

(X

1

;Y

1

) � 

abs

(Y

1

) � (X

1

;Y

1

):

(3:2:10)

Hene, the ondition number (X

1

;Y

1

) may be a severe overestimate of the sensitiv-

ity of the right singular subspae X

1

in some ases.

Example 3.2.2. Consider the matrix

A =

0

�

�

1

0

0 �

2

0 0

1

A

with �

1

= 10

�8

; �

2

= 1:

Let

x

1

= (1; 0)

T

; y

1

= (1; 0; 0)

T

:
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Then the pair of the subspaes X

1

= R(x

1

) and Y

1

= R(y

1

) is the singular subspae pair of

A assoiated with �

1

. By (3.2.5) and (3.2.6) we have



abs

(X

1

) =

p

�

2

1

+ �

2

2

j�

2

1

� �

2

2

j

� 1; 

abs

(Y

1

) = max

(

p

�

2

1

+ �

2

2

j�

2

1

� �

2

2

j

;

1

�

1

)

= 10

8

;

(X

1

;Y

1

) = max

�

1

j�

1

� �

2

j

;

1

�

1

�

= 10

8

;

and



abs

(X

1

)� 

abs

(Y

1

) = (X

1

;Y

1

):

Obviously, (X

1

;Y

1

) is a severe overestimate of the sensitivity of the right singular subspae

X

1

.

Notes and Referenes

NR 3.2{1. The ondition numbers 

abs

(X

1

) and 

abs

(Y

1

) are given by Sun

[119℄. From the analysis of Remark 3.2.1 we see that (X

1

;Y

1

) and 

abs

(Y

1

) are

qualitatively the same; but 

abs

(X

1

) � (X

1

;Y

1

), and in some ases 

abs

(X

1

) �

(X

1

;Y

1

). The drawbak of the ondition number (X

1

;Y

1

) is that it is governed by

the ill-onditioning of the most sensitive subspae of a singular subspae pair.

3.3 Perturbation Bounds for Singular Subspaes

A perturbation bound for a pair of simple singular subspaes has been obtained by

Stewart [96, Theorem 6.4℄. We now apply Theorem 3.3.5 at the end of this subse-

tion to derive a new result. The di�erene between the new result and Stewart's

result is that the new result gives an individual perturbation bound for eah sub-

spae in a pair of singular subspaes, separately.

Theorem 3.3.1. Let A;X; Y;X

1

;Y

1

be as in Theorem 3.1.6. For E 2 C

m�n

, let

Y

H

EX =

 

E

11

E

12

E

21

E

22

!

; E

11

2 C

l�l

: (3:3:1)

Moreover, let 

abs

(X

1

); 

abs

(Y

1

) be the ondition numbers expressed by (3.2.5) and

(3.2.6), and let



�

=

q

[

abs

(X

1

)℄

2

+ [

abs

(Y

1

)℄

2

; � = kE

11

k

2

+ kE

22

k

2

; (3:3:2)

and

 =

q

kE

12

k

2

F

+ kE

21

k

2

F

; � = maxfkE

12

k

2

; kE

21

k

2

g: (3:3:3)

If



�

(2

p

� + �) < 1; (3:3:4)
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then there is a unique pair of l-dimensional singular subspaes

~

X

1

= R(

~

X

1

);

~

Y

1

=

R(

~

Y

1

) of A+E suh that

~

X

1

2 U

n�l

,

~

Y

1

2 U

m�l

, and

�

F

(X

1

;

~

X

1

) � k tan�(X

1

;

~

X

1

)k

F

�

2

abs

(X

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

�

F

(Y

1

;

~

Y

1

) � k tan�(Y

1

;

~

Y

1

)k

F

�

2

abs

(Y

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

(3:3:5)

where �(�; �) is de�ned by (1.3.1).

Proof. Let T be the linear operator de�ned by (3.1.27). It is easy to verify that

 

Z

W

!

is a solution of the equation

T

 

Z

W

!

=

 

E

H

12

E

21

!

+

 

�ZE

H

11

+E

H

22

W

E

22

Z �WE

11

!

�

 

ZE

H

21

W

WE

12

Z

!

(3:3:6)

if and only if Z and W satisfy

 

I 0

�W I

! 

A

1

+E

11

E

12

E

21

A

2

+E

22

! 

I 0

Z I

!

=

 

� �

0 �

!

;

 

I 0

�Z I

! 

A

1

+E

11

E

12

E

21

A

2

+E

22

!

H

 

I 0

W I

!

=

 

� �

0 �

!

:

(3:3:7)

The relations of (3.3.7) imply that the pair of the subspaes

~

X

1

= R

 

X

 

I

Z

!!

;

~

Y

1

= R

 

Y

 

I

W

!!

is a pair of l-dimensional singular subspaes of A + E. Consequently, by (1.3.12)

and (1.3.16), the problem of proving (3.3.5) is redued to the problem of �nding a

solution

 

Z

�

W

�

!

of (3.3.6) in a ertain neighborhood of the origin.

Let C

1

; C

2

be the matries de�ned by (3.1.45) and (3.1.46), and let

z = ve(Z); w = ve(W ); e

12

= ve(E

H

12

); e

21

= ve(E

21

);

x(z; w) = ve(�ZE

H

11

+E

H

22

W ); y(z; w) = ve(E

22

Z �WE

11

) (3:3:8)

and

u(z; w) = ve(ZE

H

21

W ); v(z; w) = ve(WE

12

Z): (3:3:9)
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Then the equation (3.3.6) an be written in an equivalent form

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

z = C

1

" 

e

12

e

21

!

+

 

x(z; w)

y(z; w)

!

�

 

u(z; w)

v(z; w)

!#

;

w = C

2

" 

e

12

e

21

!

+

 

x(z; w)

y(z; w)

!

�

 

u(z; w)

v(z; w)

!#

:

(3:3:10)

De�ne the funtions f and h by

f =

 

x

y

!

; h =

 

u

v

!

:

Observe that f and h satisfy the onditions (3.3.21) and (3.3.22) (see below Theorem

3.3.4), where � and � are the salars de�ned by (3.3.2) and (3.3.3), respetively.

Hene, by Theorem 3.3.5 at the end of this subsetion, if



�

� < 1 and

4

2

�

�

(1� 

�

�)

2

< 1;

or equivalently, if 

�

; �; ; � satisfy (3.3.4), then the system of equations (3.3.10) has a

unique solution

 

z

�

w

�

!

(or equivalently, the equation (3.3.6) has a unique solution

 

Z

�

W

�

!

) satisfying

kZ

�

k

F

= kz

�

k

2

�

2

abs

(X

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

kW

�

k

F

= kw

�

k

2

�

2

abs

(Y

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

:

Combining it with (1.3.12) and (1.3.16) shows the inequalities of (3.3.5). 2

Remark 3.3.2. The estimates (3.3.5) imply that if 

�

(2

p

� + �) is suÆiently

small, or more intuitively, if kEk is suÆiently small, then

k tan�(X

1

;

~

X

1

)k

F

<

�



abs

(X

1

); k tan�(Y

1

;

~

Y

1

)k

F

<

�



abs

(Y

1

): (3:3:11)

Note that by Stewart [114, Theorem 6.4℄, we have











 

tan�(X

1

;

~

X

1

)

tan�(Y

1

;

~

Y

1

)

!











F

<

�

(X

1

;Y

1

) (3:3:12)

when kEk is suÆiently small, where (X

1

;Y

1

) is de�ned by (3.2.8). The relations

(3.2.9) and (3.2.10) show that the bounds of (3.3.11) and (3.3.12) are, in general,
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qualitatively the same, but in some ases the result (3.3.11) is better (even muh

better) than (3.3.12) if one needs to bound perturbations of eah subspae of the

pair fX

1

;Y

1

g, separately. The drawbak of the bound (3.3.12) is that it is governed

by the ill-onditioning of the most sensitive subspae of the singular subspae pair.

If the matries E

jk

of (3.3.1) are known, then we an apply Theorem 3.3.4 (whih

is given below) to derive the following result on perturbation bounds for singular

subspaes whih will be used in x3.4.2.

Theorem 3.3.3. Let A;X; Y;A

1

; A

2

;X

1

;Y

1

; E and E

jk

(j; k = 1; 2) be as in The-

orem 3.3.1, and C

1

; C

2

be the matries de�ned by (3.1.45) and (3.1.46). Moreover,

let

b

1

=











C

1

 

ve(E

H

12

)

ve(E

21

)

!











2

; 

1

= kC

1

k

2

;

b

2

=











C

2

 

ve(E

H

12

)

ve(E

21

)

!











2

; 

2

= kC

2

k

2

;

b = b

1

+ b

2

;  = 

1

+ 

2

;

(3:3:13)

and let

� = maxfkE

12

k

2

; kE

21

k

2

g; � = kE

11

k

2

+ kE

22

k

2

: (3:3:14)

If

�+ 2

p

b� < 1; (3:3:15)

then there is a unique pair of singular subspaes

~

X

1

= R(

~

X

1

),

~

Y

1

= R(

~

Y

1

) of A+E

suh that

~

X

1

2 U

n�l

,

~

Y

1

2 U

m�l

, and

�

F

(X

1

;

~

X

1

) � k tan�(X

1

;

~

X

1

)k

F

� b

1

+ 

1

(�� + ��

2

);

�

F

(Y

1

;

~

Y

1

) � k tan�(Y

1

;

~

Y

1

)k

F

� b

2

+ 

2

(�� + ��

2

);

(3:3:16)

where

� =

2b

1� �+

p

(1� �)

2

� 4b�

: (3:3:17)

Proof. From the proof of Theorem 3.3.1 we see that it only needs to show the

following fat: Under the assumptions (3.3.15) the system (3.3.10) has a unique

solution

 

z

�

w

�

!

satisfying

kz

�

k

2

� b

1

+ 

1

(�� + ��

2

);

kw

�

k

2

� b

2

+ 

2

(�� + ��

2

);

(3:3:18)

where � is the salar de�ned by (3.3.17).
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Applying Theorem 3.3.4 (see below) to the system (3.3.10), and using the fat

that the assumption (3.3.15) is equivalent to

� < 1 and

4b�

(1� �)

2

< 1;

we get the estimates (3.3.18) immediately. 2

We now prove two general results on solutions of some nonlinear equations. The

�rst one, Theorem 3.3.4, is an extension of Theorem 2.3.4 for �nite-dimensional

spaes, whih an be used to establish the existene of

 

z

�

w

�

!

in Theorem 3.3.3.

Theorem 3.3.4. Let x = (x

T

1

; x

T

2

)

T

2 C

m

with x

j

2 C

m

j

for j = 1; 2, g 2 C

n

,

and

C =

 

C

1

C

2

!

with C

j

2 C

m

j

�n

; j = 1; 2: (3:3:19)

Let

b = b

1

+ b

2

with b

j

= kC

j

gk

2

;

 = 

1

+ 

2

with 

j

= kC

j

k

2

;

(3:3:20)

and let f; h : C

m

! C

n

be two ontinuous mappings satisfying

kf(x)k

2

� �kxk

2

; kf(~x)� f(x)k

2

� �k~x� xk

2

(3:3:21)

and

kh(x)k

2

� �kxk

2

2

; kh(~x)� h(x)k

2

� 2�maxfk~xk

2

; kxk

2

gk~x� xk

2

(3:3:22)

for some �; � � 0. If

� < 1 and

4b�

(1� �)

2

< 1; (3:3:23)

then there is a unique solution x

�

of the nonlinear equation

x = C[g + f(x) + h(x)℄ (3:3:24)

that satis�es

kx

�

j

k

2

� b

j

+ 

j

(�� + ��

2

) � �

�

j

; j = 1; 2; (3:3:25)

where

� =

2b

1� �+

p

(1� �)

2

� 4b�

: (3:3:26)

Proof. De�ne

S

�

�

1

;�

�

2

=

(

x =

 

x

1

x

2

!

: x

j

2 C

m

j

; kx

j

k

2

� �

�

j

; j = 1; 2

)

: (3:3:27)
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We �rst prove that if there is a solution of (3.3.24) in S

�

�

1

;�

�

2

, then it is unique.

Assume that the equation (3.3.24) has di�erent solutions x

�

; x̂ 2 S

�

�

1

;�

�

2

. Then

by (3.3.20){(3.3.24) we have

kx̂� x

�

k

2

�  (�kx̂� x

�

k

2

+ 2�maxfkx̂k

2

; kx

�

k

2

gkx̂� x

�

k

2

)

� 

�

�+ 2�[b + (�� + ��

2

)℄

�

kx̂� x

�

k

2

< 

 

�+ 2�

"

b+ � �

2b

1� �

+ � �

�

2b

1� �

�

2

#!

kx̂� x

�

k

2

=

 

�+ 2b� +

4b

2

��

1� �

+

8b

2



2

�

2

(1� �)

2

!

kx̂� x

�

k

2

:

(3:3:28)

Observe that the assumptions (3.3.23) imply

2b� <

1

2

(1� �)

2

;

4b

2

��

1� �

< �(1� �);

8b

2



2

�

2

(1� �)

2

<

1

2

(1� �)

2

:

Hene, from (3.3.28)

kx̂� x

�

k

2

< kx̂� x

�

k

2

:

This ontradition shows that there is at most one solution of the equation (3.3.24)

in S

�

�

1

;�

�

2

.

We now prove the existene of a solution of (3.3.24) in S

�

�

1

;�

�

2

.

Consider the ontinuous mappingM : C

m

1

� C

m

2

! C

m

1

� C

m

2

de�ned by

y = C[g + f(x) + h(x)℄: (3:3:29)

Sine any �xed point of the mapping M is a solution of the equation (3.3.24), the

problem of �nding a solution of (3.3.24) satisfying (3.3.25) redues to the problem

of showing that there is a �xed point of the mappingM in S

�

�

1

;�

�

2

.

Let �

�

1

and �

�

2

be the salars de�ned by (3.3.25), in whih � is de�ned by (3.3.26).

It an be veri�ed that � is a solution of the equation

��

2

� (1� �)� + b = 0:

Combining this fat with (3.3.20) and (3.3.25) shows that �

�

1

and �

�

2

satisfy the

relations �

1

+ �

2

= � and

�

j

= b

j

+ 

j

h

�(�

1

+ �

2

) + �(�

1

+ �

2

)

2

i

; j = 1; 2: (3:3:30)
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Let x 2 S

�

�

1

;�

�

2

. Then by (3.3.29), y satis�es

ky

j

k

2

� b

j

+ 

j

�

�kxk

2

+ �kxk

2

2

�

(by (3:3:20) � (3:3:22))

� b

j

+ 

j

�

�

q

�

�

1

2

+ �

�

2

2

+ �

�

�

�

1

2

+ �

�

2

2

�

�

(by (3:3:25))

� b

j

+ 

j

h

�(�

�

1

+ �

�

2

) + �(�

�

1

+ �

�

2

)

2

i

= �

�

j

; j = 1; 2; (by (3:3:30))

whih means that for the mappingM de�ned by (3.3.29) we have

x 2 S

�

�

1

;�

�

2

=) y 2 S

�

�

1

;�

�

2

: (3:3:31)

Observe that S

�

�

1

;�

�

2

is a bounded losed onvex set of C

m

1

� C

m

2

, and (3.3.31)

shows that the ontinuous mapping M maps S

�

�

1

;�

�

2

into S

�

�

1

;�

�

2

. By the Shauder

�xed-point theorem (Theorem 1.7.2), the mapping M has a �xed point in S

�

�

1

;�

�

2

,

and thus the equation (3.3.24) has a solution in S

�

�

1

;�

�

2

. 2.

Theorem 3.3.4 shows the existene and uniqueness of a solution x

�

of the equation

(3.3.24) in S

�

�

1

;�

�

2

under the assumption that the vetor g itself is known. However, in

some appliations, the vetor g itself is unknown but some upper bound for kgk

2

is

known. In suh a ase, we have the following result on the existene of some solution

to the equation (3.3.24), whih an be used to establish the existene of

 

z

�

w

�

!

in

Theorem 3.3.1.

Theorem 3.3.5. Let x; g; C; 

1

; 

2

; f(x); h(x); �; � be as in Theorem 3.3.4, and

let

 = kgk

2

; 

�

=

q



2

1

+ 

2

2

: (3:3:32)

If



�

� < 1 and

4

2

�

�

(1� 

�

�)

2

< 1; (3:3:33)

then there is a unique solution of the nonlinear equation (3.3.24) that satis�es

kx

j

k

2

�

2

j



1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

� �

j�

; j = 1; 2: (3:3:34)

Proof. De�ne

S

�

1�

;�

2�

=

(

x =

 

x

1

x

2

!

: x

j

2 C

m

j

; kx

j

k

2

� �

j�

j = 1; 2

)

: (3:3:35)

We �rst prove that if there is a solution of (3.3.24) in S

�

1�

;�

2�

, then it is unique.
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Assume that the equation (3.3.24) has di�erent solutions x

�

; x̂ 2 S

�

1�

;�

2�

. Then

by (3.3.20){(3.3.22), (3.3.24), (3.3.32){(3.3.34) we have

kx̂� x

�

k

2

� 

�

(�kx̂� x

�

k

2

+ 2�maxfkx̂k

2

; kx

�

k

2

gkx̂� x

�

k

2

)

� 

�

 

�+

4

�

�

1� 

�

�+

p

(1 � 

�

�)

2

� 4

2

�

�

!

kx̂� x

�

k

2

< 

�

�

�+

4

�

�

1� 

�

�

�

kx̂� x

�

k

2

=

 



�

�+

4

2

�

�

(1� 

�

�)

2

(1� 

�

�)

!

kx̂� x

�

k

2

< kx̂� x

�

k

2

:

This ontradition shows that there is at most one solution of the equation (3.3.24)

in S

�

1�

;�

2�

.

We now prove the existene of a solution of (3.3.24) in S

�

1�

;�

2�

.

Let M be the mapping de�ned by (3.3.29). Then the problem of �nding a solu-

tion of (3.3.24) satisfying (3.3.34) redues to the problem of showing that there is a

�xed point of the mappingM in S

�

1�

;�

2�

.

It an be veri�ed that the salars �

1�

and �

2�

de�ned by (3.3.34) satisfy the

equations

�

j

= 

j

�

 + �

q

�

2

1

+ �

2

2

+ �

�

�

2

1

+ �

2

2

�

�

; j = 1; 2: (3:3:36)

From (3.3.29) we see that if x 2 S

�

1�

;�

2�

then y satis�es

ky

j

k

2

� 

j

( + �kxk

2

+ �kxk

2

2

) (by (3:3:20) � (3:3:22); (3:3:24); (3:3:32))

� 

j

�

 + �

q

�

2

1�

+ �

2

2�

+ �

�

�

2

1�

+ �

2

2�

�

�

(by (3:3:34))

= �

j�

; j = 1; 2; (by (3:3:36))

whih means that for the mappingM de�ned by (3.3.29) we have

x 2 S

�

1�

;�

2�

=) y 2 S

�

1�

;�

2�

:

By the same argument as above in the proof of Theorem 3.3.4, the mappingM has

a �xed point in S

�

1�

;�

2�

, and thus the equation (3.3.24) has a solution in S

�

1�

;�

2�

.

2.
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Notes and Referenes

NR 3.3{1. The �rst perturbation bound for singular subspae pair was obtained

by Stewart [91, Theorem 6.4℄. Theorem 3.3.1 is proved by Sun [119, Theorem 2.5.1℄.

NR 3.3{2. Theorem 3.3.5 is proved by Sun [119, Theorem 1.3.1℄.

3.4 Bakward Errors and Residual Bounds

3.4.1 Bakward Errors

In this subsetion we disuss several kinds of normwise bakward errors whih are

de�ned by using some information of approximate singular subspaes and assoiated

singular values of a matrix A.

3.4.1.1 The Bakward Error �(

~

X

1

;

~

Y

1

)

Let f

~

X

1

;

~

Y

1

g approximate an l-dimensional simple singular subspae pair of A 2

C

m�n

. By x1.9, we de�ne the bakward error �(

~

X

1

;

~

Y

1

) of A with respet to

~

X

1

;

~

Y

1

by

�(

~

X

1

;

~

Y

1

) = min

E2E

kEk; (3:4:1)

where the set E is de�ned by

E =

n

E 2 C

m�n

: (A+E)

~

X

1

�

~

Y

1

; (A+E)

H

~

Y

1

�

~

X

1

o

: (3:4:2)

The following result gives a omputable formula of �(

~

X

1

;

~

Y

1

).

Theorem 3.4.1. Let A 2 C

m�n

. Let

~

X

1

= R(

~

V

1

) and

~

Y

1

= R(

~

U

1

) with

~

V

1

2

U

n�l

and

~

U

1

2 U

m�l

, and let

R =

~

U

1

(

~

U

H

1

A

~

V

1

)�A

~

V

1

; S =

~

V

1

(

~

V

H

1

A

H

~

U

1

)�A

H

~

U

1

(3:4:3)

be the residuals of A and A

H

with respet to

~

V

1

;

~

U

1

, respetively. Then the bakward

error �(

~

X

1

;

~

Y

1

) an be expressed by

�(

~

X

1

;

~

Y

1

) =











 

0 S

H

R 0

!











: (3:4:4)

The expressions (3.4.3) and (3.4.4) imply that the bakward error �(

~

X

1

;

~

Y

1

) de-

�ned by (3.4.1) is independent of the hoie of the matries

~

V

1

and

~

U

1

whose olumn

vetors form orthonormal bases of

~

X

1

and

~

Y

1

, respetively.
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Proof of Theorem 3.4.1. From (3.4.2) it follows that a matrix E 2 E if and

only if E is a solution to the equations

(A+E)

~

V

1

=

~

U

1

A

1

; (A+E)

H

~

U

1

=

~

V

1

A

H

1

for some A

1

2 C

l�l

; or equivalently, E satis�es

E

~

V

1

=

~

U

1

A

1

�A

~

V

1

; E

H

~

U

1

=

~

V

1

A

H

1

�A

H

~

U

1

: (3:4:5)

Applying Theorem 1.5.1 to the �rst equation of (3.4.5) we see that the equation

is solvable, and any solution E of the equation an be expressed by

E = (

~

U

1

A

1

�A

~

V

1

)

~

V

H

1

+ Z(I �

~

V

1

~

V

H

1

); Z 2 C

m�n

: (3:4:6)

Choose

~

V

2

so that

~

V = (

~

V

1

;

~

V

2

) 2 U

n�n

. Then (3.4.6) an be written

E = (

~

U

1

A

1

�A

~

V

1

)

~

V

H

1

+ Z

~

V

2

~

V

H

2

; Z 2 C

m�n

: (3:4:7)

Combining it with the seond equation of (3.4.5) shows that the matrix Z of (3.4.7)

satis�es

~

U

H

1

Z

~

V

2

= �

~

U

H

1

A

~

V

2

: (3:4:8)

By Theorem 1.5.1, the equation (3.4.8) is solvable, and any solution Z an be ex-

pressed by

Z = �

~

U

1

~

U

H

1

A

~

V

2

~

V

H

2

+W �

~

U

1

~

U

H

1

W

~

V

2

~

V

H

2

; W 2 C

m�n

: (3:4:9)

Choose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

m�m

. Then from (3.4.9)

Z

~

V

2

= �

~

U

1

~

U

H

1

A

~

V

2

+

~

U

2

~

U

H

2

W

~

V

2

:

Substituting it into (3.4.7) gives

E = (

~

U

1

A

1

�A

~

V

1

)

~

V

H

1

�

~

U

1

~

U

H

1

A

~

V

2

~

V

H

2

+

~

U

2

~

U

H

2

W

~

V

2

~

V

H

2

;

and

~

U

H

E

~

V =

 

A

1

�

~

U

H

1

A

~

V

1

�

~

U

H

1

A

~

V

2

�

~

U

H

2

A

~

V

1

~

U

H

2

W

~

V

2

!

=

 

A

1

�

~

U

H

1

A

~

V

1

S

H

~

V

2

~

U

H

2

R

~

U

2

W

~

V

2

!

:

Consequently, By Theorem 1.2.1 and the de�nition (3.4.1) we have

�(

~

X

1

;

~

Y

1

) = kE

opt

k with E

opt

=

~

U

 

0 S

H

~

V

2

~

U

H

2

R 0

!

~

V

H

: (3:4:10)

Observe that the relations

~

U

H

R =

 

0

~

U

H

2

R

!

; S

H

~

V = (0; S

H

~

V

2

)
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imply

�

+

(

~

U

H

2

R) = �

+

(R); �

+

(S

H

~

V

2

) = �

+

(S

H

):

Hene, we have

�

+

 

0 S

H

~

V

2

~

U

H

2

R 0

!

= �

+

 

0 S

H

R 0

!

:

Combining it with (3.4.10) shows (3.4.4). 2

3.4.1.2 The Bakward Errors �

F

(

~

V

1

;

~

U

1

;

~

�

1

) and �

2

(

~

V

1

;

~

U

1

;

~

�

1

)

Let ~�

1

; : : : ; ~�

l

(l � n) be approximate singular values of A 2 C

m�n

, and ~x

1

; : : : ; ~x

l

and ~y

1

; : : : ; ~y

l

be assoiated right and left singular vetors, respetively. Gener-

ally speaking, the vetors are linearly independent but not neessarily orthonormal.

This subsetion is devoted to some bakward errors of A with respet to ~�

1

; : : : ; ~�

l

,

~x

1

; : : : ; ~x

l

; and ~y

1

; : : : ; ~y

l

.

Let

~

�

1

= diag(~�

1

; : : : ; ~�

l

);

~

X

1

= (~x

1

; : : : ; ~x

l

);

~

Y

1

= (~y

1

; : : : ; ~y

l

): (3:4:11)

Take orthogonal deompositions of

~

X

1

and

~

Y

1

:

~

X

1

=

~

V

1

F

1

;

~

Y

1

=

~

U

1

G

1

; (3:4:12)

where

~

V

1

2 U

n�l

;

~

U

1

2 U

m�l

, and F

1

; G

1

2 C

l�l

. Then by x1.9, we de�ne the

bakward errors �

F

(

~

V

1

;

~

U

1

;

~

�

1

) and �

2

(

~

V

1

;

~

U

1

;

~

�

1

) by

�

F

(

~

V

1

;

~

U

1

;

~

�

1

) = min

E2E

kEk

F

; �

2

(

~

V

1

;

~

U

1

;

~

�

1

) = min

E2E

kEk

2

; (3:4:13)

where the set E is de�ned by

E =

n

E 2 C

m�n

: (A+E)

~

V

1

=

~

U

1

~

�

1

; (A+E)

H

~

U

1

=

~

V

1

~

�

1

o

: (3:4:14)

Computable formulas of �

F

(

~

V

1

;

~

U

1

;

~

�

1

) and �

2

(

~

V

1

;

~

U

1

;

~

�

1

) are given by the fol-

lowing result.

Theorem 3.4.2. Let

R =

~

U

1

~

�

1

�A

~

V

1

; S =

~

V

1

~

�

1

�A

H

~

U

1

(3:4:15)

be the residuals of A and A

H

with respet to

~

V

1

;

~

U

1

;

~

�

1

, respetively, where

~

V

1

;

~

U

1

and

~

�

1

are de�ned by (3.4.12) and (3.4.11). Then the bakward errors �

F

(

~

V

1

;

~

U

1

;

~

�

1

)

and �

2

(

~

V

1

;

~

U

1

;

~

�

1

) an be expressed by

�

F

(

~

V

1

;

~

U

1

;

~

�

1

) =

q

kRk

2

F

+ kSk

2

F

� k

~

V

H

1

Sk

2

F

; (3:4:16)
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and

�

2

(

~

V

1

;

~

U

1

;

~

�

1

) = maxfkRk

2

; kSk

2

g: (3:4:17)

Proof. From (3.4.14) and (3.4.15) it follows that a matrix E 2 E if and only if

E is a solution of the equations

E

~

V

1

= R; E

H

~

U

1

= S: (3:4:18)

Choose

~

V

2

and

~

U

2

so that

~

V = (

~

V

1

;

~

V

2

) 2 U

n�n

and

~

U = (

~

U

1

;

~

U

2

) 2 U

m�m

.

Then by the same argument as in the proof of Theorem 3.4.1 we an show that any

solution E of the equations (3.4.18) an be expressed by

E =

~

U

 

~

U

H

1

R S

H

~

V

2

~

U

H

2

R

~

U

H

2

W

~

V

2

!

~

V

H

; W 2 C

m�n

: (3:4:19)

Thus, applying Theorem 1.2.1 we obtain

�

F

(

~

V

1

;

~

U

1

;

~

�

1

) = kE

opt

k

F

with E

opt

=

~

U

 

~

U

H

1

R S

H

~

V

2

~

U

H

2

R 0

!

~

V

H

; (3:4:20)

whih gives the expression (3.4.16).

Moreover, by (3.4.19) and Theorem 1.2.4 we have

�

2

(

~

V

1

;

~

U

1

;

~

�

1

) = maxfkRk

2

; k(

~

U

H

1

R; S

H

~

V

2

)k

2

g

= maxfkRk

2

; kS

H

(

~

V

1

;

~

V

2

)k

2

g;

whih gives (3.4.17). 2

Remark 3.4.3. Let ~�

1

be an approximate singular value of A 2 C

m�n

, and

~v

1

2 C

n

and ~u

1

2 C

m

be assoiated unit right and left singular vetors. Then by

Theorem 3.4.2, the bakward errors �

F

(~v

1

; ~u

1

; ~�

1

) and �

2

(~v

1

; ~u

1

; ~�

1

) of A with respet

to ~v

1

; ~u

1

; ~�

1

an be expressed by

�

F

(~v

1

; ~u

1

; ~�

1

) =

q

krk

2

2

+ ksk

2

2

� j~v

H

1

sj

2

and

�

2

(~v

1

; ~u

1

; ~�

1

) = maxfkrk

2

; ksk

2

g;

where r and s are the residuals de�ned by

r = ~�

1

~u

1

�A~v

1

; s = ~�

1

~v

1

�A

H

~u

1

:

Moreover, by (3.4.20), the matrix

E

opt

=

~

U

 

~u

H

1

r s

H

~

V

2

~

U

H

2

r 0

!

~

V

H

= r~v

H

1

+ ~u

1

s

H

� s

H

~v

1

~u

1

~v

H

1
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is the smallest perturbation of A suh that ~�

1

is a singular value of A + E

opt

, and

~v

1

; ~u

1

are assoiated unit right and unit left singular vetors. Note that the formula

of �

2

(~v

1

; ~u

1

; ~�

1

) is generalized to the generalized singular value deomposition by

Sun [122℄.

From (3.4.15){(3.4.17) we see that �

F

(

~

V

1

;

~

U

1

;

~

�

1

) and �

2

(

~

V

1

;

~

U

1

;

~

�

1

) are depen-

dent on the orthogonal deompositions (3.4.12) of

~

X

1

and

~

Y

1

. In view of a best

approximation property possessed by the unitary polar fator, we take the polar

deompositions of

~

X

1

and

~

Y

1

:

~

X

1

= P

1

H

1

;

~

Y

1

= �

1

K

1

; (3:4:21)

where P

1

2 U

n�l

;�

1

2 U

m�l

, and H

1

;K

1

2 H

l�l

are positive de�nite. By (3.4.16)

and (3.4.15), we have

�

F

(P

1

;�

1

;

~

�

1

) �

q

k�

1

~

�

1

�AP

1

k

2

F

+ kP

1

~

�

1

�A

H

�

1

k

2

F

: (3:4:22)

The following result presents an upper bound for �

F

(P

1

;�

1

;

~

�

1

) by using

~

�

1

and

the residuals

~

Y

1

~

�

1

�A

~

X

1

and

~

X

1

~

�

1

�A

H

~

Y

1

.

Theorem 3.4.4. Let

~

�

1

;

~

X

1

;

~

Y

1

be the matries of (3.4.11). De�ne Æ; �

1

; �

2

by

Æ = maxfj�

max

(

~

X

1

)� �

min

(

~

Y

1

)j; j�

max

(

~

Y

1

)� �

min

(

~

X

1

)jg; (3:4:23)

and

�

1

=

k

~

Y

1

~

�

1

�A

~

X

1

k

F

+ ÆkAP

~

X

1

k

F

�

min

(

~

Y

1

)

;

�

2

=

k

~

X

1

~

�

1

�A

H

~

Y

1

k

F

+ ÆkA

H

P

~

Y

1

k

F

�

min

(

~

X

1

)

:

(3:4:24)

Then for the bakward error �

F

(P

1

;�

1

;

~

�

1

) de�ned by (3.4.13) and (3.4.14) with

~

V

1

= P

1

and

~

U

1

= �

1

, we have the estimate

�

F

(P

1

;�

1

;

~

�

1

) �

q

�

2

1

+ �

2

2

: (3:4:25)

The estimate (3.4.25) shows that if the residuals

~

Y

1

~

�

1

�A

~

X

1

and

~

X

1

~

�

1

�A

H

~

Y

1

are small, and if ~x

1

; : : : ; ~x

l

and ~y

1

; : : : ; ~y

l

are lose to orthonormal, then there is a

matrix A + E

opt

with small E

opt

of (3.4.20) (in whih

~

V

1

= P

1

and

~

U

1

= �

1

) suh

that ~�

1

; : : : ; ~�

l

are exat singular values of A + E

opt

, and the olumn vetors of P

1

(the unitary polar fator of

~

X

1

) and �

1

(the unitary polar fator of

~

Y

1

) are assoi-

ated unit right and left singular vetors.

Proof of Theorem 3.4.4. Take the singular value deompositions of

~

X

1

and

~

Y

1

:

~

X

1

= U

 

M

1

0

!

V

H

;

~

Y

1

= Z

 

N

1

0

!

W

H

; (3:4:26)
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where U = (U

1

; U

2

) 2 U

n�n

with U

1

2 U

n�l

, Z = (Z

1

; Z

2

) 2 U

m�m

with Z

1

2 U

m�l

,

V;W 2 U

l�l

, and

M

1

= diag(�

j

); �

1

� � � � � �

l

> 0; N

1

= diag(�

j

); �

1

� � � � � �

l

> 0:

Then by the uniqueness of the polar deomposition, we have

P

1

= U

1

V

H

; �

1

= Z

1

W

H

: (3:4:27)

By (3.4.26), we have

kA

~

X

1

�

~

Y

1

~

�

1

k

F

=











Z

H

AU

 

M

1

0

!

�

 

N

1

0

!

W

H

~

�

1

V











F

: (3:4:28)

Let

B = Z

H

AU = (B

1

; B

2

); B

1

=

 

B

11

B

21

!

; B

11

2 C

l�l

; C =W

H

~

�

1

V: (3:4:29)

Then from (3.4.28)

kA

~

X

1

�

~

Y

1

~

�

1

k

F

=











B

1

M

1

�

 

N

1

C

0

!











F

=











 

B

1

M

1

�

 

N

1

0

0 �

l

I

!

B

1

!

+

 

N

1

(B

11

� C)

�

l

B

21

!











F

�











 

N

1

(B

11

� C)

�

l

B

21

!











F

�











B

1

M

1

�

 

N

1

0

0 �

l

I

!

B

1











F

� �

l











B

1

�

 

C

0

!











F

�max

j;k

j�

j

� �

k

jkB

1

k

F

:

(3:4:30)

Observe that











B

1

�

 

C

0

!











F

=











B

 

I

(l)

0

!

�

 

I

(l)

0

!

C











F

=











Z

H

AU

 

I

(l)

0

!

�

 

I

(l)

0

!

W

H

~

�

1

V











F

(by (3:4:29))

= kAP

1

��

1

~

�

1

k

F

; (by (3:4:27))

max

j;k

j�

j

� �

k

j = Æ; (by (3:4:23))
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and

kB

1

k

F

= kZ

H

AU

1

k

F

= kAU

1

V

H

k

F

= kAP

1

k

F

= kAP

1

P

H

1

k

F

= kAP

~

X

1

k

F

:

Hene, (3.4.30) implies

k�

1

~

�

1

�AP

1

k

F

� �

1

: (3:4:31)

Similarly, we have

kP

1

~

�

1

�A

H

�

1

k

F

� �

2

: (3:4:32)

The salars �

1

and �

2

are de�ned by (3.4.24).

Combining (3.4.31) and (3.4.32) with (3.4.22) yields (3.4.25). 2

3.4.2 Residual Bounds

Let an approximate simple singular subspae pair f

~

X

1

;

~

Y

1

g of A be given, where

~

X

1

= R(

~

V

1

) and

~

Y

1

= R(

~

U

1

) with

~

V

1

2 U

n�l

and

~

U

1

2 U

m�l

. Then by using Theo-

rem 3.4.1 and appropriate forward perturbation results, suh as the Mirsky theorem

on perturbations of singular values [81℄ (see below NR 3.4{3) and Theorem 3.3.3

on perturbation bounds for singular subspaes, we an determine how the singular

values ~�

1

; : : : ; ~�

l

of

~

U

H

1

A

~

V

1

relate to those of A, and determine the auray of the

approximate singular subspaes

~

X

1

and

~

Y

1

.

By the proof of Theorem 3.4.1, the optimal bakward perturbation E

opt

of

(3.4.10) satis�es

(A+E

opt

)

~

V

1

=

~

U

1

(

~

U

H

1

A

~

V

1

); (A+E

opt

)

H

~

U

1

=

~

V

1

(

~

U

H

1

A

~

V

1

)

H

:

These relations imply that the singular values of

~

U

H

1

A

~

V

1

, as l approximate singular

values of A, are l singular values of A+E

opt

. Combining this fat with the Mirsky

theorem (see below NR 3.4{3) shows the following result whih gives a residual

bound for the l approximate singular values ~�

1

; : : : ; ~�

l

of A.

Theorem 3.4.5. Let A;

~

V

1

;

~

U

1

; R; S be as in Theorem 3.4.1, and let f

~

X

1

;

~

Y

1

g

with

~

X

1

= R(

~

V

1

) and

~

Y

1

= R(

~

U

1

) be an approximate singular subspae pair of A.

If �

1

� � � � � �

n

are the singular values of A, and ~�

1

� � � � � ~�

l

are the singular

values of

~

U

H

1

A

~

V

1

, then there are integers j

1

< j

2

< � � � < j

l

suh that

kdiag (~�

1

� �

j

1

; : : : ; ~�

l

� �

j

l

)k �











 

0 S

H

R 0

!











: (3:4:33)

From (3.4.3) we see that the optimal bakward perturbation E

opt

of (3.4.10)

satis�es

~

U

H

(A+E

opt

)

~

V =

 

~

U

H

1

A

~

V

1

0

0

~

U

H

2

A

~

V

2

!

�

 

~

A

1

0

0

~

A

2

!

; (3:4:34)
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and

~

U

H

E

opt

~

V =

 

0 S

H

~

V

2

~

U

H

2

R 0

!

: (3:4:35)

The relation (3.4.34) implies that f

~

X

1

;

~

Y

1

g is a singular subspae pair of A + E

opt

.

Moreover, if

~

A

1

and the matrix

b

~

A

2

de�ned by

b

~

A

2

=

8

>

<

>

:

~

A

2

if m = n

(

~

A

2

; 0) 2 C

(m�l)�(m�l)

if m > n

satisfy

�(

~

A

1

)

\

�(

b

~

A

2

) = ;; (3:4:36)

then the singular subspae pair f

~

X

1

;

~

Y

1

g of A + E

opt

is a simple singular subspae

pair.

Applying Theorem 3.3.3 to the matries A+E

opt

and A of (3.4.34) and (3.4.35)

shows the following result whih gives residual bounds for the approximate singular

subspaes

~

X

1

and

~

Y

1

.

Theorem 3.4.6. Let f

~

X

1

;

~

Y

1

g be an l-dimensional approximate singular subspae

pair of A 2 C

m�n

, where

~

X

1

= R(

~

V

1

),

~

Y

1

= R(

~

U

1

),

~

V

1

2 U

n�l

and

~

U

1

2 U

m�l

.

De�ne the matries

~

A

1

and

~

A

2

by (3.4.34), and assume (3.4.36) is satis�ed. De�ne

the residuals R and S by

R =

~

U

1

~

A

1

�A

~

V

1

; S =

~

V

1

~

A

H

1

�A

H

~

U

1

;

and de�ne the matries

~

C

1

,

~

C

2

by

~

C

1

=

�

(

~

A

T

1


 I

n�l

)

~

K

�1

; (I

l




~

A

H

2

)

~

L

�1

�

;

~

C

2

=

�

(I

l




~

A

2

)

~

K

�1

; (

~

A

1


 I

m�l

)

~

L

�1

�

;

(3:4:37)

where

~

K =

~

A

1

~

A

T

1


 I

n�l

� I

l




~

A

H

2

~

A

2

;

~

L =

~

A

T

1

~

A

1


 I

m�l

� I

l




~

A

2

~

A

H

2

:

Moreover, let

~

b

1

=











~

C

1

 

ve(

~

V

H

2

S)

ve(

~

U

H

2

R)

!











2

; ~

1

= k

~

C

1

k

2

;

~

b

2

=











~

C

2

 

ve(

~

V

H

2

S)

ve(

~

U

H

2

R)

!











2

; ~

2

= k

~

C

2

k

2

;

~

b =

~

b

1

+

~

b

2

; ~ = ~

1

+ ~

2

;

(3:4:38)
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and de�ne ~� by

~� = maxfkRk

2

; kSk

2

g: (3:4:39)

If

4

~

b~~� < 1;

then there is a unique pair of singular subspaes X

1

= R(V

1

), Y

1

= R(U

1

) of A suh

that V

1

2 U

n�l

, U

1

2 U

m�l

, and

�

F

(X

1

;

~

X

1

) � k tan�(V

1

;

~

V

1

)k

F

�

~

b

1

+ ~

1

~�

~

�

2

� �

X

1

;

�

F

(Y

1

;

~

Y

1

) � k tan�(U

1

;

~

U

1

)k

F

�

~

b

2

+ ~

2

~�

~

�

2

� �

Y

1

;

(3:4:40)

where

~

� �

2

~

b

1 +

q

1� 4

~

b~~�

: (3:4:41)

It is worth noting that by using Theorem 3.4.6 and Theorem 3.4.9 of the next

subsetion (x3.4.3), we obtain the following result on residual bounds for singular

values whih may be sharper than the estimate (3.4.33).

Theorem 3.4.7. Let A;X

1

; V

1

;Y

1

; U

1

,

~

X

1

;

~

V

1

,

~

Y

1

;

~

U

1

, R;S, �

X

1

and �

Y

1

be as

in Theorem 3.4.6. If the singular values of A are �

1

� � � � � �

n

, the singular values

of

~

U

H

1

A

~

V

1

are ~�

1

� � � � � ~�

l

, and if the salars �

X

1

and �

Y

1

satisfy

�

X

1

< 1 and �

Y

1

< 1;

then there are integers j

1

< j

2

< � � � < j

l

suh that

j~�

i

� �

j

i

j �

max f�

X

1

kSk

2

; �

Y

1

kRk

2

g

min

nq

1� �

2

X

1

;

q

1� �

2

Y

1

o

; i = 1; : : : ; l: (3:4:42)

Proof. By Theorem 3.4.9 of the next subsetion (x3.4.3) there are integers

j

1

< j

2

< � � � < j

l

suh that

j~�

i

� �

j

i

j �

max

n

�

F

(X

1

;

~

X

1

)kSk

2

; �

F

(Y

1

;

~

Y

1

)kRk

2

o

min

�

q

1� �

2

F

(X

1

;

~

X

1

);

q

1� �

2

F

(Y

1

;

~

Y

1

)

�

; i = 1; : : : ; l; (3:4:43)

where �

F

(�; �) is the generalized hordal metri de�ned by (1.3.3). Substituting

(3.4.40) into (3.4.43) shows (3.4.42). 2

Example 3.4.8. Consider the matrix

A =

0

�

5=

p

6 10

3

=

p

3

�10=

p

6 10

3

=

p

3

5=

p

6 10

3

=

p

3

1

A

:
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The vetors

v

1

= (1; 0)

T

; u

1

=

�

1

p

6

; �

2

p

6

;

1

p

6

�

T

are unit right and left singular vetors of A belonging to the singular value �

1

= 5. (Note.

The other singular value is �

2

= 10

3

.) Suppose that we have approximate right and left

singular vetors

~x

1

= (1; 10

�6

)

T

; ~y

1

= (0:40825; �0:81496; 0:40824)

T

;

and let

~v

1

= ~x

1

=k~x

1

k

2

; ~u

1

= ~y

1

=k~y

1

k

2

; ~�

1

= ~u

T

1

A~v

1

:

A alulation gives

sin �(v

1

; ~v

1

) � 1:0000� 10

�6

; sin �(u

1

; ~u

1

) � 8:8449� 10

�4

; (3:4:44)

and

j~�

1

� �

1

j � 1:0713� 10

�6

: (3:4:45)

Choose ~v

2

and

~

U

2

so that (~v

1

; ~v

2

) 2 O

2�2

and (~u

1

;

~

U

2

) 2 O

3�3

. Compute

~

A

1

= ~u

T

1

A~v

1

(= ~�

1

);

~

A

2

=

~

U

T

2

A~v

2

; r =

~

A

1

~u

1

�A~v

1

; s =

~

A

1

~v

1

�A

T

~u

1

;

and ompute

~

C

1

;

~

C

2

,

~

b

1

; ~

1

;

~

b

2

; ~

2

,

~

b; ~ and ~� by (3.4.37){(3.4.39). A alulation shows that

4

~

b~~� � 6:2967� 10

�4

< 1:

Consequently, applying Theorem 3.4.6, there are unit right and left singular vetors v and

u of A orresponding to the same singular value, suh that

tan �(v; ~v

1

) � �

X

1

� 1:0007� 10

�6

; tan �(u; ~u

1

) � �

Y

1

� 8:8463� 10

�4

: (3:4:46)

Moreover, applying Theorem 3.4.7, there is a singular value � of A suh that

j~�

1

� �j �

max f�

X

1

ksk

2

; �

Y

1

krk

2

g

min

nq

1� �

2

X

1

;

q

1� �

2

Y

1

o

� 3:0276� 10

�6

: (3:4:47)

Comparing (3.4.46) with (3.4.44) and omparing (3.4.47) with (3.4.45) we see that the esti-

mates obtained by applying Theorems 3.4.6 and 3.4.7 are fairly sharp.

Applying Theorem 3.4.5, there is a singular value � of A suh that

j~�

1

� �j � maxfkrk

2

; ksk

2

g � 8:8445� 10

�1

: (3:4:48)

Comparing it with (3.4.45) shows that the estimate obtained by applying Theorem 3.4.5 is

a severe overestimate.

Note that by Theorem 3.4.2 (or Remark 3.4.3) we have

�

2

(~v

1

; ~u

1

; ~�

1

) = maxfkrk

2

; ksk

2

g � 8:8445� 10

�1

;

whih means that ~�

1

is an exat singular value and f~v

1

; ~u

1

g is an assoiated unit singular

vetor pair of a perturbed matrix A+E

�

with

kE

�

k

2

= �

2

(~v

1

; ~u

1

; ~�

1

) � 8:8445� 10

�1

:

Combining this fat with the Mirsky theorem (see below NR 3.4{3) we get the same estimate

as that of (3.4.48).
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3.4.3 An Approximation Theorem on Singular Values

In this subsetion we shall prove an approximation theorem on singular values that

an be used to establish the estimate (3.4.42) of Theorem 3.4.7.

Let fX

1

;Y

1

g with X

1

= R(X

1

) and Y

1

= R(Y

1

) be a singular subspae pair

of A 2 C

m�n

, and let fZ

1

;W

1

g with Z

1

= R(Z

1

) and W

1

= R(W

1

) approximate

fX

1

;Y

1

g, where X

1

; Z

1

2 U

n�l

, and Y

1

;W

1

2 U

m�l

. Let

A

1

= Y

H

1

AX

1

; K

1

=W

H

1

AZ

1

:

It is easy to see that

Y

1

A

1

= AX

1

; X

1

A

H

1

= A

H

Y

1

; �(A

1

) � �(A):

However, in general, W

1

K

1

6= AZ

1

and/or Z

1

K

H

1

6= A

H

W

1

, and �(K

1

) 6� �(A). In

suh a ase, we de�ne the matries R and S by

R =W

1

K

1

�AZ

1

; S = Z

1

K

H

1

�A

H

W

1

;

whih are the residuals of A and A

H

with respet to fZ

1

;W

1

g, respetively.

The following result gives an upper bound for the distane between the sets

�(K

1

) and �(A

1

) in terms of kRk

2

; kSk

2

, �

2

(X

1

;Z

1

) and �

2

(Y

1

;W

1

), where �

2

(�; �)

is the generalized hordal metri de�ned by (1.3.3).

Theorem 3.4.9. Let A;X

1

; Y

1

; Z

1

;W

1

; A

1

;K

1

, R;S and X

1

, Y

1

, Z

1

, W

1

be the

above-mentioned matries and subspaes. Let

�(A

1

) = f�

j

g

l

j=1

; �

1

� � � � � �

l

;

�(K

1

) = f�

j

g

l

j=1

; �

1

� � � � � �

l

:

If �

2

(X

1

;Z

1

) < 1 and �

2

(Y

1

;W

1

) < 1, then

j�

j

� �

j

j �

max f�

2

(X

1

;Z

1

)kSk

2

; �

2

(Y

1

;W

1

)kRk

2

g

min

�

q

1� �

2

2

(X

1

;Z

1

);

q

1� �

2

2

(Y

1

;W

1

)

�

; j = 1; : : : ; l: (3:4:49)

Proof. 1) By Stewart [93, Appendix℄ (or see Stewart and Sun [97, Chapter I,

Theorem 5.2℄), there are unitary matries Q;U

1

; V

1

suh that

QX

1

U

1

=

 

I

l

0

!

and QZ

1

V

1

=

 

�

�

!

;

where � = diag(

j

) and � = diag(�

j

) have the expressions (2.5.58){(2.5.60). Simi-

larly, there are unitary matries P; F

1

; G

1

suh that

PY

1

F

1

=

 

I

l

0

!

and PW

1

G

1

=

 

M

N

!

;
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where M = diag(�

j

) and N = diag(�

j

) have similar expressions as � and � in

(2.5.58){(2.5.60). Without loss of generality we may assume that the matries

A;X

1

; Y

1

, Z

1

;W

1

have the following redued forms:

A =

 

A

1

0

0 A

2

!

; X

1

= Y

1

=

 

I

l

0

!

; Z

1

=

 

�

�

!

; W

1

=

 

M

N

!

:

Thus, we have

�

2

(X

1

;Z

1

) = k�k

2

; �

2

(Y

1

;W

1

) = kNk

2

; (3:4:50)

and

R =

 

MK

1

�A

1

�

NK

1

�A

2

�

!

; S =

 

�K

H

1

�A

H

1

M

�K

H

1

�A

H

2

N

!

: (3:4:51)

2) For � de�ne the diagonal matrix

^

� by (2.5.64), and for M de�ne the diagonal

matrix

^

M similarly. Then there are the relations

�� =

^

��; NM =

^

MN: (3:4:52)

Moreover, let

Z

2

=

 

��

T

^

�

!

; Z = (Z

1

; Z

2

); (3:4:53)

and

W

2

=

 

�N

T

^

M

!

; W = (W

1

; W

2

): (3:4:54)

Then the relations (3.4.52){(3.4.54) imply that Y;W 2 U

m�m

, and from (3.4.51),

(3.4.53), (3.4.54) and K

1

=W

H

1

AZ

1

W

H

R =

 

0

B

!

; Z

H

S =

 

0

C

!

: (3:4:55)

Thus,

kRk = kBk; kSk = kCk: (3:4:56)

From (3.4.51) and (3.4.53){(3.4.55) we get

MK

1

�A

1

� = (I

l

; 0)R = (I

l

; 0)W

 

0

B

!

= (I

l

; 0)W

2

B = �N

T

B;

and

�K

H

1

�A

H

1

M = (I

l

; 0)S = (I

l

; 0)Z

 

0

C

!

= (I

l

; 0)Z

2

C = ��

T

C;
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or equivalently,

 

� 0

0 M

! 

0 K

H

1

K

1

0

!

�

 

0 A

H

1

A

1

0

! 

� 0

0 M

!

=

 

0 ��

T

C

�N

T

B 0

!

:

(3:4:57)

3) Taking the spetral norm k � k

2

on the two sides of (3.4.57), applying a result

due to Bhatia, Davis and Kittaneh [6℄ (see NR 2.5{5), and by the Mirsky theorem

[78℄ (see below NR 3.4{3) we obtain











 

� 0

0 M

! 

0 K

H

1

K

1

0

!

�

 

0 A

H

1

A

1

0

! 

� 0

0 M

!











2

� �

min

 

� 0

0 M

!











 

0 (K

1

�A

1

)

H

K

1

�A

1

0

!











2

= min

�

q

1� k�k

2

2

;

q

1� kNk

2

2

�

kK

1

�A

1

k

2

� min

�

q

1� �

2

2

(X

1

;Z

1

);

q

1� �

2

2

(Y

1

;W

1

)

�

j�

j

� �

j

j;

j = 1; : : : ; l;

(3:4:58)

where the relations of (3.4.50) are used.

On the other hand, using the relations of (3.4.50) and (3.4.56) we obtain











 

0 ��

T

C

�N

T

B 0

!











2

= max

n

k�

T

Ck

2

; kN

T

Bk

2

o

� max fk�k

2

kCk

2

; kNk

2

kBk

2

g

= max f�

2

(X

1

;Z

1

)kSk

2

; �

2

(Y

1

;W

1

)kRk

2

g :

Combining it with (3.4.57) and (3.4.58) shows the estimate (3.4.49). 2

Notes and Referenes

NR 3.4{1. Theorems 3.4.1 and 3.4.5 are proved by Sun [115℄.

NR 3.4{2. Let A;X

1

; Y

1

; Z

1

;W

1

; A

1

;K

1

; R; S be the matries as in Theorem

3.4.9. It is easy to see that for any X = (X

1

;X

2

) 2 U

n�n

and Y = (Y

1

; Y

2

) 2 U

m�m

we have

Y

H

AX = diag(A

1

; A

2

):



3.4. BACKWARD ERRORS AND RESIDUAL BOUNDS 133

Wedin [127℄ shows that if for some Æ > 0

�(K

1

) � [�+ Æ; +1) and �(A

2

) � (�1; �℄; (3:4:59)

then

maxfk sin�(X

1

; Z

1

)k

2

; k sin�(Y

1

;W

1

)k

2

g �

maxfkRk

2

; kSk

2

g

Æ

; (3:4:60)

whih gives a residual bound for an approximate singular subspae pair. Combining

(3.4.60) with Theorem 3.4.9 we see that under the assumption (3.4.59) we have the

following orollary: If

� �

maxfkRk

2

; kSk

2

g

Æ

< 1;

then

j�

j

� �

j

j �

(maxfkRk

2

; kSk

2

g)

2

Æ

p

1� �

2

; j = 1; : : : ; l; (3:4:61)

where �

j

and �

j

are the singular values of A

1

and K

1

, respetively. (3.4.61) gives a

residual bound for approximate singular values.

NR 3.4{3. Mirsky Theorem [78℄. Let A and

~

A be matries of the same

dimensions with singular values

�

1

� �

2

� � � � � �

n

; ~�

1

� ~�

2

� � � � � ~�

n

:

Then for any unitarily invariant norm k � k,

kdiag(~�

i

� �

i

)k � k

~

A�Ak:

(See, e.g., Stewart and Sun [97, Chapter IV, Theorem 4.11℄.)
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Chapter 4

Generalized Eigenvalue

Problems

This hapter is devoted to the generalized eigenvalue problem �Ax = �Bx, where

(A;B) is an n � n regular pair, i.e., A;B 2 C

n�n

and there are �; � 2 C suh that

det(�A � �B) 6= 0. Perturbation expansions and ondition numbers of eigenvalues

and deating subspaes, perturbation bounds for deating subspaes, and bakward

errors and residual bounds, are disussed in x4.1 { x4.4, separately. The hapter

onludes with a setion on symmetri-de�nite generalized eigenproblems.

4.1 Perturbation Expansions

4.1.1 Simple Eigenvalues

Let (A;B) be an n� n regular pair. If

�Ax = �Bx

for (�; �) 6= (0; 0) and a nonzero x 2 C

n

, then (�; �) is alled an eigenvalue of (A;B),

and x a right eigenvetor assoiated with (�; �). Usually, x is alled an eigenvetor

of (A;B) assoiated with (�; �). The orresponding nonzero solution y 2 C

n

of the

equation

�y

H

A = �y

H

B

is alled a left eigenvetor assoiated with (�; �).

A basi fat of the generalized eigenvalue problem is that any eigenvalue (�; �)

lies on the omplex projetive plane, or equivalently, any eigenvalue (�; �) lies on

the Riemann sphere; i.e., (�; �) and (z�; z�) for any nonzero z 2 C represent the

same eigenvalue. If an eigenvalue (�; �) satis�es � 6= 0, then � = �=� is a �nite

eigenvalue; otherwise, (�; �) is an in�nite eigenvalue.

135
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The set of the eigenvalues of a regular pair (A;B) is denoted by �(A;B).

Let p = (p

1

; : : : ; p

N

)

T

2 C

N

, and B(0) � C

N

be a neighborhood of the origin.

Let A(p); B(p) 2 C

n�n

be analyti funtions of p and (A(p); B(p)) be a regular pair

for p 2 B(0). Assume that (�; �) is a simple eigenvalue of (A(0); B(0)), and x; y are

assoiated right and left eigenvetors satisfying

y

H

A(0)x = �; y

H

B(0)x = �:

Then, as a onsequene, there are X

2

; Y

2

2 C

n�(n�1)

suh that

X = (x;X

2

) and Y = (y; Y

2

) are nonsingular; (4:1:1)

and

Y

H

A(0)X =

 

� 0

0 A

2

!

; Y

H

B(0)X =

 

� 0

0 B

2

!

; (4:1:2)

where the pair (A

2

; B

2

) is regular, and

(�; �) 62 �(A

2

; B

2

): (4:1:3)

First applying the impliit funtion theorem we prove the following result.

Theorem 4.1.1. Let A(p); B(p) 2 C

n�n

be analyti matrix-valued funtions of

p, and the matrix pair (A(p); B(p)) be a regular pair for p 2 B(0), a neighborhood

of the origin in C

N

. Assume that (�; �) is a simple eigenvalue of (A(0); B(0)), and

x; y are assoiated right and left eigenvetors. Then

1) there exists a simple eigenvalue (�(p); �(p)) of the regular pair (A(p); B(p)),

where �(p) and �(p) are analyti funtions of p in some neighborhood B

0

of the

origin, and �(0) = �; �(0) = �;

2) the funtions �(p) and �(p) have power series expansions at p = 0 of the

forms

�(p) = �+

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ;

and

�(p) = � +

N

X

j=1

 

��(p)

�p

j

!

p=0

p

j

+

1

2

N

X

j;k=1

 

�

2

�(p)

�p

j

�p

k

!

p=0

p

j

p

k

+ � � � ;

where p 2 B

0

, and

 

��(p)

�p

j

!

p=0

= y

H

 

�A(p)

�p

j

!

p=0

x;

 

��(p)

�p

j

!

p=0

= y

H

 

�B(p)

�p

j

!

p=0

x;

(4:1:4)
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�

2

�(p)

�p

j

�p

k

!

p=0

= y

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x+ y

H

 

�A(p)

�p

j

!

p=0

X

2

G

�1

Y

H

2

D

k

x

+y

H

�

�A(p)

�p

k

�

p=0

X

2

G

�1

Y

H

2

D

j

x;

(4:1:5)

 

�

2

�(p)

�p

j

�p

k

!

p=0

= y

H

 

�

2

B(p)

�p

j

�p

k

!

p=0

x+ y

H

 

�B(p)

�p

j

!

p=0

X

2

G

�1

Y

H

2

D

k

x

+y

H

�

�B(p)

�p

k

�

p=0

X

2

G

�1

Y

H

2

D

j

x;

(4:1:6)

in whih the matries G and D

j

are de�ned by

G = �B

2

� �A

2

(4:1:7)

and

D

j

= �

 

�A(p)

�p

j

!

p=1

� �

 

�B(p)

�p

j

!

p=1

; j = 1; : : : ; N: (4:1:8)

Proof. 1) By the hypotheses there are matries X = (x;X

2

); Y = (y; Y

2

) 2 C

n�n

and A

2

; B

2

2 C

(n�1)�(n�1)

suh that the relations (4.1.1){(4.1.3) hold. For p 2 B(0)

we set

~

A(p) = Y

H

A(p)X =

 

~a

11

(p) ~a

12

(p)

~a

21

(p)

~

A

22

(p)

!

; ~a

11

(p) 2 C;

~

B(p) = Y

H

B(p)X =

 

~

b

11

(p)

~

b

12

(p)

~

b

21

(p)

~

B

22

(p)

!

;

~

b

11

(p) 2 C:

(4:1:9)

Using the same tehnique desribed by the proof of Theorem 2.1.1 we an show that

there are analyti funtions z(p); w(p) 2 C

n�1

of p in some neighborhood B

0

� B(0)

of the origin suh that

 

1 0

�w(p) I

!

~

A(p)

 

1 0

z(p) I

!

=

 

�(p) �

0 �

!

;

 

1 0

�w(p) I

!

~

B(p)

 

1 0

z(p) I

!

=

 

�(p) �

0 �

!

;

(4:1:10)

and z(0) = w(0) = 0. Moreover, the funtions z(p) and w(p) are uniquely deter-

mined.

From (4.1.10)

�(p) = ~a

11

(p) + ~a

12

(p)z(p); �(p) =

~

b

11

(p) +

~

b

12

(p)z(p): (4:1:11)
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The relations of (4.1.10) show that (�(p); �(p)) is an eigenvalue of (A(p); B(p)), and

the eigenvalue is simple provided that the neighborhood B

0

is suÆiently small.

Moreover, the analytiity of the funtions ~a

11

(p), ~a

12

(p),

~

b

11

(p),

~

b

12

(p) and z(p) im-

plies that �(p) and �(p) are analyti funtions of p 2 B

0

, and �(0) = �; �(0) = �.

2) From (4.1.11) and ~a

12

(0)

T

= z(0) = 0 we obtain

 

��(p)

�p

j

!

p=0

=

 

�~a

11

(p)

�p

j

!

p=0

; (4:1:12)

and

 

�

2

�(p)

�p

j

�p

k

!

p=0

=

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

+

 

�~a

12

(p)

�p

j

!

p=0

�

�z(p)

�p

k

�

p=0

+

�

�~a

12

(p)

�p

k

�

p=0

 

�z(p)

�p

j

!

p=0

:

(4:1:13)

Moreover, from (4.1.9) we obtain

 

�~a

11

(p)

�p

j

!

p=0

= y

H

 

� A(p)

�p

j

!

p=0

x;

 

�

2

~a

11

(p)

�p

j

�p

k

!

p=0

= y

H

 

�

2

A(p)

�p

j

�p

k

!

p=0

x;

 

�~a

12

(p)

�p

j

!

p=0

= y

H

 

� A(p)

�p

j

!

p=0

X

2

:

(4:1:14)

Combining (4.1.12) with the �rst formula of (4.1.14) shows the �rst formula of

(4.1.4).

From (4.1.13) and (4.1.14) it follows that for obtaining the formula (4.1.5) we

only need to �nd an expliit expression of

�

�z(p)

�p

j

�

p=0

. By (4.1.10), the funtions

z(p) and w(p) satisfy the equations

~a

21

(p)� ~a

11

(p)w(p) +

~

A

22

(p)z(p) � ~a

12

(p)z(p)w(p) = 0;

~

b

21

(p)�

~

b

11

(p)w(p) +

~

B

22

(p)z(p)�

~

b

12

(p)z(p)w(p) = 0;

(4:1:15)
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where p 2 B

0

. Di�erentiating (4.1.15) at p = 0, we get

0

B

�

�

�z(p)

�p

j

�

p=0

�

�w(p)

�p

j

�

p=0

1

C

A

=

 

�A

2

�I

�B

2

�I

!

�1

0

B

�

�

�~a

21

(p)

�p

j

�

p=0

�

�

~

b

21

(p)

�p

j

�

p=0

1

C

A

=

 

�I ��I

B

2

�A

2

!

0

B

�

G

�1

Y

H

2

�

�A(p)

�p

j

�

p=0

x

G

�1

Y

H

2

�

�B(p)

�p

j

�

p=0

x

1

C

A

;

whih gives

 

�z(p)

�p

j

!

p=0

= G

�1

Y

H

2

2

4

�

 

�A(p)

�p

j

!

p=0

� �

 

�B(p)

�p

j

!

p=0

3

5

x; (4:1:16)

where G is the matrix de�ned by (4.1.7). Substituting (4.1.14) and (4.1.16) into

(4.1.13) shows the formula (4.1.5).

Similarly, we obtain the seond formula of (4.1.4) and the formula (4.1.6). 2

Remark 4.1.2. From (4.1.9) and (4.1.10)

�(p)A(p)x(p) = �(p)B(p)x(p); p 2 B

0

; (4:1:17)

where x(p) is de�ned by

x(p) = X

 

1

z(p)

!

: (4:1:18)

The relation (4.1.17) shows that the vetor x(p) is an eigenvetor of (A(p); B(p))

assoiated with (�(p); �(p)), and the expression (4.1.18) shows that the eigenvetor

is an analyti funtion of p 2 B

0

satisfying x(0) = x. Moreover, (4.1.16) and (4.1.18)

imply that the eigenvetor x(p) has the expansion of the form

x(p) = x+

N

X

j=1

 

�x(p)

�p

j

!

p=0

p

j

+ � � � ; p 2 B

0

;

where

 

�x(p)

�p

j

!

p=0

= X

2

G

�1

Y

H

2

2

4

�

 

�A(p)

�p

j

!

p=0

� �

 

�B(p)

�p

j

!

p=0

3

5

x

for j = 1; : : : ; N .

The following result, as a orollary of Theorem 4.1.1, gives modi�ed forms of the

�rst order perturbation expansions of simple eigenvalues.
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Corollary 4.1.3. Let (A;B) be an n � n regular pair. Assume that (�; �) is

a simple eigenvalue of (A;B), and x; y are assoiated right and left eigenvetors

satisfying

y

H

Ax = �; y

H

Bx = �:

If E;F 2 C

n�n

and k(E;F )k

F

is suÆiently small, then there exists a simple eigen-

value (~�;

~

�) of the regular pair (A+E;B + F ), and ~�;

~

� have the expansions

~� = �+ y

H

Ex+O(k(E;F )k

2

F

);

~

� = � + y

H

Fx+O(k(E;F )k

2

F

);

(4:1:19)

where (E;F )! 0.

Let �(�; �) be the hordal metri de�ned by (1.3.4). Then the expansions of

(4.1.19) give

�((~�;

~

�); (�; �)) =

�

�

�

y

H

Ex � y

H

Bx� y

H

Fx � y

H

Ax

�

�

�

jy

H

Axj

2

+ jy

H

Bxj

2

+O

�

k(E;F )k

2

F

�

; (4:1:20)

where (E;F )! 0.

Remark 4.1.4 (De�nite Pairs). Let A;B 2 H

n�n

. The pair (A;B) is alled

a de�nite pair if

(A;B) � min

x 2 C

n

kxk

2

= 1

�

�

�

x

H

(A+ iB)x

�

�

�

> 0:

It is known (see, e.g., Crawford [23℄, Stewart and Sun [97, Chapter VI℄) that any

eigenvalue of an n� n de�nite pair (A;B) an be expressed by (�; �) 6= (0; 0) with

�; � 2 R, and there is a nonsingular matrix X 2 C

n�n

suh that

X

H

AX = diag(�

1

; : : : ; �

n

); X

H

BX = diag(�

1

; : : : ; �

n

):

Let A(p) and B(p) be analyti matrix-valued funtions, and (A(p); B(p)) be an

n� n de�nite pair for p 2 B(0), a neighborhood of the origin of R

N

. Assume that

(�; �) is a simple eigenvalue of (A(0); B(0)), and x is an assoiated eigenvetor.

Then by using the same tehniques desribed by the proofs of Theorem 3.1.1 and

Theorem 4.1.1 we an obtain the same results as in (4.1.4){(4.1.8) with y = x and

Y

2

= X

2

, where X = (x;X

2

) is a nonsingular matrix that

X

H

AX =

 

� 0

0 A

2

!

; X

H

BX =

 

� 0

0 B

2

!

;

in whih (A

2

; B

2

) is an de�nite pair, and (�; �) 62 �(A

2

; B

2

). Note that in the proof

we only need to replae the transformation matries

 

1 0

�w(p) I

!

and

 

1 0

z(p) I

!
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of (4.1.10) by

 

1 z(p)

H

�w(p) I

!

and

 

1 �w(p)

H

z(p) I

!

:

Similar to Corollary 4.1.3, we have the following result for de�nite pairs.

Corollary 4.1.5. Let (A;B) be an n� n de�nite pair. Assume that (�; �) is a

simple eigenvalue of (A;B), and x is an assoiated eigenvetor satisfying

x

H

Ax = �; x

H

Bx = �:

If E;F 2 H

n�n

and k(E;F )k

F

is suÆiently small, then there exists a simple eigen-

value (~�;

~

�) of the de�nite pair (A+E;B + F ), and ~�;

~

� have the expansions

~� = �+ x

H

Ex+O(k(E;F )k

2

F

);

~

� = � + x

H

Fx+O(k(E;F )k

2

F

);

where (E;F )! 0.

4.1.2 Deating Subspaes

Let (A;B) be an n� n regular pair, (�; �) be an eigenvalue of (A;B), and x 2 C

n

be an assoiated eigenvetor. By the de�nition of eigenvalue and eigenvetor, there

is a one-dimensional subspae Y

1

� C

n

suh that

AR(x) � Y

1

and BR(x) � Y

1

:

The pair fR(x);Y

1

g is alled a pair of one-dimensional deating subspaes of (A;B).

Moreover, R(x) is alled a one-dimensional eigenspae of (A;B). These de�nitions

extend in a natural way to higher dimensions.

Let X

1

;Y

1

be subspaes of C

n

with the same dimension. The pair fX

1

;Y

1

g is

alled a pair of deating subspaes of (A;B) if

AX

1

� Y

1

and BX

1

� Y

1

:

The subspae X

1

in the deating subspae pair fX

1

;Y

1

g is alled an eigenspae (or

a generalized invariant subspae) of (A;B). (If B = I, then X

1

is an invariant sub-

spae of A.)

The deating subspae pair fX

1

;Y

1

gmay be equivalently de�ned by X

1

= R(X

1

)

and Y

1

= R(Y

1

), in whih X

1

; Y

1

2 C

n�l

satisfy

rank(X

1

) = rank(Y

1

) = l and AX

1

= Y

1

A

1

; BX

1

= Y

1

B

1
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for some l � l regular pair (A

1

; B

1

).

Let X

1

; Y

1

2 U

n�l

, and let X

1

= R(X

1

), Y

1

= R(Y

1

). It an be veri�ed that the

subspae pair fX

1

;Y

1

g is a deating subspae pair of a regular matrix pair (A;B)

if and only if there are matries X = (X

1

;X

2

), Y = (Y

1

; Y

2

) 2 U

n�n

suh that

Y

H

AX =

 

A

11

A

12

0 A

22

!

; Y

H

BX =

 

B

11

B

12

0 B

22

!

; A

11

; B

11

2 C

l�l

:

Moreover, (A

11

; B

11

) and (A

22

; B

22

) are regular pairs.

If �(A

11

; B

11

)

T

�(A

22

; B

22

) = ;, then the deating subspae pair fX

1

;Y

1

g is

alled a simple deating subspae pair. In this hapter we only onsider simple de-

ating subspae pairs.

The main result of this subsetion is the following perturbation expansion theo-

rem.

Theorem 4.1.6. Let (A;B) be an n � n regular matrix pair, and let X =

(X

1

;X

2

); Y = (Y

1

; Y

2

) 2 U

n�n

with X

1

; Y

1

2 U

n�l

suh that

Y

H

AX =

 

A

11

A

12

0 A

22

!

; Y

H

BX =

 

B

11

B

12

0 B

22

!

; (4:1:21)

where A

11

; B

11

2 C

l�l

, and

�(A

11

; B

11

)

\

�(A

22

; B

22

) = ;: (4:1:22)

Moreover, let X

1

= R(X

1

);Y

1

= R(Y

1

), for M;N 2 C

n�n

let

Y

H

MX =

 

M

11

M

12

M

21

M

22

!

; Y

H

NX =

 

N

11

N

12

N

21

N

22

!

; M

11

; N

11

2 C

l�l

;

(4:1:23)

and de�ne the linear operator T : C

(n�l)�l

� C

(n�l)�l

! C

(n�l)�l

� C

(n�l)�l

by

T

 

Z

W

!

=

 

WA

11

�A

22

Z

WB

11

�B

22

Z

!

; Z;W 2 C

(n�l)�l

: (4:1:24)

Then

(1) there is a unique l-dimensional simple deating subspae pair fX

1

(�);Y

1

(�)g

of (A + �M;B + �N) (� 2 C) suh that X

1

(0) = X

1

;Y

1

(0) = Y

1

, and the basis ve-

tors x

1

(�); : : : ; x

l

(�) of X

1

(�) and the basis vetors y

1

(�); : : : ; y

l

(�) of Y

1

(�) may be

hosen to be analyti funtions of � in some neighborhood B(0) of the origin of C;
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(2) the analyti matrix-valued funtions

X

1

(�) = (x

1

(�); : : : ; x

l

(�)); Y

1

(�) = (y

1

(�); : : : ; y

l

(�))

have the perturbation expansions

X

1

(�) = X

1

+X

2

1

X

j=1

K

j

�

j

; Y

1

(�) = Y

1

+ Y

2

1

X

j=1

L

j

�

j

(4:1:25)

for � 2 B(0), in whih

 

K

1

L

1

!

= T

�1

 

M

21

N

21

!

;

 

K

2

L

2

!

= T

�1

 

M

22

K

1

� L

1

M

11

� L

1

A

12

K

1

N

22

K

1

� L

1

N

11

� L

1

B

12

K

1

!

;

 

K

j

L

j

!

= T

�1

0

B

B

B

�

M

22

K

j�1

� L

j�1

M

11

�

j�2

P

k=1

L

j�1�k

M

12

K

k

�

j�1

P

k=1

L

j�k

A

12

K

k

N

22

K

j�1

� L

j�1

N

11

�

j�2

P

k=1

L

j�1�k

N

12

K

k

�

j�1

P

k=1

L

j�k

B

12

K

k

1

C

C

C

A

;

j � 3:

(4:1:26)

Proof. 1) Let

A(�) = A+ �M; B(�) = B + �N

and

~

A(�) = Y

H

A(�)X =

 

~

A

11

(�)

~

A

12

(�)

~

A

21

(�)

~

A

22

(�)

!

;

~

B(�) = Y

H

B(�)X =

 

~

B

11

(�)

~

B

12

(�)

~

B

21

(�)

~

B

22

(�)

!

;

(4:1:27)

where

~

A

11

(�);

~

B

11

(�) 2 C

l�l

, and

~

A

jk

(�) = A

jk

+ �M

jk

;

~

B

jk

(�) = B

jk

+ �N

jk

; A

21

= B

21

= 0: (4:1:28)

Using the same tehnique desribed by the proof of Theorem 2.1.5 we an show that

there are analyti matrix-valued funtions Z(�) andW (�) of � in some neighborhood

B(0) of the origin suh that

 

I 0

�W (�) I

!

~

A(�)

 

I 0

Z(�) I

!

=

 

A

1

(�)

~

A

12

(�)

0 A

2

(�)

!

;

 

I 0

�W (�) I

!

~

B(�)

 

I 0

Z(�) I

!

=

 

B

1

(�)

~

B

12

(�)

0 B

2

(�)

!

;

(4:1:29)
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and Z(0) = W (0) = 0. Moreover, the funtions Z(�) and W (�) are uniquely deter-

mined; and �(A

1

(�); B

1

(�))

T

�(A

2

(�); B

2

(�)) = ; provided that the neighborhood

B(0) is suÆiently small.

De�ne

X

1

(�) = X

 

I

Z(�)

!

; Y

1

(�) = Y

 

I

W (�)

!

: (4:1:30)

Then from (4.1.27) and (4.1.29)

A(�)X

1

(�) = Y

1

(�)A

1

(�); B(�)X

1

(�) = Y

1

(�)B

1

(�):

Consequently, we have proved that the pair fX

1

(�);Y

1

(�)g with

X

1

(�) = R(X

1

(�)); Y

1

(�) = R(Y

1

(�))

is the unique pair of deating subspaes of (A(�); B(�)) in B(0) satisfying X

1

(0) =

X

1

;Y

1

(0) = Y

1

, and X

1

(�); Y

1

(�) are analyti matrix-valued funtions of � 2 B(0).

2) From (4.1.27){(4.1.29) we get the basi equations for Z(�) and W (�):

W (�)(A

12

+ �M

12

)Z(�) +W (�)(A

11

+ �M

11

)� (A

22

+ �M

22

)Z(�)� �M

21

= 0;

W (�)(B

12

+ �N

12

)Z(�) +W (�)(B

11

+ �N

11

)� (B

22

+ �N

22

)Z(�)� �N

21

= 0;

(4:1:31)

where � 2 B(0).

Di�erentiating (4.1.31) at � = 0, and writing

Z

(j)

=

 

d

j

Z(�)

d�

j

!

�=0

; W

(j)

=

 

d

j

W (�)

d�

j

!

�=0

; j = 1; 2; : : : ;
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we get

T

 

Z

(1)

W

(1)

!

=

 

M

21

N

21

!

;

T

 

Z

(2)

W

(2)

!

= 2

 

M

22

Z

(1)

�W

(1)

M

11

�W

(1)

A

12

Z

(1)

N

22

Z

(1)

�W

(1)

N

11

�W

(1)

B

12

Z

(1)

!

;

T

 

Z

(j)

W

(j)

!

= j

0

B

B

B

B

�

M

22

Z

(j�1)

�W

(j�1)

M

11

�

j�2

P

k=1

 

j � 1

k

!

W

(j�1�k)

M

12

Z

(k)

N

22

Z

(j�1)

�W

(j�1)

N

11

�

j�2

P

k=1

 

j � 1

k

!

W

(j�1�k)

N

12

Z

(k)

1

C

C

C

C

A

�

0

B

B

B

B

�

j�1

P

k=1

 

j

k

!

W

(j�k)

A

12

Z

(k)

j�1

P

k=1

 

j

k

!

W

(j�k)

B

12

Z

(k)

1

C

C

C

C

A

; j � 3;

(4:1:32)

where T is the linear operator de�ned by (4.1.24).

The hypothesis (4.1.22) implies that the operator T is invertible. De�ne

K

j

=

1

j!

Z

(j)

; L

j

=

1

j!

W

(j)

; j = 1; 2; : : : :

Then from (4.1.32) we get the relations (4.1.26) and the power series expansions of

Z(�) and W (�) at � = 0:

Z(�) =

1

X

j=1

1

j!

Z

(j)

�

j

=

1

X

j=1

K

j

�

j

; W (�) =

1

X

j=1

1

j!

W

(j)

�

j

=

1

X

j=1

L

j

�

j

:

This together with (4.1.30) shows (4.1.25). 2

The following result, as a orollary of Theorem 4.1.6, gives modi�ed forms of the

�rst order perturbation expansions of simple deating subspaes.

Corollary 4.1.7. Let (A;B);X; Y;A

11

; A

22

; B

11

; B

22

and T be as in Theorem

4.1.6, and let X

1

= R(X

1

), Y

1

= R(Y

1

). Moreover, for E;F 2 C

n�n

let

Y

H

EX =

 

E

11

E

12

E

21

E

22

!

; Y

H

FX =

 

F

11

F

12

F

21

F

22

!

; E

11

; F

11

2 C

l�l

:

If k(E;F )k

F

is suÆiently small, then there exists a unique l-dimensional pair of

deating subspaes

~

X

1

= R(

~

X

1

),

~

Y

1

= R(

~

Y

1

) of the pair (A + E;B + F ), and

~

X

1

,
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~

Y

1

have the expansions

~

X

1

= X

1

+X

2

Z

1

+O(k(E;F )k

2

F

);

~

Y

1

= Y

1

+ Y

2

W

1

+O(k(E;F )k

2

F

);

(4:1:33)

where (E;F )! 0, and Z

1

;W

1

2 C

(n�l)�l

are de�ned by

 

Z

1

W

1

!

= T

�1

 

E

21

F

21

!

: (4:1:34)

Observe that by using the Kroneker produt and ve operator, the matrix rep-

resentation T of the linear operator T de�ned by (4.1.24) an be expressed by

T =

 

�I

l


A

22

A

T

11


 I

n�l

�I

l


B

22

B

T

11


 I

n�l

!

: (4:1:35)

Consequently, the relation (4.1.34) an be written in an equivalent form:

 

ve(Z

1

)

ve(W

1

)

!

= C

 

ve(E

21

)

ve(F

21

)

!

; (4:1:36)

where

C � T

�1

=

 

C

1

C

2

!

; C

1

= (C

11

; C

12

); C

2

= (C

21

; C

22

);

C

11

= (B

T

11


 I

n�l

)M

�1

; C

12

= (�A

T

11


 I

n�l

)M

�1

;

C

21

= (I

l


B

22

)M

�1

; C

22

= (�I

l


A

22

)M

�1

;

M = A

T

11


B

22

�B

T

11


A

22

:

(4:1:37)

Notes and Referenes

NR 4.1{1. The formulas of (4.1.4) are given by Liu [72, Theorem 3.5℄.

NR 4.1{2. The notion of the deating subspaes of a regular pair is introdued

by Stewart [91℄.

NR 4.1{3. Theorem 4.1.6 is proved by Sun [119, Theorem 3.1.1℄.

NR 4.1{4. Crawford [23℄ �rst disusses perturbation properties of eigenvalues

of de�nite pairs. For basi perturbation results, see Stewart and Sun [97, Chapter

VI℄.
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4.2 Condition Numbers

4.2.1 Simple Eigenvalues

Let (A;B) be a regular pair, and (�; �) be a simple eigenvalue of (A;B). Let

(

~

A;

~

B) = (A+E;B+F ) be a perturbation of (A;B), and (~�;

~

�) be the orresponding

perturbation of (�; �). Then by x1.8 we de�ne the ondition number (�; �) for (�; �)

by the following approah: De�ne the vetor v by

v =

 

kEk

F



A

;

kFk

F



B

!

T

; (4:2:1)

and then de�ne (�; �) as

(�; �) = lim

Æ!0

sup

kvk

2

�Æ

�((~�;

~

�); (�; �))

Æ

; (4:2:2)

where 

A

and 

B

are positive parameters, and �(�; �) denotes the hordal metri de-

�ned by (1.3.4).

From the de�nition (4.2.2) it follows that in �rst order approximation the in-

equality

�((~�;

~

�); (�; �)) � (�; �)













 

kEk

F



A

;

kFk

F



B

!

T













2

holds.

If one is interested in the sensitivity of (�; �) to perturbations in eah individual

member of A and B, then by x1.8 we de�ne the partial ondition numbers 

A

(�; �)

and 

B

(�; �) for (�; �) as



A

(�; �) = lim

Æ!0

sup

kEk



A

�Æ; F=0

�((~�;

~

�); (�; �))

Æ

;



B

(�; �) = lim

Æ!0

sup

E=0;

kFk



B

�Æ

�((~�;

~

�); (�; �))

Æ

;

(4:2:3)

where 

A

and 

B

are positive parameters.

Let (A;B) be a regular pair, and (�; �) be a simple eigenvalue of (A;B) with

right eigenvetor x and left eigenvetor y. The following results (Theorems 4.2.1

and 4.2.2) give expliit expressions of the ondition numbers (�; �), 

A

(�; �) and



B

(�; �).
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Theorem 4.2.1. The ondition number (�; �) an be expressed by

(�; �) =







�



B

y

H

Ax; 

A

y

H

Bx

�







2

kxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

: (4:2:4)

Proof. By Corollary 4.1.3 and (4.1.20), we have

�((~�;

~

�); (�; �))

Æ

�







�



B

y

H

Ax; 

A

y

H

Bx

�







2

kxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ)

if











 

kEk

F



A

;

kFk

F



B

!











2

� Æ;

(4:2:5)

and the equalities in (4.2.5) are ahieved for the spei� perturbations

b

E = �

Æ

A

�yx

H

kxk

2

kyk

2

and

b

F =

Æ

B

�yx

H

kxk

2

kyk

2

with

� = 

A

y

H

Bx







�



A

y

H

Bx; 

B

y

H

Ax

�







�1=2

2

;

� = 

B

y

H

Ax







�



A

y

H

Bx; 

B

y

H

Ax

�







�1=2

2

:

Combining these fats with the de�nition (4.2.2) shows the expression (4.2.4). 2

Theorem 4.2.2. The partial ondition numbers 

A

(�; �) and 

B

(�; �) an be

expressed by



A

(�; �) =



A

jy

H

Bxjkxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

;



B

(�; �) =



B

jy

H

Axjkxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

:

(4:2:6)

Proof. By Corollary 4.1.3 and (4.1.20), we have

�((~�;

~

�); (�; �))

Æ

�



A

jy

H

Bxjkxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ)

if

kEk



A

� Æ � 1 and F = 0;

(4:2:7)

and the equalities in (4.2.7) are ahieved for the spei� perturbations

b

E = �

Æ

A

yx

H

kxk

2

kyk

2

and

b

F = 0:
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Moreover, we have

�((~�;

~

�); (�; �))

Æ

�



B

jy

H

Axjkxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ)

if E = 0 and

kFk



B

� Æ � 1;

(4:2:8)

and the equalities in (4.2.8) are ahieved for the spei� perturbations

b

E = 0 and

b

F =

Æ

B

yx

H

kxk

2

kyk

2

:

Combining these fats with the de�nition (4.2.3) shows the expressions of (4.2.6).

2

Taking 

A

= 

B

= 1 in (4.2.1){(4.2.2) and (4.2.4) yields the absolute ondition

number



abs

(�; �) =

kxk

2

kyk

2

q

jy

H

Axj

2

+ jy

H

Bxj

2

; (4:2:9)

and taking 

A

= kAk

F

and 

B

= kBk

F

in (4.2.1){(4.2.2) and (4.2.4) yields the

relative ondition number



rel

(�; �) =







�

kBk

F

y

H

Ax; kAk

F

y

H

Bx

�







2

kxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

: (4:2:10)

Moreover, taking 

A

= 

B

= 1 in (4.2.3) and (4.2.6) yields the absolute partial on-

dition numbers 

(abs)

A

(�; �) and 

(abs)

B

(�; �), and taking 

A

= kAk

F

and 

B

= kBk

F

in (4.2.3) and (4.2.6) yields the relative partial ondition numbers 

(rel)

A

(�; �) and



(rel)

B

(�; �), respetively.

Example 4.2.3 (Parlett [83, p.304{305℄). Consider the regular pair (A;B) with

A =

�

1 0

0 10

�8

�

; B =

�

1 0

0 2� 10

�8

�

:

The matrix pair has the eigenvalues (�

1

; �

1

) = (1; 1) and (�

2

; �

2

) = (10

�8

; 2 � 10

�8

), or

equivalently, �

1

= �

1

=�

1

= 1 and �

2

= �

2

=�

2

= 1=2. It is easy to see that a hange of

10

�8

in A and/or in B hanges the eigenvalue 1 by 10

�4

, while the eigenvalue 1=2 hanges

ompletely. In other words, the eigenvalue 1 is well-onditioned, and the eigenvalue 1=2 is

violently ill-onditioned. By (4.2.9), (4.2.10) and (4.2.6), we have



abs

(�

1

; �

1

) = 1=

p

2; 

rel

(�

1

; �

1

) � 1=

p

2;



(abs)

A

(�

1

; �

1

) = 1=2; 

(abs)

B

(�

1

; �

1

) = 1=2;



(rel)

A

(�

1

; �

1

) � 1=2; 

(rel)

B

(�

1

; �

1

) � 1=2;
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and



abs

(�

2

; �

2

) =

1

p

5

� 10

8

; 

rel

(�

2

; �

2

) �

1

p

5

� 10

8

;



(abs)

A

(�

2

; �

2

) =

2

5

� 10

8

; 

(abs)

B

(�

2

; �

2

) =

1

5

� 10

8

;



(rel)

A

(�

2

; �

2

) �

2

5

� 10

8

; 

(rel)

B

(�

2

; �

2

) �

1

5

� 10

8

:

Obviously, for this example the ondition numbers de�ned in this subsetion reet the sen-

sitivity of the eigenvalues.

The following result shows an important fat that if (�; �) is a simple eigenvalue

of a regular pair (A;B), then the distane from (A;B) to a matrix pair whih has an

eigenvalue (�; �) of multipliity at least two is approximately bounded by the salar

k(A;B)k

2



abs

(�; �)

p

j�j

2

+ j�j

2

:

Theorem 4.2.4. Let (A;B) be an n� n regular pair with the generalized Shur

deomposition

A = Q

 

� a

H

0 A

2

!

Z

H

; B = Q

 

� b

H

0 B

2

!

Z

H

; (4:2:11)

where Q;Z 2 U

n�n

, and (�; �) is a simple eigenvalue of (A;B). If the ondition

number 

abs

(�; �) satis�es

p

j�j

2

+ j�j

2



abs

(�; �) > 1, then there exist E;F 2 C

n�n

suh that the pair (A+E;B+F ) has (�; �) as an eigenvalue of multipliity at least

two and

k(E;F )k

2

=

k(a

H

; b

H

)k

2

p

(j�j

2

+ j�j

2

)[

abs

(�; �)℄

2

� 1

<

k(A;B)k

2

p

(j�j

2

+ j�j

2

)[

abs

(�; �)℄

2

� 1

:

(4:2:12)

Proof. Sine (�; �) is a simple eigenvalue of (A;B), there are v; w 2 C

n�1

suh

that

 

1 w

H

0 I

n�1

! 

� a

H

0 A

2

! 

1 v

H

0 I

n�1

!

=

 

� 0

0 A

2

!

;

 

1 w

H

0 I

n�1

! 

� b

H

0 B

2

! 

1 v

H

0 I

n�1

!

=

 

� 0

0 B

2

!

:

(4:2:13)

Write Q = (q

1

; Q

2

) and Z = (z

1

; Z

2

), where q

1

; z

1

2 C

n

. Then by (4.2.11) and

(4.2.13) we have the relations

 

q

H

1

+ w

H

Q

H

2

�

!

A (z

1

; �) =

 

� 0

0 A

2

!

;

 

q

H

1

+ w

H

Q

H

2

�

!

B (z

1

; �) =

 

� 0

0 B

2

!

;
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whih show that the vetors

x = z

1

and y = q

1

+Q

2

w (4:2:14)

are right and left eigenvetors of (A;B) belonging to the simple eigenvalue (�; �).

Thus, by (4.2.9) and (4.2.14), the ondition number 

abs

(�; �) an be expressed by



abs

(�; �) =

q

(1 + kwk

2

2

)=(j�j

2

+ j�j

2

): (4:2:15)

Moreover, the relations (4.2.11), (4.2.14) and �y

H

A = �y

H

B imply

�(1; w

H

)

 

� a

H

0 A

2

!

= �(1; w

H

)

 

� b

H

0 B

2

!

;

or equivalently,

�w

H

 

A

2

+

wa

H

kwk

2

2

!

= �w

H

 

B

2

+

wb

H

kwk

2

2

!

:

Take

E = Q

 

0 0

0

wa

H

kwk

2

2

!

Z

H

; F = Q

 

0 0

0

wb

H

kwk

2

2

!

Z

H

: (4:2:16)

Then (�; �) is an eigenvalue of (A+E;B+F ) of multipliity at least two, and from

(4.2.15) and (4.2.16) we get the estimates (4.2.12). 2

Remark 4.2.5 (De�nite Pairs). Let (A;B) be a de�nite pair, and (�; �) be

a simple eigenvalue of (A;B). Then by (4.2.1){(4.2.3) we may de�ne the strutured

ondition number (�; �) and the strutured partial ondition numbers 

A

(�; �) and



B

(�; �) by using Hermitian perturbations E and F . Using the same tehnique

desribed in the proof of Theorems 4.2.1 and 4.2.2, and applying Corollary 4.1.5, we

obtain the same formulas as (4.2.4) and (4.2.6), where y = x; i.e.,

(�; �) =







�



B

x

H

Ax; 

A

x

H

Bx

�







2

kxk

2

2

(x

H

Ax)

2

+ (x

H

Bx)

2

;

and



A

(�; �) =



A

jx

H

Bxjkxk

2

2

(x

H

Ax)

2

+ (x

H

Bx)

2

; 

B

(�; �) =



B

jx

H

Axjkxk

2

2

(x

H

Ax)

2

+ (x

H

Bx)

2

:

4.2.2 Deating Subspaes

Let (A;B) be a regular pair, and fX

1

;Y

1

g be a simple deating subspae pair of

(A;B). Let (

~

A;

~

B) = (A +E;B + F ) be a perturbation of (A;B), and f

~

X

1

;

~

Y

1

g be

the orresponding perturbation of fX

1

;Y

1

g. Then by x1.8 we de�ne the ondition
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number (X

1

) for X

1

by the following approah: De�ne the vetor v by (4.2.1), and

then de�ne (X

1

) as

(X

1

) = lim

Æ!0

sup

kvk

2

�Æ

�

F

(X

1

;

~

X

1

)

Æ

: (4:2:17)

The ondition number (Y

1

) for Y

1

an be de�ned in the same way.

From the de�nition (4.2.17) we see that in �rst order approximation the inequal-

ity

�

F

(X

1

;

~

X

1

) � (X

1

)











 

kEk

F



A

;

kFk

F



B

!











2

holds. For �

F

(Y

1

;

~

Y

1

) we have a similar estimate.

Moreover, we may de�ne the partial ondition numbers 

A

(X

1

) and 

B

(X

1

) for

X

1

as



A

(X

1

) = lim

Æ!0

sup

kEk

F



A

�Æ; F=0

�

F

(X

1

;

~

X

1

)

Æ

;



B

(X

1

) = lim

Æ!0

sup

E=0;

kFk

F



B

�Æ

�

F

(X

1

;

~

X

1

)

Æ

;

(4:2:18)

where 

A

and 

B

are positive parameters. The partial ondition numbers 

A

(Y

1

)

and 

B

(Y

1

) for Y

1

an be de�ned in the same way.

Take X = (X

1

;X

2

); Y = (Y

1

; Y

2

) 2 U

n�n

with X

1

; Y

1

2 U

n�l

so that X

1

=

R(X

1

), Y

1

= R(Y

1

), and

Y

H

AX =

 

A

11

A

12

0 A

22

!

; Y

H

BX =

 

B

11

B

12

0 B

22

!

; (4:2:19)

where A

11

; B

11

2 C

l�l

, and �(A

11

; B

11

)

T

�(A

22

; B

22

) = ;. For E;F 2 C

n�n

let

Y

H

EX =

 

E

11

E

12

E

21

E

22

!

; Y

H

FX =

 

F

11

F

12

F

21

F

22

!

;

where E

11

; F

11

2 C

n�n

. Moreover, de�ne the linear operator T by (4.1.24). It

is noted in x4.1.2 that the linear operator T has the matrix representation T of

(4.1.35), T is invertible, and the inverse of T is expressed by (4.1.37). We now use

the expressions of (4.1.37) to give omputable formulas of the ondition numbers

(X

1

), (Y

1

), 

A

(X

1

), 

B

(X

1

), 

A

(Y

1

) and 

B

(Y

1

).

Theorem 4.2.6. The ondition numbers (X

1

) and (Y

1

) an be expressed by

(X

1

) =











C

1

 



A

I 0

0 

B

I

!











2

; (Y

1

) =











C

2

 



A

I 0

0 

B

I

!











2

; (4:2:20)
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where the matries C

1

and C

2

are de�ned by (4.1.37).

Proof. Let A;B have the deomposition (4.2.19), (A+E;B+F ) be a perturba-

tion of (A;B) with suÆiently small k(E;F )k, and let f

~

X

1

;

~

Y

1

g be the orresponding

perturbation of fX

1

;Y

1

g. By (4.2.17), Theorem 1.3.3 (see the relation (1.3.17)) and

Corollary 4.1.7 (see the expansions of (4.1.33)), we have

(X

1

) = lim

Æ!0

sup

kvk

2

�Æ

kZ

1

k

F

Æ

;

where v is the vetor de�ned by (4.2.1), and Z

1

by (4.1.34). Thus,

(X

1

) = sup











 

ve(E)=

A

ve(F )=

B

!











2

�1











C

1

 



A

I 0

0 

B

I

! 

ve(E

21

)=

A

ve(F

21

)=

B

!











2

=











C

1

 



A

I 0

0 

B

I

!











2

:

Similarly, we obtain the omputable formula of (Y

1

). 2

Theorem 4.2.7. The partial ondition numbers 

A

(X

1

), 

B

(X

1

), 

A

(Y

1

) and



B

(Y

1

) an be expressed by



A

(X

1

) = 

A

kC

11

k

2

; 

B

(X

1

) = 

B

kC

12

k

2

;



A

(Y

1

) = 

A

kC

21

k

2

; 

B

(Y

1

) = 

B

kC

22

k

2

;

(4:2:21)

where the matries C

11

; C

12

; C

21

and C

22

are de�ned by (4.1.37).

Proof. By (4.2.18) and the same argument desribed in the proof of Theorem

4.2.6, we have



A

(X

1

) = lim

Æ!0

sup

kEk

F



A

�Æ; F=0

kve(Z

1

)k

2

Æ

= 

A

sup

kve(E

21

)k

2

�1

kC

11

ve(E

21

)k

2

= 

A

kC

11

k

2

:

Similarly, we obtain the other formulas of (4.2.21). 2

Remark 4.2.8. By Stewart [91℄, the simple deating subspae pair fX

1

;Y

1

g

has the (absolute) ondition number (X

1

;Y

1

) whih an be expressed by

(X

1

;Y

1

) = kCk

2

; (4:2:22)
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where the matrix C is de�ned by (4.1.37). However, the onditioning of the two

subspaes X

1

and Y

1

may be quite di�erent, and the ondition number (X

1

;Y

1

)

is governed by the ill-onditioning of the most sensitive subspae of the deating

subspae pair. By (4.1.37), we have

kC

1

k

2

� kCk

2

and kC

2

k

2

� kCk

2

; (4:2:23)

and in some ases

kC

1

k

2

� kCk

2

or kC

2

k

2

� kCk

2

; (4:2:24)

whih means that in some ases (X

1

;Y

1

) may be a severe overestimate of the sen-

sitivity of X

1

or Y

1

(see Example 4.2.10 below).

Remark 4.2.9. Taking 

A

= 

B

= 1 in (4.2.17), (4.2.18), (4.2.20) and (4.2.21)

yields the absolute ondition numbers 

abs

(X

1

), 

abs

(Y

1

), and 

(abs)

A

(X

1

), 

(abs)

B

(X

1

),



(abs)

A

(Y

1

), 

(abs)

B

(Y

1

). For example, we have



abs

(X

1

) = kC

1

k

2

; 

abs

(Y

1

) = kC

2

k

2

: (4:2:25)

Example 4.2.10. Let (A;B) be a 4 � 4 regular pair having the generalized Shur

deomposition (4.1.21) with

A

11

= 10

�5

� I

2

; B

11

=

�

10

�4

0

10

�4

10

�4

�

; A

22

= B

22

= I

2

:

Aording to Remark 4.2.9, we have



abs

(X

1

) � 1:8960; 

(abs)

A

(X

1

) � 1:8929; 

(abs)

B

(X

1

) � 1:8883� 10

�1

;



abs

(Y

1

) � 2:6705� 10

4

; 

(abs)

A

(Y

1

) � 1:8883� 10

4

; 

(abs)

B

(Y

1

) � 1:8883� 10

4

;

and by (4.2.22),

(X

1

;Y

1

) � 2:6705� 10

4

:

Obviously, for this example the ondition number (X

1

;Y

1

) is a severe overestimate of the

(absolute) sensitivity of the eigenspae X

1

.

Notes and Referenes

NR 4.2{1. The hordal metri �((~�;

~

�); (�; �)) is �rst used in the perturbation

theory for matrix pairs by Stewart [92℄. The ondition number 

abs

(�; �) of (4.2.9)

is given by Stewart and Sun [97, Chapter VI℄; and it is also proved by Dedieu [28,

Corollary 7.3℄.

NR 4.2{2. Let (A;B) be a regular pair, and (�; �) be a simple eigenvalue of

(A;B). Let (

~

A;

~

B) = (A + E;B + F ) be a perturbation of (A;B), and (~�;

~

�) be
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the orresponding perturbation of (�; �). De�ne v by (4.2.1), and then de�ne the

ondition number 

p

(�; �) of a simple eigenvalue (�; �) by



p

(�; �) = lim

Æ!0

sup

kvk

p

�Æ

�((~�;

~

�); (�; �))

Æ

; (4:2:26)

where k �k

p

is the p-norm (p � 1), and 

A

; 

B

are positive parameters. The following

result gives a omputable formula of 

p

(�; �).

Theorem 4.2.11. The ondition number 

p

(�; �) an be expressed by



p

(�; �) =









�



B

y

H

Ax; 

A

y

H

Bx

�

T









q

kxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

; (4:2:27)

where q satis�es 1=p+1=q = 1, and x and y are right and left eigenvetors of (A;B)

assoiated with �.

Proof. The proof is ompleted by the following three steps.

1. On 

p

(�; �) for p = 1. By Corollary 4.1.3 and (4.1.20), we have

�((~�;

~

�); (�; �))

Æ

�

�

jy

H

BxjkEk+ jy

H

AxjkFk

�

kxk

2

kyk

2

Æ (jy

H

Axj

2

+ jy

H

Bxj

2

)

+O(Æ)

�

max

n



B

jy

H

Axj; 

A

jy

H

Bxj

o

jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ) if













 

kEk



A

;

kFk



B

!

T













1

� Æ:

(4:2:28)

On the other hand, if 

A

jy

H

Bxj � 

B

jy

H

Axj then the equalities in (4.2.28) are

ahieved for the spei� perturbations

b

E =

Æ

A

yx

H

kxk

2

kyk

2

and

b

F = 0;

if 

A

jy

H

Bxj � 

B

jy

H

Axj then the equalities in (4.2.28) are ahieved for the spei�

perturbations

b

E = 0 and

b

F =

Æ

B

yx

H

kxk

2

kyk

2

:

Consequently, using the de�nition (4.2.26) with p = 1 we derive the omputable

formula of 

1

(�; �).
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2. On 

p

(�; �) for 1 < p <1. By Corollary 4.1.3 and (4.1.20), we have

�((~�;

~

�); (�; �))

Æ

�









�



B

� y

H

Ax; 

A

� y

H

Bx

�

T









q

kxk

2

kyk

2

jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ)

if













 

kEk



A

;

kFk



B

!

T













p

� Æ:

(4:2:29)

On the other hand, the equalities in (4.2.29) are ahieved for the spei� perturba-

tions

b

E = �

Æ

A

�yx

H

kxk

2

kyk

2

and

b

F =

Æ

B

�yx

H

kxk

2

kyk

2

with

� = 

A

� y

H

Bx � (

A

jy

H

Bxj)

q

p

�1

�









�



A

� y

H

Bx; 

B

� y

H

Ax

�

T









1

q

�1

q

;

� = 

B

� y

H

Ax � (

B

jy

H

Axj)

q

p

�1

�









�



A

� y

H

Bx; 

B

� y

H

Ax

�

T









1

q

�1

q

;

Consequently, using the de�nition (4.2.26) we derive the omputable formula of



p

(�; �) for 1 < p <1.

3. On 

1

(�; �). By Corollary 4.1.3 and (4.1.20), we have

�((~�;

~

�); (�; �))

Æ

�

�



B

jy

H

Axj+ 

A

jy

H

Bxj

�

kxk

2

kyk

2

(jy

H

Axj

2

+ jy

H

Bxj

2

+O(Æ)

if













 

kEk



A

;

kFk



B

!

T













1

� Æ:

(4:2:30)

On the other hand, the equalities in (4.2.30) are ahieved for the spei� perturba-

tions

b

E = �

Æ

A

e

�iarg(y

H

Bx)

yx

H

kxk

2

kyk

2

and

b

F =

Æ

B

e

�iarg(y

H

Ax)

yx

H

kxk

2

kyk

2

:

Consequently, using the de�nition (4.2.26) with p = 1 we derive the omputable

formula of 

1

(�; �). 2

NR 4.2{3. Frayss�e and Toumazou [39℄, and D. Higham and N. Higham [46℄

onsider �nite non-zero simple eigenvalues of a regular pair (A;B). Let (�; �) and

(~�;

~

�) be as in NR 4.2{2 with �

~

� 6= 0, and let

� =

�

�

;

~

� =

~�

~

�

:
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Frayss�e and Toumazou [39℄ de�ne the relative ondition number K(�) by

K(�) = lim

Æ!0

sup

kvk

1

�Æ

j

~

�� �j

j�jÆ

; (4:2:31)

where v is the vetor de�ned by (4.2.26), and k � k denotes any vetor norm and

subordinate matrix norm. Frayss�e and Toumazou [39, Lemma 3.1℄ prove that K(�)

an be expressed by

K(�) =

(

A

+ j�j

B

)kxkkyk

D

j�jjy

H

Bxj

; (4:2:32)

where x and y are right and left eigenvetors of (A;B) assoiated with �, and k � k

D

denotes the dual norm of k � k.

D. Higham and N. Higham [46℄ de�ne the omponentwise ondition number

ond(�) for a �nite non-zero simple eigenvalue � = �=� by

ond(�) = lim

Æ!0

sup

jEj � Æ�

jF j � Æ	

j

~

�� �j

j�jÆ

; (4:2:33)

where � and 	 are two proper matries. D. Higham and N. Higham [46, Theorem

3.2℄ prove that ond(�) an be expressed by

ond(�) =

jy

H

jEjxj+ j�jjy

H

jF jxj

j�jjy

H

Bxj

: (4:2:34)

Moreover, strutured ondition numbers of simple eigenvalues of some speial matrix

pairs (for example, Hermitian matrix pairs, Toeplitz matrix pairs, or banded matrix

pairs) are also studied by D. Higham and N. Higham [46, x4℄.

Note that the omputable formulas (4.2.32) and (4.2.34) an be proved by ap-

plying Corollary 4.1.3. In fat, by (4.1.19), we have

j

~

�� �j =

�

�

�

y

H

Ex� �y

H

Fx

�

�

�

j�j

+O

�

k(E;F )k

2

�

; (4:2:35)

where (E;F )! 0. Combining (4.2.31) with (4.2.35) shows (4.2.32), and ombining

(4.2.33) with (4.2.35) shows (4.2.34).

NR 4.2{4. Consider the regular pair (A;B) with

A =

 

1 0

0 2

!

; B =

 

10

�8

0

0 1

!

:

It is easy to see that (�

1

; �

1

) = (1; 10

�8

) and (�

2

; �

2

) = (2; 1), or equivalently,

�

1

= �

1

=�

1

= 10

8

and �

2

= �

2

=�

2

= 2, are simple eigenvalues of the matrix pair.



158 CHAPTER 4. GENERALIZED EIGENVALUE PROBLEMS

Taking 

A

= kAk

2

, 

B

= kBk

2

and k � k = k � k

2

in (4.2.32) gives the ondition

numbers

K(�

1

) � 10

8

; K(�

2

) � 2;

whih mean that the eigenvalue �

2

is well-onditioned but �

1

is ill-onditioned a-

ording to the prevailing point of view. Observe that the generalized eigenvalues of

a matrix pair lie on the Riemann sphere. Hene, to use the hordal metri is more

appropriate for investigating perturbation behavior of generalized eigenvalues. By

(4.2.10), we have the ondition numbers



rel

(�

1

; �

1

) � 1; 

rel

(�

2

; �

2

) � 0:6;

whih show that both the eigenvalues (�

1

; �

1

) and (�

2

; �

2

) are well behaved in the

hordal metri sense.

NR 4.2{5. Let fX

1

;Y

1

g be a simple deating subspae pair. For estimates of

the ondition number (X

1

;Y

1

) of (4.2.22), see K�agstr�om and Poromaa [59℄ and [60℄.

The problem of how to ompute or estimate the ondition numbers (X

1

), (Y

1

) of

(4.2.20), as well as the partial ondition numbers 

A

(X

1

), 

B

(X

1

), 

A

(Y

1

) and 

B

(Y

1

)

of (4.2.21), eÆiently, is a researh problem.

4.3 Perturbation Bounds for Deating Subspaes

A perturbation bound for simple deating subspae pairs has been obtained by

Stewart [91, Theorem 5.7℄. We now apply Theorem 3.3.5 to derive a new result.

The di�erene between the new result and Stewart's result is that the new result

gives an individual perturbation bound for eah subspae in a deating subspae

pair, separately.

Theorem 4.3.1. Let (A;B);X = (X

1

;X

2

); Y = (Y

1

; Y

2

); A

ij

; B

ij

;X

1

;Y

1

be as

in Theorem 4.1.6. For E;F 2 C

n�n

let

Y

H

EX =

 

E

11

E

12

E

21

E

22

!

; Y

H

FX =

 

F

11

F

12

F

21

F

22

!

; (4:3:1)

where E

11

; F

11

2 C

l�l

. Moreover, let 

abs

(X

1

); 

abs

(Y

1

) be the ondition numbers

expressed by (4.2.25), and let



�

=

q

[

abs

(X

1

)℄

2

+ [

abs

(Y

1

)℄

2

; � = k(E

11

; F

11

)k

2

+











 

E

22

F

22

!











2

; (4:3:2)

and

 =











 

E

21

F

21

!











F

; � = max fkA

12

k

2

+ kE

12

k

2

; kB

12

k

2

+ kF

12

k

2

g : (4:3:3)
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If



�

(2

p

� + �) < 1; (4:3:4)

then there is a unique pair of l-dimensional deating subspaes

~

X

1

= R(

~

X

1

) and

~

Y

1

= R(

~

Y

1

) of (A+E;B + F ) suh that

�(X

1

;

~

X

1

) � k tan�(X

1

;

~

X

1

)k

F

�

2

abs

(X

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

�(Y

1

;

~

Y

1

) � k tan�(Y

1

;

~

Y

1

)k

F

�

2

abs

(Y

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

(4:3:5)

where �(�; �) is de�ned by (1.3.1).

Proof. Let T be the linear operator de�ned by (4.1.24). It is easy to verify that

 

Z

W

!

is a solution of the equation

T

 

Z

W

!

=

 

E

21

F

21

!

+

 

�WE

11

+E

22

Z

�WF

11

+ F

22

Z

!

�

 

W (A

12

+E

12

)Z

W (B

12

+ F

12

)Z

!

(4:3:6)

if and only if Z and W satisfy

 

I 0

�W I

! 

A

11

+E

11

A

12

+E

12

E

21

A

22

+E

22

! 

I 0

Z I

!

=

 

� �

0 �

!

;

 

I 0

�W I

! 

B

11

+ F

11

B

12

+ F

12

F

21

B

22

+ F

22

! 

I 0

Z I

!

=

 

� �

0 �

!

:

(4:3:7)

The relations of (4.3.7) imply that the pair of the subspaes

~

X

1

= R

 

X

 

I

Z

!!

;

~

Y

1

= R

 

Y

 

I

W

!!

is an l-dimensional deating subspae pair of (A + E;B + F ). Consequently, by

Theorem 1.3.3 (see the relation (1.3.16)), the problem of proving (4.3.5) is redued

to the problem of �nding a solution

 

Z

�

W

�

!

of (4.3.6) in a ertain neighborhood of

the origin.

Let C

1

; C

2

be the matries de�ned by (4.1.37), and let

z = ve(Z); w = ve(W ); e

21

= ve(E

21

); f

21

= ve(F

21

);

x(z; w) = ve(�WE

11

+E

22

Z); y(z; w) = ve(�WF

11

+ F

22

Z); (4:3:8)
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and

u(z; w) = ve(W (A

12

+E

12

)Z); v(z; w) = ve(W (B

12

+ F

12

)Z): (4:3:9)

Then the equation (4.3.6) an be written in an equivalent form

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

z = C

1

" 

e

21

f

21

!

+

 

x(z; w)

y(z; w)

!

�

 

u(z; w)

v(z; w)

!#

;

w = C

2

" 

e

21

f

21

!

+

 

x(z; w)

y(z; w)

!

�

 

u(z; w)

v(z; w)

!#

:

(4:3:10)

De�ne the funtions f and h by

f =

 

x

y

!

; h =

 

u

v

!

:

Observe that f and h satisfy the onditions (3.3.21) and (3.3.22), where the salars

� and � are de�ned by (4.3.2) and (4.3.3), respetively. Hene, by Theorem 3.3.5, if



�

� < 1 and

4

2

�

�

(1� 

�

�)

2

< 1;

or equivalently, if 

�

; ; �; � satisfy the ondition (4.3.4), then the equation (4.3.10)

has a unique solution

 

z

�

w

�

!

(or equivalently, the equation (4.3.6) has a unique

solution

 

Z

�

W

�

!

) satisfying

kZ

�

k

F

= kz

�

k

2

�

2

abs

(X

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

;

kW

�

k

F

= kw

�

k

2

�

2

abs

(Y

1

)

1� 

�

�+

p

(1� 

�

�)

2

� 4

2

�

�

:

Combining it with (1.3.12) and (1.3.16) shows the inequalities of (4.3.5). 2

Remark 4.3.2. The estimates (4.3.5) imply that if 

�

�

2

p

� + �

�

is suÆiently

small, or more intuitively, if k(E;F )k is suÆiently small, then

k tan�(X

1

;

~

X

1

)k

F

<

�



abs

(X

1

); k tan�(Y

1

;

~

Y

1

)k

F

<

�



abs

(Y

1

): (4:3:11)

Note that by Stewart [96, Theorem 5.7℄, we have











 

tan�(X

1

~

X

1

)

tan�(Y

1

;

~

Y

1

)

!











F

<

�

(X

1

;Y

1

) (4:3:12)
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when k(E;F )k is suÆiently small, where (X

1

;Y

1

) is de�ned by (4.2.22). From

(4.2.22){(4.2.25) we see that the bounds (4.3.11) and (4.3.12) are, in general, qual-

itatively the same, but in some ases the result (4.3.11) is better (even muh bet-

ter) than (4.3.12) if one needs to bound perturbations of eah subspae of the pair

fX

1

;Y

1

g, separately. The drawbak of the bound (4.3.12) is that it is governed by

the ill-onditioning of the most sensitive subspae of the deating subspae pair.

If the matries E

jk

and F

jk

of (4.3.1) are known, then we an apply Theorem

3.3.4 to derive the following result on perturbation bounds for deating subspaes

whih will be used in x4.4.2.

Theorem 4.3.3. Let (A;B);X; Y;A

jk

; B

jk

;X

1

;Y

1

; E; F and E

jk

; F

jk

(j; k =

1; 2) be as in Theorem 4.3.1, and C

1

; C

2

be the matries of (4.1.37). Moreover,

let

b

1

=











C

1

 

veE

21

veF

21

!











2

; 

1

= kC

1

k

2

;

b

2

=











C

2

 

veE

21

veF

21

!











2

; 

2

= kC

2

k

2

;

b = b

1

+ b

2

;  = 

1

+ 

2

;

(4:3:13)

and let

� = max fkA

12

+E

12

k

2

; kB

12

+ F

12

k

2

g ;

� =











 

kE

11

k

2

kE

22

k

2

kF

11

k

2

kF

22

k

2

!











2

:

(4:3:14)

If

� < 1 and

4b�

(1� �)

2

< 1; (4:3:15)

then there is a unique pair of deating subspaes

~

X

1

= R(

~

X

1

),

~

Y

1

= R(

~

Y

1

) of the

matrix pair (A+E;B + F ) suh that

~

X

1

2 U

n�l

,

~

Y

1

2 U

m�l

, and

�

F

(X

1

;

~

X

1

) � k tan�(X

1

;

~

X

1

)k

F

� b

1

+ 

1

(�� + ��

2

);

�

F

(Y

1

;

~

Y

1

) � k tan�(Y

1

;

~

Y

1

)k

F

� b

2

+ 

2

(�� + ��

2

);

(4:3:16)

where

� =

2b

1� �+

p

(1� �)

2

� 4b�

: (4:3:17)

Proof. From the proof of Theorem 4.3.1 we see that it only needs to show the

following fat: Under the assumptions (4.3.15) the system (4.3.10) has a unique
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solution

 

z

�

w

�

!

satisfying

kz

�

k

2

� b

1

+ 

1

(�� + �

2

);

kw

�

k

2

� b

2

+ 

2

(�� + �

2

);

(4:3:18)

where � is the salar de�ned by (4.3.17).

Applying Theorem 3.3.4 to the system (4.3.10), and using the assumptions

(4.3.15), we get the estimates (4.3.18) immediately. 2

Notes and Referenes

NR 4.3{1. The �rst perturbation bound for deating subspae pair is obtained

by Stewart [91, Theorem 5.7℄. Theorem 4.3.1 is proved by Sun [119, Theorem 3.4.1℄.

4.4 Bakward Errors and Residual Bounds

4.4.1 Bakward Errors

In this subsetion we disuss several kinds of normwise bakward errors whih are

de�ned by using some information of approximate deating subspaes and assoi-

ated eigenmatries of a matrix pair (A;B).

4.4.1.1 The Bakward Errors �

(�)

(

~

X

1

;

~

Y

1

) and �

(!)

(

~

X

1

;

~

Y

1

)

Let (A;B) be an n�n regular pair, and let f

~

X

1

;

~

Y

1

g approximate an l-dimensional

deating subspae pair of (A;B). By x1.9, we de�ne the bakward errors �

(�)

(

~

X

1

;

~

Y

1

)

and �

(!)

(

~

X

1

;

~

Y

1

) of (A;B) with respet to f

~

X

1

;

~

Y

1

g by

�

(�)

(

~

X

1

;

~

Y

1

) = min

 

E

F

!

2G











 

E

�F

!











; (4:4:1)

and

�

(!)

(

~

X

1

;

~

Y

1

) = min

 

E

F

!

2G

�

 

kEk

!kFk

!

; (4:4:2)

where �; ! are positive parameters, �(�) is any absolute norm on R

2

, and the set G

is de�ned by

G =

( 

E

F

!

: E;F 2 C

n�n

; (A+E)

~

X

1

�

~

Y

1

; (B + F )

~

X

1

�

~

Y

1

)

: (4:4:3)
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The following result gives a omputable formula of �

(�)

(

~

X

1

;

~

Y

1

).

Theorem 4.4.1. Let (A;B) be an n � n regular pair. Let

~

X

1

= R(

~

V

1

) and

~

Y

1

= R(

~

U

1

) with

~

V

1

;

~

U

1

2 U

n�l

, and let

R

A

=

~

U

1

(

~

U

H

1

A

~

V

1

)�A

~

V

1

; R

B

=

~

U

1

(

~

U

H

1

B

~

V

1

)�B

~

V

1

(4:4:4)

be the residuals of (A;B) with respet to

~

V

1

and

~

U

1

. Then the bakward error

�

(�)

(

~

X

1

;

~

Y

1

) an be expressed by

�

(�)

(

~

X

1

;

~

Y

1

) =











 

R

A

�R

B

!











: (4:4:5)

The expressions (4.4.4) and (4.4.5) imply that the bakward error �

(�)

(

~

X

1

;

~

Y

1

)

de�ned by (4.4.1) is independent of the hoie of the matries

~

V

1

and

~

U

1

whose

olumn vetors form orthonormal bases of

~

X

1

and

~

Y

1

, respetively.

Proof of Theorem 4.4.1. From (4.4.3) it follows that a matrix

 

E

F

!

2 G if

and only if

 

E

F

!

is a solution to the equation

 

A+E

B + F

!

~

V

1

=

 

~

U

1

A

1

~

U

1

B

1

!

for some A

1

; B

1

2 C

l�l

, or equivalently,

 

E

F

!

satis�es

 

E

F

!

~

V

1

=

 

~

U

1

A

1

�A

~

V

1

~

U

1

B

1

�B

~

V

1

!

: (4:4:6)

Applying Theorem 1.5.1 to the equation (4.4.6) we see that the equation is

solvable, and any solution

 

E

F

!

of the equation an be expressed by

 

E

F

!

=

 

~

U

1

A

1

�A

~

V

1

~

U

1

B

1

�B

~

V

1

!

~

V

H

1

+

 

Z

W

!

(I �

~

V

1

~

V

H

1

); (4:4:7)

where Z;W 2 C

n�n

.

Choose

~

V

2

;

~

U

2

so that

~

V = (

~

V

1

;

~

V

2

);

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (4.4.7)

 

~

U

H

0

0

~

U

H

! 

E

�F

!

~

V =

0

B

B

B

�

A

1

�

~

U

H

1

A

~

V

1

~

U

H

1

Z

~

V

2

�

~

U

H

2

A

~

V

1

~

U

H

2

Z

~

V

2

�(B

1

�

~

U

H

1

B

~

V

1

) �

~

U

H

1

W

~

V

2

��

~

U

H

2

B

~

V

1

�

~

U

H

2

W

~

V

2

1

C

C

C

A

:
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By the de�nition (4.4.1) and Theorem 1.2.1, we have

�(

~

X

1

;

~

Y

1

) =











 

E

opt

�F

opt

!











with

 

E

opt

F

opt

!

=

 

R

A

R

B

!

~

V

H

1

; (4:4:8)

where R

A

; R

B

are the residuals de�ned by (4.4.4).

Combining (4.4.8) with

�

+

  

R

A

�R

B

!

~

V

H

1

!

= �

+

 

R

A

�R

B

!

shows (4.4.5). 2

The following result gives a omputable formula of �

(!)

(

~

X

1

;

~

Y

1

).

Theorem 4.4.2. Let (A;B);

~

X

1

;

~

V

1

;

~

Y

1

;

~

U

1

, R

A

; R

B

be as in Theorem 4.4.1.

Then the bakward error �

(!)

(

~

X

1

;

~

Y

1

) an be expressed by

�

(!)

(

~

X

1

;

~

Y

1

) = �

 

kR

A

k

!kR

B

k

!

: (4:4:9)

The expression (4.4.9) shows that the bakward error �

(!)

(

~

X

1

;

~

Y

1

) de�ned by

(4.4.2) is independent of the hoie of the matries

~

V

1

and

~

U

1

whose olumn vetors

form orthonormal bases of

~

X

1

and

~

Y

1

, respetively.

Proof of Theorem 4.4.2. From the de�nition (4.4.2) and the proof of Theorem

4.4.1 we see that

�

(!)

(

~

X

1

;

~

Y

1

) = min

A

1

; B

1

2 C

l�l

Z;W 2 C

n�n

�

0

B

�

k(

~

U

1

A

1

�A

~

V

1

)

~

V

H

1

+ Z(I �

~

V

1

~

V

H

1

)k

!k(

~

U

1

B

1

�B

~

V

1

)

~

V

H

1

+W (I �

~

V

1

~

V

H

1

)k

1

C

A

:

(4:4:10)

Observe the following fats: (i) By the proof of Theorem 4.4.1, we have

k(

~

U

1

A

1

�A

~

V

1

)

~

V

H

1

+ Z(I �

~

V

1

~

V

H

1

)k � kR

A

~

V

H

1

k;

k(

~

U

1

B

1

�B

~

V

1

)

~

V

H

1

+W (I �

~

V

1

~

V

H

1

)k � kR

B

~

V

H

1

k;

(4:4:11)

(ii) The equalities in (4.4.11) are ahieved when A

1

; B

1

, Z;W satisfy

A

1

=

~

U

H

1

A

~

V

1

; B

1

=

~

U

H

1

B

~

V

1

; Z

~

V

2

=W

~

V

2

= 0;

(iii) By the hypothesis �(�) is an absolute norm. (iv) From

�

+

(R

A

~

V

H

1

) = �

+

(R

A

); �

+

(R

B

~

V

H

1

) = �

+

(R

B

)
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it follows that

kR

A

~

V

H

1

k = kR

A

k; kR

B

~

V

H

1

k = kR

B

k:

Hene, from (4.4.10) we obtain (4.4.9). 2.

We now de�ne the relative bakward errors �

�

rel

(

~

X

1

;

~

Y

1

) and �

rel

(

~

X

1

;

~

Y

1

) of (A;B)

with respet to

~

X

1

,

~

Y

1

by

�

�

rel

(

~

X

1

;

~

Y

1

) = min

 

E

F

!

2G











 

E

F

!











F











 

A

B

!











F

;

and

�

rel

(

~

X

1

;

~

Y

1

) = min

 

E

F

!

2G











 

kEk

F

=kAk

F

kFk

F

=kBk

F

!











2

;

where G is the set de�ned by (4.4.3). From (4.4.1), (4.4.2), (4.4.5) and (4.4.9) we

get the omputable formulas

�

�

rel

(

~

X

1

;

~

Y

1

) =

1











 

A

B

!











F

�

(1)

(

~

X

1

;

~

Y

1

) =











 

R

A

R

B

!











F











 

A

B

!











F

; (4:4:12)

and

�

rel

(

~

X

1

;

~

Y

1

) =

1

kAk

F

�

(kAk

F

=kBk

F

)

(

~

X

1

;

~

Y

1

) =











 

kR

A

k

F

=kAk

F

kR

B

k

F

=kBk

F

!











2

: (4:4:13)

Remark 4.4.3. Let f

~

X

1

;

~

Y

1

g approximate an 1-dimensional deating subspae

pair of (A;B), where

~

X

1

= R(~v

1

);

~

Y

1

= R(~u

1

), and ~v

1

; ~u

1

are unit vetors. By

the formulas (4.4.12) and (4.4.13), the relative bakward errors �

�

rel

(

~

X

1

;

~

Y

1

) and

�

rel

(

~

X

1

;

~

Y

1

) of (A;B) with respet to

~

X

1

;

~

Y

1

an be expressed by

�

�

rel

(

~

X

1

;

~

Y

1

) =

q

kr

A

k

2

2

+ kr

B

k

2

2











 

A

B

!











F

; �

rel

(

~

X

1

;

~

Y

1

) =











 

kr

A

k

2

=kAk

F

kr

B

k

2

=kBk

F

!











2

;

where

r

A

= (~u

H

1

A~v

1

)~u

1

�A~v

1

; r

B

= (~u

H

1

B~v

1

)~u

1

�B~v

1

are the residuals. Moreover, the optimal bakward perturbation is

 

E

opt

F

opt

!

=

 

r

A

r

B

!

~v

H

1

:
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4.4.1.2 The Bakward Errors �

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) and �

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

)

Let (A;B) be an n�n regular pair, and let X

1

;Y

1

be l-dimensional subspaes of

C

n

. It is known that the pair fX

1

;Y

1

g is a deating subspae pair of (A;B) if and

only if there are matries X

1

; Y

1

2 C

n�l

and A

1

; B

1

2 C

l�l

suh that

X

1

= R(X

1

); Y

1

= R(Y

1

); and AX

1

= Y

1

A

1

; BX

1

= Y

1

B

1

; (4:4:14)

where (A

1

; B

1

) is a regular pair.

The matrix pair (A

1

; B

1

) may be alled the eigenmatrix pair of (A;B) assoiated

with X

1

; Y

1

.

Let

~

X

1

;

~

Y

1

2 C

n�l

, rank(

~

X

1

) = rank(

~

Y

1

) = l, and let (

~

A

1

;

~

B

1

) be an l� l regular

pair. Moreover, let f

~

X

1

;

~

Y

1

g with

~

X

1

= R(

~

X

1

) and

~

Y

1

= R(

~

Y

1

) approximate a

deating subspae pair of (A;B), and (

~

A

1

;

~

B

1

) be the assoiated eigenmatrix pair.

By x1.9, we de�ne the bakward errors �

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) and �

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

)

of (A;B) with respet to

~

X

1

;

~

Y

1

and (

~

A

1

;

~

B

1

) by

�

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = min

 

E

F

!

2K











 

E

�F

!











; (4:4:15)

and

�

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = min

 

E

F

!

2K

�

 

kEk

!kFk

!

; (4:4:16)

where �; ! are positive parameters, �(�) is any absolute norm on R

2

, and the set K

is de�ned by

K =

( 

E

F

!

: E;F 2 C

n�n

; (A+E)

~

X

1

=

~

Y

1

~

A

1

; (B + F )

~

X

1

=

~

Y

1

~

B

1

)

:

(4:4:17)

The following result gives a omputable formula of �

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

).

Theorem 4.4.4. Let

R

A

=

~

Y

1

~

A

1

�A

~

X

1

; R

B

=

~

Y

1

~

B

1

�B

~

X

1

(4:4:18)

be the residual of (A;B) with respet to

~

X

1

;

~

Y

1

and (

~

A

1

;

~

B

1

). Then the bakward

error �

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) an be expressed by

�

(�)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =











 

R

A

�R

B

!

~

X

y

1











: (4:4:19)
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Proof. From (4.4.17) it follows that a matrix

 

E

F

!

2 K if and only if

 

E

F

!

satis�es

 

E

F

!

~

X

1

=

 

R

A

R

B

!

; (4:4:20)

where R

A

and R

B

are the residuals de�ned by (4.4.18).

Applying Theorem 1.5.1 to the equation (4.4.20) we see that the equation is

solvable, and any solution

 

E

F

!

of the equation an be expressed by

 

E

F

!

=

 

R

A

R

B

!

~

X

y

1

+

 

Z

W

!

(I �

~

X

1

~

X

y

1

); (4:4:21)

where Z;W 2 C

n�n

.

Take an orthogonal deomposition

~

X

1

=

~

U

1

L, where

~

U

1

2 U

n�l

and L 2 C

l�l

.

Further, hoose

~

U

2

so that

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. Then from (4.4.21)

 

E

�F

!

=

  

R

A

�R

B

!

L

�1

;

 

Z

�W

!

~

U

2

!

~

U

H

:

By the de�nition (4.4.15) and Theorem 1.2.1, we have

�(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =











 

E

opt

�F

opt

!











with

 

E

opt

F

opt

!

=

 

R

A

R

B

!

L

�1

~

U

H

1

=

 

R

A

R

B

!

~

X

y

1

;

whih shows (4.4.19). 2

The following result gives a omputable formula of �

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

).

Theorem 4.4.5. Let (A;B);

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

, R

A

; R

B

be as in Theorem 4.4.4.

Then the bakward error �

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) an be expressed by

�

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = �

 

kR

A

~

X

y

1

k

!kR

B

~

X

y

1

k

!

: (4:4:22)

Proof. From the de�nition (4.4.16) and the proofs of Theorems 4.4.4 and 4.4.2

we get

�

(!)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = min

Z;W2C

n�n

�

 

k(R

A

L

�1

; Z

~

U

2

)k

!k(R

B

L

�1

; W

~

U

2

)k

!

= �

 

kR

A

L

�1

k

!kR

B

L

�1

k

!

= �

 

kR

A

~

X

y

1

k

!kR

B

~

X

y

1

k

!

:
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The proof is ompleted. 2

We now de�ne the relative bakward errors �

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) and �

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

)

of (A;B) with respet to

~

X

1

,

~

Y

1

and (

~

A

1

;

~

B

1

) by

�

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = min

 

E

F

!

2K











 

E

F

!











F











 

A

B

!











F

;

and

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) = min

 

E

F

!

2K











 

kEk

F

=kAk

F

kFk

F

=kBk

F

!











2

;

where K is the set de�ned by (4.4.17). From (4.4.19) and (4.4.22) we get the om-

putable formulas

�

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =

1











 

A

B

!











F

�

(1)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =











 

R

A

R

B

!

~

X

y

1











F











 

A

B

!











F

; (4:4:23)

and

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =

1

kAk

F

�

(kAk

F

=kBk

F

)

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) =











 

kR

A

~

X

y

1

k

F

=kAk

F

kR

B

~

X

y

1

k

F

=kBk

F

!











2

:

(4:4:24)

Example 4.4.6. Consider the regular pair (A;B) with

A =

0

B

B

B

B

�

15 70:0 79:96 �20:001 �60:0000

0 0:7 39:92 0:000 19:9998

30 139:3 120:00 �40:001 �120:0006

�15 �70:0 �79:92 9:999 �20:0002

300 2:1 120:04 �9:998 �0:0002

1

C

C

C

C

A

and

B =

0

B

B

B

B

�

0:1 1:00 1:999 2:0001 3:00000

0:0 0:01 0:998 0:0000 �0:99999

0:2 1:99 3:000 4:0001 6:00003

�0:1 �1:00 �1:998 �0:9999 1:00001

2:0 0:03 3:001 0:9998 0:00001

1

C

C

C

C

A

;

where B is nonsingular. Using the MATLAB �le \qz" (whih is an implementation of the

QZ method) to the pair (A;B), we get the omputed results:

A

~

X

1

�

~

Y

1

~

A

1

; B

~

X

1

�

~

Y

1

~

B

1

;
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where

~

X

1

;

~

Y

1

2 R

5�k

,

~

A

1

;

~

B

1

2 R

k�k

, k = 1; 2; 3; 4; 5. By (4.4.23) and (4.4.24) we ompute

�

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) and �

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) whih are listed in Table 4.1.

Table 4:1

k �

�

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

) �

rel

(

~

X

1

;

~

Y

1

;

~

A

1

;

~

B

1

)

1 1:34� 10

�16

1:35� 10

�16

2 3:39� 10

�16

3:49� 10

�15

3 3:88� 10

�16

4:51� 10

�16

4 3:94� 10

�16

4:97� 10

�16

5 4:41� 10

�16

6:46� 10

�16

The results listed in Table 4.1 show that eah omputed fR(

~

X

1

);R(

~

Y

1

)g and assoiated

(

~

A

1

;

~

B

1

) by applying the MATLAB �le \qz" are an exat deating subspae pair and an as-

soiated eigenmatrix pair of a very slightly perturbed matrix pair of (A;B); in other words,

the omputation has proeeded quite stably.

4.4.1.3 The Bakward Error �

(�)

(

~

X

1

;

~

A

1

;

~

B

1

)

Let (A;B) be an n�n regular pair. By the de�nition introdued in x4.1.2, an l-

dimensional subspae X

1

is alled an eigenspae of (A;B) if there is an l-dimensional

subspae Y

1

suh that

AX

1

� Y

1

; BX

1

� Y

1

:

Let X

1

= R(X

1

) � C

n

, where X

1

2 C

n�l

and rank(X

1

) = l. It is known

(see Stewart and Sun [125, Chapter VI, Theorem 2.10℄) that the subspae X

1

is an

eigenspae of (A;B) if and only if there is an l � l regular pair (A

1

; B

1

) suh that

AX

1

B

1

= BX

1

A

1

: (4:4:25)

The matrix pair (A

1

; B

1

) may be alled an eigenmatrix pair of (A;B) assoiated

with X

1

.

Let

~

X

1

2 C

n�l

and

~

A

1

;

~

B

1

2 C

l�l

be given, where rank(

~

X

1

) = l, and the pair

(

~

A

1

;

~

B

1

) is regular. Moreover, let

~

X

1

= R(

~

X

1

) approximate an eigenspae of (A;B),

and (

~

A

1

;

~

B

1

) be an assoiated eigenmatrix pair. By x1.9, we de�ne the bakward

error �

(�)

(

~

X

1

;

~

A

1

;

~

B

1

) of (A;B) with respet to

~

X

1

and (

~

A

1

;

~

B

1

) by

�

(�)

(

~

X

1

;

~

A

1

;

~

B

1

) = min

(E;F )2L

k(E; �F )k; (4:4:26)

where the set L is de�ned by

L =

n

(E;F ) : E;F 2 C

n�n

; (A+E)

~

X

1

~

B

1

= (B + F )

~

X

1

~

A

1

o

: (4:4:27)

The following result gives a omputable formula of �

(�)

(

~

X

1

;

~

A

1

;

~

B

1

).
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Theorem 4.4.7. Let

R = B

~

X

1

~

A

1

�A

~

X

1

~

B

1

(4:4:28)

be the residual of (A;B) with respet to

~

X

1

and (

~

A

1

;

~

B

1

). Then the bakward error

�

(�)

(

~

X

1

;

~

A

1

;

~

B

1

) an be expressed by

�

(�)

(

~

X

1

;

~

A

1

;

~

B

1

) =













R

 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

!

y













: (4:4:29)

Proof. From (4.4.27) it follows that a matrix pair (E;F ) 2 L if and only if

(E;F ) satis�es

(E; �F )

 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

!

= R; (4:4:30)

where R is the residual de�ned by (4.4.28).

By the hypothesis the matrix pair (

~

A

1

;

~

B

1

) is regular, so we have rank

 

~

A

1

~

B

1

!

=

l. Applying Theorem 1.5.1 to the equation (4.4.30) we see that the equation is

solvable, and any solution (E; �F ) to the equation an be expressed by

(E; �F ) = R

 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

!

y

+ Z

0

�

I �

 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

! 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

!

y

1

A

; (4:4:31)

where Z 2 C

n�2n

.

By the de�nition (4.4.26) and Theorem 1.2.1, from (4.4.31) we obtain

�

(�)

(

~

X

1

;

~

A

1

;

~

B

1

) = k(E

opt

; �F

opt

)k

with

(E

opt

; F

opt

) = R

 

~

X

1

~

B

1

�

1

�

~

X

1

~

A

1

!

y

 

I 0

0

1

�

!

;

whih shows (4.4.29). 2.

We now de�ne the relative bakward error �

rel

(

~

X

1

;

~

A

1

;

~

B

1

) of (A;B) with respet

to

~

X

1

and (

~

A

1

;

~

B

1

) by

�

rel

(

~

X

1

;

~

A

1

;

~

B

1

) = min

(E;F )2L









�

kEk

F

kAk

F

;

kFk

F

kBk

F

�









2

;

where L is the set de�ned by (4.4.27). Obviously, if we take k � k = k � k

F

in (4.4.26),

then from (4.4.29) we get a omputable formula of �

rel

(

~

X

1

;

~

A

1

;

~

B

1

):

�

rel

(

~

X

1

;

~

A

1

;

~

B

1

) =

1

kAk

F

�

(kAk

F

=kBk

F

)

(

~

X

1

;

~

A

1

;

~

B

1

) =













R

 

kAk

F

~

X

1

~

B

1

�kBk

F

~

X

1

~

A

1

!

y













F

:

(4:4:32)
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Remark 4.4.8. Let (~�

1

;

~

�

1

) be an approximate eigenvalue of (A;B), and

~x

1

be an assoiated eigenvetor. Then by (4.4.32), the relative bakward error

�

rel

(~x

1

; ~�

1

;

~

�

1

) of (A;B) with respet to ~x

1

and (~�

1

;

~

�

1

) an be expressed by

�

rel

(~x

1

; ~�

1

;

~

�

1

) =

1

q

j~�

1

j

2

kBk

2

F

+ j

~

�

1

j

2

kAk

2

F

krk

2

k~x

1

k

2

; (4:4:33)

where

r = ~�

1

B~x

1

�

~

�

1

A~x

1

is the residual. Moreover, the optimal bakward perturbation (E

opt

; F

opt

) in (A;B)

is expressed by

(E

opt

; F

opt

) =

r

�

kAk

2

F

(

~

�

1

~x

1

)

H

; �kBk

2

F

(~�

1

~x

1

)

H

�

�

j~�

1

j

2

kBk

2

F

+ j

~

�

1

j

2

kAk

2

F

�

k~x

1

k

2

2

:

The formula (4.4.33) will be illustrated by the following example.

Example 4.4.9. Consider the regular pair (A;B) of Example 4.4.6. The eigenvalues of

(A;B) are 150; 70; 40;�10;�20, and the assoiated eigenvetors are e

(5)

1

; e

(5)

2

; e

(5)

3

; e

(5)

4

; e

(5)

5

,

the olumns of the identity matrix I

5

, respetively. Using the MATLAB �le \qz" to the

pair (A;B), we obtain the omputed eigenvalues (~�

j

;

~

�

j

) and assoiated eigenvetors ~x

j

;

and then applying (4.4.33) we get

�

rel

(~x

1

; ~�

1

;

~

�

1

) � 2:69� 10

�18

; �

rel

(~x

2

; ~�

2

;

~

�

2

) � 7:72� 10

�17

;

�

rel

(~x

3

; ~�

3

;

~

�

3

) � 9:70� 10

�17

; �

rel

(~x

4

; ~�

4

;

~

�

4

) � 6:30� 10

�17

;

�

rel

(~x

5

; ~�

5

;

~

�

5

) � 1:55� 10

�16

:

(4:4:34)

From (4.4.34) we see that eah omputed eigenvalue (~�

j

;

~

�

j

) and assoiated eigenvetor ~x

j

are an exat eigenvalue and an assoiated eigenvetor of a very slightly perturbed matrix

pair of (A;B); in other words, the omputation has proeeded quite stably.

4.4.2 Residual Bounds

Let an l-dimensional simple approximate deating subspae pair

~

X

1

= R(

~

V

1

),

~

Y

1

=

R(

~

U

1

) of (A;B) be given, where

~

V

1

;

~

U

1

2 U

n�l

. Then by using Theorem 4.4.1 and

an appropriate forward perturbation result we an determine the auray of the

approximate deating subspaes

~

X

1

;

~

Y

1

.

Choose

~

V

2

;

~

U

2

so that

~

V = (

~

V

1

;

~

V

2

),

~

U = (

~

U

1

;

~

U

2

) 2 U

n�n

. By the proof of

Theorem 4.4.1, the optimal bakward perturbation (E

opt

; F

opt

) of (4.4.8) satis�es

~

U

H

(A+E

opt

)

~

V =

 

~

U

H

1

A

~

V

1

~

U

H

1

A

~

V

2

0

~

U

H

2

A

~

V

2

!

�

 

~

A

11

�S

A

~

V

2

0

~

A

22

!

;

~

U

H

(B + F

opt

)

~

V =

 

~

U

H

1

B

~

V

1

~

U

H

1

B

~

V

2

0

~

U

H

2

B

~

V

2

!

�

 

~

B

11

�S

B

~

V

2

0

~

B

22

!

;

(4:4:35)
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and

~

U

H

E

opt

~

V =

 

0 0

~

U

H

2

R

A

0

!

;

~

U

H

F

opt

~

V =

 

0 0

~

U

H

2

R

B

0

!

; (4:4:36)

where R

A

and R

B

are the residuals de�ned by (4.4.4), and S

A

and S

B

are the

residuals of (A;B) with respet to

~

V

H

1

and

~

U

H

1

de�ned by

S

A

= (

~

U

H

1

A

~

V

1

)

~

V

H

1

�

~

U

H

1

A; S

B

= (

~

U

H

1

B

~

V

1

)

~

V

H

1

�

~

U

H

1

B:

The relation (4.4.35) shows that the subspae pair f

~

X

1

;

~

Y

1

g is a deating sub-

spae pair of (A+E

opt

; B + F

opt

). Moreover, if

�(

~

A

11

;

~

B

11

)

\

�(

~

A

22

;

~

B

22

) = ;; (4:4:37)

then f

~

X

1

;

~

Y

1

g is a simple deating subspae pair of (A+E

opt

; B + F

opt

).

The following result gives residual bounds for the approximate deating sub-

spaes

~

X

1

and

~

Y

1

. The result is obtained by applying Theorem 4.3.3 to the matrix

pairs (A+E

opt

; B + F

opt

) and (A;B) of (4.4.35) and (4.4.36).

Theorem 4.4.10. Let f

~

X

1

;

~

Y

1

g be an approximate simple deating subspae pair

of (A;B), where

~

X

1

= R(

~

V

1

),

~

Y

1

= R(

~

U

1

), and

~

V

1

;

~

U

1

2 U

n�l

. De�ne the matries

~

A

jj

and

~

B

jj

by (4.4.35), and assume (4.4.37) is satis�ed. De�ne the residuals

R

A

; R

B

, S

A

; S

B

by

R

A

=

~

U

1

~

A

11

�A

~

V

1

; R

B

=

~

U

1

~

B

11

�B

~

V

1

;

S

A

=

~

A

11

~

V

H

1

�

~

U

H

1

A; S

B

=

~

B

11

~

V

H

1

�

~

U

H

1

B;

and de�ne the matries

~

C

1

;

~

C

2

by

~

C

1

=

�

(

~

B

T

11


 I

n�l

)

~

M

�1

; (�

~

A

T

11


 I

n�l

)

~

M

�1

�

;

~

C

2

=

�

(I

l




~

B

22

)

~

M

�1

; (�I

l




~

A

22

)

~

M

�1

�

;

(4:4:38)

where

~

M =

~

A

T

11




~

B

22

�

~

B

T

11




~

A

22

:

Moreover, let

~

b

1

=











~

C

1

 

ve(

~

U

H

2

R

A

)

ve(

~

U

H

2

R

B

)

!











2

; ~

1

= k

~

C

1

k

2

;

~

b

2

=











~

C

2

 

ve(

~

U

H

2

R

A

)

ve(

~

U

H

2

R

B

)

!











2

; ~

2

= k

~

C

2

k

2

;

~

b =

~

b

1

+

~

b

2

; ~ = ~

1

+ ~

2

;

(4:4:39)
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and de�ne ~� by

~� = maxfkS

A

k

2

; kS

B

k

2

g: (4:4:40)

If

4

~

b~~� < 1;

Then there is a unique pair of deating subspaes X

1

= R(V

1

) and Y

1

= R(U

1

) of

(A;B) suh that

~

V

1

;

~

U

1

2 U

n�l

, and

�

F

(X

1

;

~

X

1

) � k tan�(V

1

;

~

V

1

)k

F

�

~

b

1

+ ~

1

~�

~

�

2

� �

X

1

;

�

F

(Y

1

;

~

Y

1

) � k tan�(U

1

;

~

U

1

)k

F

�

~

b

2

+ ~

2

~�

~

�

2

� �

Y

1

;

(4:4:41)

where

~

� =

2

~

b

1 +

q

1� 4

~

b~~�

: (4:4:42)

By the way, the relation (4.4.35) shows that the eigenvalues (~�

1

;

~

�

1

); : : : ; (~�

l

;

~

�

l

)

of (

~

A

11

;

~

B

11

), as l approximate eigenvalues of (A;B), are l eigenvalues of (A +

E

opt

; B+F

opt

). How to obtain a sharp error bound for the approximate eigenvalues

(~�

1

;

~

�

1

); : : : ; (~�

l

;

~

�

l

) is a researh problem.

Example 4.4.11. Consider the matrix pair (A;B) with

A =

0

B

B

B

B

�

0 17 20 �15 18

�6 �2 17 7 4

0 3 �1 �11 5

0 0 2 �1 7

0 0 0 �4 4

1

C

C

C

C

A

; B =

0

B

B

B

B

�

2 1 �1 4 2

�3 2 5 �6 �2

0 1 5 1 13

0 0 2 �6 12

0 0 0 �4 4

1

C

C

C

C

A

;

and let

x

1

= (1:75; �0:25; �0:75; �0:25; �0:25)

T

; y

1

= (1; 0; 0; 0; 0)

T

;

v

1

= x

1

=kx

1

k

2

; u

1

= y

1

; X

1

= R(v

1

); Y

1

= R(u

1

):

The 1-dimensional subspae pair fX

1

;Y

1

g is a deating subspae pair of (A;B) orrespond-

ing to the eigenvalue �

1

= 10. Suppose that we have an approximate deating subspae

pair f

~

X

1

;

~

Y

1

g with

~

X

1

= R(~x

1

) and

~

Y

1

= R(~y

1

), where

~x

1

= (1:74999; �0:24999; 0:7499999; �0:24999; �0:250001)

T

;

~y

1

= (1; �1:0� 10

�7

; 1:0� 10

�5

; �1:0� 10

�6

; 1:0� 10

�5

)

T

:

Let

~v

1

= ~x

1

=k~x

1

k

2

; ~u

1

= ~y

1

=k~y

1

k

2

:

A alulation gives

sin �(v

1

; ~v

1

) � 5:0260� 10

�6

; sin �(u

1

; ~u

1

) � 1:4178� 10

�5

: (4:4:43)
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Choose

~

V

2

and

~

U

2

so that (~v

1

;

~

V

2

); (~u

1

;

~

U

2

) 2 O

5�5

. Compute

~

A

11

= ~u

T

1

A~v

1

;

~

A

22

=

~

U

T

2

A

~

V

2

;

~

B

11

= ~u

T

1

B~v

1

;

~

B

22

=

~

U

T

2

B

~

V

2

;

and

r

A

= ~u

1

~

A

11

�A~v

1

; r

B

= ~u

1

~

B

11

�B~v

1

;

s

A

=

~

A

11

~v

T

1

� ~u

T

1

A; s

B

=

~

B

11

~v

T

1

� ~u

T

1

B;

and ompute

~

C

1

;

~

C

2

,

~

b

1

; ~

1

;

~

b

2

; ~

2

,

~

b; ~ and ~� by (4.4.38){(4.4.40). A alulation shows that

4

~

b~~� � 7:1745� 10

�2

< 1:

Consequently, applying Theorem 4.4.10, there are unit vetors v and u suh that R(v) and

R(u) are deating subspaes of (A;B) orresponding to the same eigenvalue, and

tan �(v; ~v

1

) � �

X

1

� 5:1609� 10

�6

;

tan �(u; ~u

1

) � �

Y

1

� 1:4401� 10

�5

:

(4:4:44)

Comparing (4.4.44) with (4.4.43) shows that the estimates obtained by applying Theorem

4.4.10 are fairly sharp.

Remark 4.4.12. Let (~�;

~

�) be an approximate eigenvalue of (A;B), and ~x be

an assoiated eigenvetor; i.e.,

~

�A~x � ~�B~x. It may well be asked: How to determine

the auray of the approximate solution? A similar result to Theorem 2.4.10 an be

derived, but there is the same drawbak as Theorem 2.4.10 that it needs to ompute

the Moore-Penrose inverse of an n � (n + 1) matrix. Therefore, the problem of

how to �nd nearly optimal residual bounds with less e�ort for omputed generalized

eigenvalues and eigenvetors is worth studying.

Notes and Referenes

NR 4.4{1. Theorem 4.4.1 is proved by Sun [115℄.

NR 4.4{2. Cao [13℄ generalizes Theorem 2.4.5 to matrix pairs. Let (A;B) be

an n � n regular pair. By [13℄, a subspae pair fX

1

;Y

1

g with X

1

= R(X

1

) and

Y

1

= R(Y

1

) is alled an l-dimensional right deation pair of (A;B) if there is an

l � l regular pair (A

11

; B

11

) suh that

AX

1

= Y

1

A

11

and BX

1

= Y

1

B

11

;

a subspae pair fZ

1

;W

1

g with Z

1

= R(Z

1

) and W

1

= R(W

1

) is alled an l-

dimensional left deation pair of (A;B) if

Z

H

1

A = A

11

W

H

1

and Z

H

1

B = B

11

W

H

1

:
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Here A

11

and B

11

are alled Rayleigh omponents of (A;B). For a given regular

pair (A;B), onsider approximate right and left deation pairs and the orrespond-

ing Rayleigh omponents. Cao [13℄ shows that under ertain hypothesis these ap-

proximate quantities for (A;B) are aurate ones for a perturbation matrix pair

(A�E;B�F ). Furthermore, bounds for kEk

F

and kFk

F

as well as kEk

2

and kFk

2

an be expressed in terms of the orresponding norms of residual matries.

NR 4.4{3. Let (A;B) be a de�nite pair of order n, and Z

1

be an n � l ma-

trix with full olumn rank whose olumn vetors span an approximate eigenspae

of (A;B). Some relations between the eigenvalues of the Rayleigh quotient matrix

pair (Z

H

1

AZ

1

; Z

H

1

BZ

1

) and those of (A;B) are given by Li [69℄. Residual bounds

for the eigenvalues of (Z

H

1

AZ

1

; Z

H

1

BZ

1

) and for the approximate eigenspae R(Z

1

)

are given by Sun [112℄.

NR 4.4{4. Let (A;B) be a regular pair, and let

~

� and ~x approximate a �nite

eigenvalue and assoiated eigenvetor of (A;B). Frayss�e and Toumazou [39℄ de�ne

the normwise bakward error �(~x;

~

�) and the optimal bakward error �

opt

(

~

�) by

�(~x;

~

�) = min

8

>

<

>

:

� :

(A+E)~x =

~

�(B + F )~x;

kEk � ��; kFk � ��

9

>

=

>

;

;

and

�

opt

(

~

�) = min

8

>

<

>

:

� :

9u 6= 0; (A+E)u =

~

�(B + F )u;

kEk � ��; kFk � ��

9

>

=

>

;

;

respetively, where � and � are positive parameters, and k � k is any vetor norm

and subordinate matrix norm. By [39℄, �(~x;

~

�) an be expressed by

�(~x;

~

�) =

k

~

�B~x�A~xk

(�+ j

~

�j�)k~xk

;

and �

opt

(

~

�) an be expressed by

�

opt

(

~

�) =

1

(�+ j

~

�j�)







(A�

~

�B)

�1







:

These results are generalized by D. Higham and N. Higham [46℄ to any mixed sub-

ordinate matrix norm. Moreover, D. Higham and N. Higham [46℄ give some results

on omponentwise bakward error and strutured bakward error for the generalized

eigenvalue problem.

4.5 Symmetri-De�nite Generalized Eigenproblems

In the generalized eigenvalue problem �Ax = �Bx it is frequently the ase that

A;B 2 S

n�n

and B is positive de�nite. By Golub and Van Loan [52, Chapter 8℄,



176 CHAPTER 4. GENERALIZED EIGENVALUE PROBLEMS

this problem is alled the symmetri-de�nite generalized eigenproblem. Sine the

eigenvalues of this eigenproblem are �nite, we an write the problem as

Ax = �Bx with A;B 2 S

n�n

and B > 0: (4:5:1)

It is known that the eigenvalues of the problem (4.5.1) are real, and there is a

matrix X 2 R

n�n

suh that

X

T

AX = �; X

T

BX = I; (4:5:2)

where � = diag(�

1

; : : : ; �

n

), and �

1

; : : : ; �

n

are the eigenvalues of the eigenvalue

problem (4.5.1). (See Golub and Van Loan [41, x8.7.2℄ for numerial methods for

omputing the matries X and �.)

In this setion we investigate perturbation properties of multiple eigenvalues and

assoiated eigenspaes of the symmetri-de�nite generalized eigenproblem (4.5.1).

4.5.1 Loal Behavior of Multiple Eigenvalues

Let p = (p

1

; : : : ; p

N

)

T

2 R

N

. Suppose that A(p); B(p) 2 S

n�n

are real analyti

matrix-valued funtions of p in some neighborhood B(p

�

) of the point p

�

2 R

N

and

B(p) > 0 for any p 2 B(p

�

). Without loss of generality we may assume that the

point p

�

is the origin of R

N

. The eigenproblem

A(p)x(p) = �(p)B(p)x(p); p 2 B(0) (4:5:3)

arises often in strutural design, and it is often desirable to be able to estimate

the sensitivity of the available designs �(p) to hanges in the system parameters

p

1

; : : : ; p

N

.

If �

1

2 R is a simple eigenvalue of the matrix pair (A(0); B(0)), then by using the

same tehnique desribed in x4.1.1 we an prove that there is an analyti funtion

�

1

(p) in some neighborhood B

0

� B(0) of the origin that is a simple eigenvalue of

the matrix pair (A(p); B(p)), and �

1

(0) = �

1

. Moreover, we an derive the formulas

of the partial derivatives of �

1

(p) with respet to eah p

j

at p = 0.

However, if �

1

is an eigenvalue of (A(0); B(0)) with multipliity r > 1, then the

situation beomes ompliated. Rellih [86℄ �rst gives an example to show that the

loal behavior of a multiple eigenvalue is di�erent from that of a simple eigenvalue

for a symmetri eigenvalue problem depending analytially on several parameters.

The following example is a slight modi�ation of the example given by Rellih

[86℄ (or see Rellih [87, p.37℄).
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Example 4.5.1. Consider the matrix

A(p) =

�

1 + 2p

1

+ 2p

2

p

2

p

2

1 + 2p

2

�

; p = (p

1

; p

2

)

T

2 R

2

:

Here we assume B(p) = I . It is easy to see that the elements of A(p) are real analyti

funtions of p 2 R

2

, the matrix A(0) has the eigenvalue 1 with multipliity 2, and the

eigenvalues of A(p) are

�

1

(p) = 1 + p

1

+ 2p

2

+

q

p

2

1

+ p

2

2

; �

2

(p) = 1 + p

1

+ 2p

2

�

q

p

2

1

+ p

2

2

:

Obviously no arrangement of these eigenvalues ould make them analyti funtions of p in

some neighborhood of the origin, even no arrangement of these eigenvalues ould make them

di�erentiable at p = 0.

Let �

1

be an eigenvalue of (A(0); B(0)) with multipliity r. We shall prove in

this subsetion that there are r ontinuous funtions �

1

(p); : : : ; �

r

(p) in some neigh-

borhood of the origin that are the eigenvalues of (A(p); B(p)) satisfying �

s

(0) = �

1

for s = 1; : : : ; r, and every �

s

(p) has diretional derivatives at eah point of the

neighborhood. Moreover, we shall derive expressions of the diretional derivatives.

Before the statement of our result (Theorem 4.5.2) we introdue the de�nition

of diretional derivatives. Let �(p) be a funtion de�ned in an open set S � R

N

.

The diretional derivative D

v

�(p

�

) of �(p) at p

�

2 S in the diretion v is de�ned by

D

v

�(p

�

) = lim

�!0

�(p

�

+ �v)� �(p

�

)

�

; (4:5:4)

where v 2 R

N

with kvk

2

= 1, and � is a positive salar.

Theorem 4.5.2. Let p = (p

1

; : : : ; p

N

)

T

2 R

N

, and let A(p); B(p) 2 S

n�n

be

real analyti funtions of p in some neighborhood B(0) of the origin of R

N

, where

B(p) > 0 for p 2 B(0). Suppose that there is a matrix X = (X

1

;X

2

) 2 R

n�n

with

X

1

2 R

n�r

suh that

X

T

A(0)X =

 

�

1

I

r

0

0 A

2

!

; X

T

B(0)X = I; �

1

62 �(A

2

): (4:5:5)

Then there exist r ontinuous funtions �

1

(p); : : : ; �

r

(p) in some neighborhood B

0

�

B(0) of the origin that are the eigenvalues of the eigenproblem (4.5.3) satisfying

�

s

(0) = �

1

; s = 1; : : : ; r;

and for any v = (�

1

; : : : ; �

N

)

T

2 R

N

with kvk

2

= 1 there is a permutation � of

f1; : : : ; rg dependent on v suh that

D

v

�

s

(0) = �

�(s)

0

�

N

X

j=1

�

j

X

T

1

S

j

(�

1

)X

1

1

A

; s = 1; : : : ; r; (4:5:6)
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where �

1

(�); : : : ; �

r

(�) denote the eigenvalues of an r� r matrix, D

v

�

s

(0) denote the

diretional derivatives of �

s

(p) at p = 0 in the diretion v, and the matries S

j

(�

1

)

are de�ned by

S

j

(�

1

) =

 

�A(p)

�p

j

!

p=0

� �

1

 

�B(p)

�p

j

!

p=0

; j = 1; : : : ; N: (4:5:7)

Proof. The proof onsists of the following three steps.

1) Let

~

A(p) = X

T

A(p)X =

 

~

A

11

(p)

~

A

21

(p)

T

~

A

21

(p)

~

A

22

(p)

!

;

~

B(p) = X

T

B(p)X =

 

~

B

11

(p)

~

B

21

(p)

T

~

B

21

(p)

~

B

22

(p)

!

:

(4:5:8)

By using the impliit funtion theorem (Theorem 1.6.2) and the same tehnique

desribed by the proof of Theorems 4.1.1 and 4.1.6 we an prove that there exists a

unique pair of real analyti matrix-valued funtions Z(p);W (p) 2 R

(n�r)�r

in some

neighborhood B

0

� B(0) of the origin of R

N

satisfying Z(0) = W (0) = 0 suh that

the matrix

 

I W (p)

T

Z(p) I

!

is nonsingular for p 2 B

0

, and

 

I W (p)

T

Z(p) I

!

T

~

A(p)

 

I W (p)

T

Z(p) I

!

=

 

A

1

(p) 0

0 A

2

(p)

!

;

 

I W (p)

T

Z(p) I

!

T

~

B(p)

 

I W (p)

T

Z(p) I

!

=

 

B

1

(p) 0

0 B

2

(p)

!

;

(4:5:9)

where A

1

(p); B

1

(p) 2 S

r�r

, B

1

(p) > 0 for p 2 B

0

, and

A

1

(p) =

~

A

11

(p) + Z(p)

T

~

A

21

(p) +

~

A

21

(p)

T

Z(p) + Z(p)

T

~

A

22

(p)Z(p);

B

1

(p) =

~

B

11

(p) + Z(p)

T

~

B

21

(p) +

~

B

21

(p)

T

Z(p) + Z(p)

T

~

B

22

(p)Z(p):

(4:5:10)

From (4.5.9)

~

A(p)

 

I

Z(p)

!

=

~

B(p)

 

I

Z(p)

!

B

1

(p)

�1

A

1

(p):

Combining it with (4.5.8) and writing

X

1

(p) = X

 

I

Z(p)

!

; (4:5:11)
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we get

A(p)X

1

(p) = B(p)X

1

(p)B

1

(p)

�1

A

1

(p) (4:5:12)

and

A

1

(0) = �

1

I

r

; B

1

(0) = I

r

; X

1

(0) = X

1

: (4:5:13)

From (4.5.12)

B

1

(p)

�1

A

1

(p) =

h

X

1

(p)

T

B(p)X

1

(p)

i

�1

h

X

1

(p)

T

A(p)X

1

(p)

i

: (4:5:14)

Let

�

�

B

1

(p)

�1

A

1

(p)

�

= f�

s

(p)g

r

s=1

; p 2 B

0

:

Then the relations (4.5.5), (4.5.8) and (4.5.9) show that

�

s

(p) 2 �(A(p); B(p)); �

s

(0) = �

1

; s = 1; : : : ; r;

and �

1

(p); : : : ; �

r

(p) are near �

1

provided that B

0

is suÆiently small.

2) Let v 2 R

N

be any �xed diretion. Take p = �v in whih � 2 [��; �℄ and � is

a small positive salar suh that �v 2 B

0

for � 2 [��; �℄. Let

�

s

(�) = �

s

(�v); s = 1; : : : ; r (4:5:15)

and

H

1

(p) = B

1

(p)

�1=2

A

1

(p)B

1

(p)

�1=2

;

^

H

1

(�) = H

1

(�v): (4:5:16)

Then learly

�(

^

H

1

(�)) = f�

s

(�)g

r

s=1

; � 2 [��; �℄; �

s

(0) = �

1

8s:

But, on the other hand, sine

^

H

1

(�) 2 S

r�r

is real analyti on [��; �℄ and

^

H

1

(0) =

�

1

I

r

, by the Rellih theorem (see below NR 4.5{3) there is a positive salar �

1

� �

and real analyti funtions

^

�

1

(�); : : : ;

^

�

r

(�) on [��

1

; �

1

℄, suh that

�(

^

H

1

(�)) = f

^

�

t

(�)g

r

t=1

; � 2 [��

1

; �

1

℄;

^

�

t

(0) = �

1

8t:

Observe the following fats: (i) Sine the zeros of a real analyti funtion of one

real variable are isolated (see, e.g., Cartan [15, p.41℄), we have

^

�

i

(�) 6=

^

�

j

(�) 8� 2 (0; �

1

℄; i 6= j

provided that

^

�

i

(�) 6�

^

�

j

(�) for � 2 (0; �

1

℄ and the positive salar �

1

is suÆiently

small; (ii) The funtions �

1

(�); : : : ; �

r

(�) are ontinuous on [0; �

1

℄; (iii) The sets

f�

s

(�)g

r

s=1

and f

^

�

t

(�)g

r

t=1

are just the same for any point � 2 [0; �

1

℄, and there is a

one-to-one orrespondene between the elements of the two sets. Hene, there is a

permutation � of f1; : : : ; rg depending on the diretion v suh that

�

s

(�) =

^

�

�(s)

(�) 8s; � 2 [0; �

1

℄: (4:5:17)
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Consequently, from (4.5.4), (4.5.15) and (4.5.17), we get

D

v

�

s

(0) = lim

�!0

�

s

(�v)� �

s

(0)

�

= lim

�!0

�

s

(�)� �

s

(0)

�

= lim

�!0

^

�

�(s)

(�)�

^

�

�(s)

(0)

�

=

 

d

^

�

�(s)

(�)

d�

!

�=0

; s = 1; : : : ; r:

(4:5:18)

3) Let

G

1

(p) = B

1

(p)

�1

A

1

(p);

^

G

1

(�) = G

1

(�v): (4:5:19)

Combining it with (4.5.16) shows

�(

^

G

1

(�)) = �(

^

H

1

(�)) 8� 2 [0; �℄:

By (4.5.19), (4.5.5), (4.5.7), (4.5.11), (4.5.13) and (4.5.14), we have

 

d

^

G

1

(�)

d�

!

�=0

=

�

dG

1

(�v)

d�

�

�=0

=

N

X

j=1

�

j

 

�G

1

(p)

�p

j

!

p=0

=

N

X

j=1

�

j

X

T

1

S

j

(�

1

)X

1

;

(4:5:20)

whih shows

 

d

^

G

1

(�)

d�

!

�=0

2 S

r�r

;

and hene there is a matrix W

1

2 O

r�r

suh that

W

T

1

 

d

^

G

1

(�)

d�

!

�=0

W

1

= diag(Æ

1

; : : : ; Æ

r

); Æ

1

� � � � � Æ

r

: (4:5:21)

We now write

W

T

1

^

G

1

(�)W

1

= (

kl

(�))

1�k;l�r

;

in whih the funtions 

kl

(�) are real analyti and so may be written as the following

onvergent power series:



kl

(�) = 

(0)

kl

+ 

(1)

kl

� + 

(2)

kl

�

2

+ � � � ; k; l = 1; : : : ; r:

From

�

W

T

1

^

G

1

(�)W

1

�

�=0

= �

1

I

r

and

2

4

d

�

W

T

1

^

G

1

(�)W

1

�

d�

3

5

�=0

=W

T

1

 

d

^

G

1

(�)

d�

!

�=0

W

1

as well as (4.5.21), it follows that



(0)

kl

=

8

>

<

>

:

�

1

if k = l;

0 otherwise;



(1)

kl

=

8

>

<

>

:

Æ

k

if k = l;

0 otherwise:
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Therefore



kl

(�) =

8

>

<

>

:

�

1

+ Æ

k

� + 

(2)

kl

�

2

+ 

(3)

kl

�

3

+ � � � if k = l;



(2)

kl

�

2

+ 

(3)

kl

�

3

+ � � � otherwise:

(4:5:22)

Assume that

Æ

1

= � � � = Æ

r

1

< Æ

r

1

+1

= � � � = Æ

r

1

+r

2

< � � �

< Æ

r

1

+���+r

q�1

+1

= � � � = Æ

r

1

+���+r

q�1

+r

q

; r

1

+ � � �+ r

q

= r;

(4:5:23)

and write

Æ

r

1

= !

1

; Æ

r

1

+r

2

= !

2

; : : : ; Æ

r

1

+���+r

q

= !

q

; (4:5:24)

then by the Gershgorin theorem (see below NR 4.5{5) from (4.5.22){(4.5.24) we

see that there are preisely q irular disks D

1

; : : : ;D

q

with enters

�

1

+ !

1

�; : : : ; �

1

+ !

q

�

and with radii of magnitude O(�

2

) suh that the union

q

S

j=1

D

j

ontains all of the

eigenvalues

^

�

1

(�); : : : ;

^

�

r

(�). Besides, the disks D

1

; : : : ;D

q

are mutually disjoint

provided that � belongs to a suÆiently small segment [��

1

; �

1

℄, and in suh a ase

every disk D

j

ontains exatly r

j

eigenvalues whih may be written as the following

onvergent power series:

�

1

+ !

j

� + g

(2)

r

1

+���+r

j�1

+k

�

2

+ g

(3)

r

1

+���+r

j�1

+k

�

3

+ � � � ; k = 1; : : : ; r

j

; (4:5:25)

where � 2 [��

1

; �

1

℄, j = 1; : : : ; q, and r

0

= 0.

Combining (4.5.25) with (4.5.23) and (4.5.24), we may rewrite the expressions

of (4.5.25) as

^

�

t

= �

1

+ Æ

t

� + g

(2)

t

�

2

+ g

(3)

t

�

3

+ � � � ; t = 1; : : : ; r:

Consequently, we obtain

 

d

^

�

t

(�)

d�

!

�=0

= Æ

t

; t = 1; : : : ; r: (4:5:26)

Combining (4.5.18) with (4.5.26), (4.5.21) and (4.5.20), shows the formulas (4.5.6).

2

From Theorem 4.5.2 we get the following orollary.
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Corollary 4.5.3. Under the hypotheses of Theorem 4.5.2, there are permutations

� and �

0

of f1; : : : ; rg suh that the relations

D

e

(N)

j

�

s

(0) = �

�(s)

�

X

T

1

S

j

(�

1

)X

1

�

; D

�e

(N)

j

�

s

(0) = �

�

0

(s)

�

X

T

1

S

j

(�

1

)X

1

�

are valid for j = 1; : : : ; N and s = 1; : : : ; r, where the funtions �

1

(p); : : : ; �

r

(p) and

S

j

(�

1

) are desribed in Theorem 4.5.2. Espeially, if r = 1 then the eigenvalue �

1

(p)

has the partial derivatives with respet to p

j

at the origin

 

��

1

(p)

�p

j

!

p=0

= x

T

1

S

j

(�

1

)x

1

; j = 1; : : : ; N; (4:5:27)

where x

1

is the assoiated eigenvetor with �

1

satisfying (4.5.5).

Let A(p); �

1

(p); �

2

(p) be as in Example 4.5.1. Straightforward alulations show

that, for any diretion v = (os �; sin �)

T

2 R

2

with � 2 [0; 2�), the funtions �

1

(p)

and �

2

(p) have the diretional derivatives at p = 0:

D

v

�

1

(0) = os � + 2 sin � + 1; D

v

�

2

(0) = os � + 2 sin � � 1: (4:5:28)

On the other hand, applying Theorem 4.5.2 we have

fD

v

�

s

(0)g

2

s=1

= �

 

os �

 

2 0

0 0

!

+ sin �

 

2 1

1 2

!!

= fos � + 2 sin � + 1; os � + 2 sin � � 1g;

whih oinides with (4.5.28).

4.5.2 Strutured Condition Numbers

Let the symmetri-de�nite generalized eigenproblem (4.5.1) have a multiple eigen-

value �

1

of multipliity r, and let (A;B) be slightly perturbed to a symmetri pair

(

~

A;

~

B). Then, in general, �

1

will spawn r simple eigenvalues, and the new eigen-

values will be found at varying distane from the original eigenvalue. For example,

the eigenproblem (4.5.1) with A = diag(2; 2000) and B = diag(1; 1000) has a double

eigenvalue �

1

= 2. But one of the eigenvalues of the matrix pair (A;B) is usually

muh more sensitive than the other. Therefore, it may well be asked: How to make

this observation preise?

In this subsetion we shall de�ne r ondition numbers of the multiple eigenvalue

�

1

that measure the sensitivity of �

1

to small perturbations in A and B, and derive

expliit expressions of the r ondition numbers.
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By the hypothesis the eigenproblem (4.5.1) has a multiple eigenvalue �

1

of mul-

tipliity r. As a onsequene, there is a matrix X 2 R

n�n

suh that

X

T

AX =

 

�

1

I

r

0

0 A

2

!

; X

T

BX = I; �

1

62 �(A

2

): (4:5:29)

Let �;	 2 S

n�n

, and let

A(p) = A+ p�; B(p) = B + p	; p 2 R: (4:5:30)

Moreover, let

~

A(p);

~

B(p) be the matries of (4.5.8). Then from the proof of Theorem

4.5.2 we see that there exist real analyti matrix-valued funtions Z(p);W (p) 2

R

(n�r)�r

in some neighborhood B

0

of the origin of R suh that Z(0) = W (0) = 0

and the relations of (4.5.9) hold, in whih A

1

(p) and B

1

(p) are expressed by (4.5.10),

and B

1

(p) > 0 for p 2 B

0

. Observe that

A

1

(0) = �

1

I

r

; B

1

(0) = I

r

; �

�

B

1

(p)

�1

A

1

(p)

�

� �(A(p); B(p)):

Hene, the multiple eigenvalue �

1

of (A;B) will be perturbed to the eigenvalues of

B

1

(p)

�1

A

1

(p) as the real symmetri pair (A;B) is perturbed to (A(p); B(p)). From

(4.5.8), (4.5.10), (4.5.29) and (4.5.30) it follows that

A

1

(p) = �

1

I

r

+ pX

T

1

�X

1

+O(p

2

); B

1

(p) = I

r

+ pX

T

1

	X

1

+O(p

2

);

whih imply

B

1

(p)

�1

A

1

(p) = �

1

I

r

+ p

�

X

T

1

�X

1

� �

1

X

T

1

	X

1

�

+O(p

2

); p! 0:

We now assume that the real symmetri pair (A;B) is slightly perturbed to a

real symmetri pair (A+E;B + F ). Let

p = k(E;F )k

2

; � = E=p; 	 = F=p:

Then the above disussion shows that under suÆiently small symmetri perturba-

tions E and F in A and B, the multiple eigenvalue �

1

of (A;B) will be perturbed

to

�

1

+ �

1

(H); : : : ; �

1

+ �

r

(H);

where

H = X

T

1

EX

1

� �

1

X

T

1

FX

1

+O

�

k(E;F )k

2

2

�

2 S

r�r

; (4:5:31)

and �

j

(H) are the eigenvalues of H satisfying

j�

1

(H)j � � � � � j�

r

(H)j: (4:5:32)

Hene, the multiple eigenvalue �

1

of multipliity r an have r ondition numbers

that reet the di�erent sensitivities of its progeny.
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Referring to x1.8, we de�ne the ondition numbers 

j

(�

1

) of �

1

by



j

(�

1

) = lim

Æ!0

sup











 

kEk

2

�

kFk

2

�

!











2

�Æ

j�

j

(H)j

Æ

; j = 1; : : : ; r; (4:5:33)

where �; �;  are positive parameters, and the eigenvalues �

j

(H) satisfy (4.5.32).

By (4.5.31), the de�nition (4.5.33) an be equivalently stated as



j

(�

1

) = sup











 

kEk

2

�

kFk

2

�

!











2

�1

j�

j

(X

T

1

(E � �

1

F )X

1

)j



; j = 1; : : : ; r; (4:5:34)

where �

j

(X

T

1

(E � �

1

F )X

1

) are the eigenvalues of X

T

1

(E � �

1

F )X

1

satisfying

j�

1

(X

T

1

(E � �

1

F )X

1

)j � � � � � j�

r

(X

T

1

(E � �

1

F )X

1

)j:

The following result gives another haraterization of the ondition numbers



j

(�

1

).

Theorem 4.5.4. Let 

j

(�

1

) be the ondition numbers of the multiple eigenvalue

�

1

de�ned by (4.5.34), and let X

1

have the singular value deomposition

X

1

= U

 

X

0

0

!

V

T

with X

0

=

0

B

�

�

1

.

.

.

�

r

1

C

A

; �

1

� � � � � �

r

> 0; (4:5:35)

where the matries U = (U

1

; U

2

) and V are real orthogonal, and U

1

2 O

n�r

. Then



j

(�

1

) an be expressed by



j

(�

1

) =

q

�

2

+ �

2

1

�

2



sup

W 2 S

r�r

kWk

2

� 1

�

j

(X

0

WX

0

); j = 1; : : : ; r; (4:5:36)

where �

j

(X

0

WX

0

) are the singular values of X

0

WX

0

satisfying

�

1

(X

0

WX

0

) � � � � � �

r

(X

0

WX

0

):

Proof. De�ne d

j

(�

1

) by

d

j

(�

1

) =

q

�

2

+ �

2

1

�

2



sup

W 2 S

r�r

kWk

2

� 1

�

j

(X

0

WX

0

); j = 1; : : : ; r: (4:5:37)
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Then we only need to prove 

j

(�

1

) = d

j

(�

1

) for j = 1; : : : ; r.

We �rst note that by (4.5.35) we have

�

j

(X

T

1

(E � �

1

F )X

1

) = �

j

(X

0

U

T

1

(E � �

1

F )U

1

X

0

): (4:5:38)

Suppose that











�

kEk

2

�

;

kFk

2

�

�

T











2

� 1:

Then the matrix W 2 S

r�r

de�ned by

W =

U

T

1

(E � �

1

F )U

1

q

�

2

+ �

2

1

�

2

(4:5:39)

satis�es

kWk

2

�

1

q

�

2

+ �

2

1

�

2

 

�

j�

1

j�

!

T

 

kEk

2

�

kFk

2

�

!

�











 

kEk

2

�

kFk

2

�

!











2

� 1;

and

j�

j

(X

T

1

(E � �

1

F )X

1

)j =

q

�

2

+ �

2

1

�

2

j�

j

(X

0

WX

0

)j (by (4:5:38) and (4:5:39))

=

q

�

2

+ �

2

1

�

2

�

j

(X

0

WX

0

); j = 1; : : : ; r:

Combining this fat with (4.5.34) and (4.5.37) shows 

j

(�

1

) � d

j

(�

1

).

Conversely, for any W 2 S

r�r

satisfying kWk

2

� 1, the n � n real symmetri

matries E;F de�ned by

E = �U

 

W 0

0 0

!

U

T

; F =  U

 

W 0

0 0

!

U

T

with

� =

�

2

q

�

2

+ �

2

1

�

2

;  =

�sign(�

1

)j�

1

j�

2

q

�

2

+ �

2

1

�

2

satisfy











 

kEk

2

�

kFk

2

�

!











2

= kWk

2

� 1 and U

T

1

(E � �

1

F )U

1

=

q

�

2

+ �

2

1

�

2

W:

Combining this fat with (4.5.34), (4.5.37) and (4.5.38) shows d

j

(�

1

) � 

j

(�

1

). Con-

sequently, 

j

(�

1

) = d

j

(�

1

). 2



186 CHAPTER 4. GENERALIZED EIGENVALUE PROBLEMS

The following result gives omputable formulas of the ondition numbers 

j

(�

1

).

Theorem 4.5.5. Let (A;B), X = (X

1

; X

2

) and �

1

be as in (4.5.29), and let X

1

have the singular value deomposition (4.5.35). De�ne �

j

by

�

j

= min

1�k�

[

j+1

2

℄

�

k

�

j�k+1

; j = 1; : : : ; r; (4:5:40)

where

h

j+1

2

i

denotes the greatest integer not greater than

j+1

2

. Then the ondition

numbers 

j

(�

1

) de�ned by (4.5.34) an be expressed by



j

(�

1

) =

q

�

2

+ �

2

1

�

2



�

j

; j = 1; : : : ; r: (4:5:41)

Proof. For an arbitrarily �xed integer j on [1; r℄, de�ne !

j

by

!

j

= sup

W 2 S

r�r

kWk

2

� 1

�

j

(X

0

WX

0

): (4:5:42)

Then by (4.5.36) we only need to prove !

j

= �

j

.

Let W 2 S

r�r

, and kWk

2

� 1. Then by Theorem 4.5.16 (see below NR 4.5{9),

we have

�

j

(X

0

WX

0

) � min

1�k�j

f�

k

(X

0

W )�

j�k+1

g

� min

1�k�j

��

min

1�l�k

�

l

�

k�l+1

(W )

�

�

j�k+1

�

� min

1�k�j

f�

k

�

j�k+1

g = �

j

:

Combining it with (4.5.42) shows !

j

� �

j

.

On the other hand, the r � r matrix W

j

= diag(W

(j)

; 0) with

W

(j)

=

0

B

B

B

B

B

�

1

1

:�

.

1

1

1

C

C

C

C

C

A

2 S

j�j

satis�es W

j

2 S

r�r

, kW

j

k

2

= 1, and

X

0

W

j

X

0

= diag

0

B

B

B

B

B

�

0

B

B

B

B

B

�

�

1

�

j

�

2

�

j�1

:�

.

�

j�1

�

2

�

j

�

1

1

C

C

C

C

C

A

; 0

1

C

C

C

C

C

A

;
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whih implies �

j

(X

0

W

j

X

0

) = �

j

. Combining this fat with (4.5.42) shows !

j

� �

j

.

Consequently, !

j

= �

j

. 2

Remark 4.5.6. Theorem 4.5.5 implies that if �

1

is a simple eigenvalue of the

eigenproblem (4.5.1), and if x

1

is an assoiated eigenvetor satisfying x

H

1

Bx

1

= 1,

then the simple eigenvalue �

1

has the ondition number (�

1

), and

(�

1

) = 

1

(�

1

) =

q

�

2

+ �

2

1

�

2



kx

1

k

2

2

:

Remark 4.5.7. Taking � = � =  = 1 in (4.5.34) and (4.5.41), we get the

absolute ondition numbers 

(abs)

j

(�

1

) of the multiple eigenvalue �

1

, whih an be

expressed by



(abs)

j

(�

1

) =

q

1 + �

2

1

�

j

; j = 1; : : : ; r; (4:5:43)

where �

j

are de�ned by (4.5.40). Taking � = kAk

2

; � = kBk

2

and  = j�

1

j in

(4.5.34) and (4.5.41), we get the relative ondition numbers 

(rel)

j

(�

1

) of the multiple

eigenvalue �

1

(if �

1

6= 0), whih an be expressed by



(rel)

j

(�

1

) =

q

kAk

2

2

+ �

2

1

kBk

2

2

j�

1

j

�

j

; j = 1; : : : ; r: (4:5:44)

Moreover, from the de�nition (4.5.34) it follows that for suÆiently small perturba-

tions E;F 2 S

n�n

, the matrix pair (A + E;B + F ) has the eigenvalues

~

�

1

; : : : ;

~

�

r

suh that

j

~

�

j

� �

1

j

<

�



(abs)

j

(�

1

)

q

kEk

2

2

+ kFk

2

2

� �

(abs)

j

; j = 1; : : : ; r; (4:5:45)

and

j

~

�

j

� �

1

j

j�

1

j

<

�



(rel)

j

(�

1

)

s

�

kEk

2

kAk

2

�

2

+

�

kFk

2

kBk

2

�

2

� �

(rel)

j

; j = 1; : : : ; r; (4:5:46)

where it is assumed that �

1

6= 0 in (4.5.46). The salars �

(abs)

j

and �

(rel)

j

are the

�rst order absolute and relative perturbation bounds for the multiple eigenvalue �

1

,

respetively.

Remark 4.5.8. Let �

j

be the salars de�ned by (4.5.40). Then it follows from

�

1

� � � � � �

r

> 0 that �

1

� � � � � �

r

> 0. Moreover, it an be proved that if

�

1

= � � � = �

m

> �

m+1

> � � � > �

m+l

for some integer l satisfying m+ l � r, then

�

1

= � � � = �

m

> �

m+1

> � � � > �

m+l

;
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and by (4.5.41){(4.5.46) we have



1

(�

1

) = � � � = 

m

(�

1

) > 

m+1

(�

1

) > � � � > 

m+l

(�

1

);

�

(abs)

1

= � � � = �

(abs)

m

> �

(abs)

m+1

> � � � > �

(abs)

m+l

;

�

(rel)

1

= � � � = �

(rel)

m

> �

(rel)

m+1

> � � � > �

(rel)

m+l

:

Remark 4.5.9. From the proof of Theorem 4.5.5 we see that for every integer j

on [1; r℄ there is a matrix W

j

2 S

r�r

with kW

j

k

2

� 1 suh that �

j

(X

0

W

j

X

0

) = �

j

,

where the salars �

j

are de�ned by (4.5.40). It is worth pointing out the following

fats:

(i) If the singular values �

j

of X

1

(see (4.5.35)) satisfy �

1

= � � � = �

m

for some

integer m on [2; r℄, then there is a matrix W 2 S

r�r

(e.g., W = diag(I

m

; 0)) with

kWk

2

� 1 suh that �

j

(X

0

WX

0

) = �

j

= �

2

1

for all j = 1; : : : ;m.

(ii) If �

1

= � � � = �

m

> �

m+1

for some integer m on [1; r � 1℄, then there is no a

single W 2 S

r�r

with kWk

2

� 1 suh that

�

j

(X

0

WX

0

) = �

j

for j = 1; : : : ;m+ 1: (4:5:47)

We now prove the fat by ontradition. Assume that the relation (4.5.47) holds for

some W 2 S

r�r

with kWk

2

� 1. Then by (4.5.40) and �

1

= � � � = �

m

, we have

m+1

Y

j=1

�

j

(X

0

WX

0

) =

m+1

Y

j=1

�

j

= �

2m+1

1

�

m+1

: (4:5:48)

On the other hand, by Theorem 4.5.17 (see below NR 4.5{9) �

j

(X

0

) = �

j

, �

j

(W ) �

1, and �

1

= � � � = �

m

> �

m+1

, we have

m+1

Y

j=1

�

j

(X

0

WX

0

) �

m+1

Y

j=1

�

j

(X

0

)�

j

(W )�

j

(X

0

) � �

2m

1

�

2

m+1

< �

2m+1

1

�

m+1

;

whih ontradits the equality (4.5.48). The proof is ompleted. 2

Combining the above-mentioned fat (ii) with Theorems 4.5.4 and 4.5.5 shows

that if the singular values �

1

; : : : ; �

r

of X

1

are not mutually equal, then there is no

a single W 2 S

r�r

with kWk

2

� 1 suh that



j

(�

1

) =

q

�

2

+ �

2

1

�

2



�

j

(X

0

WX

0

) for j = 1; : : : ; r:

Consequently, the ondition numbers 

1

(�

1

); : : : ; 

r

(�

1

) may be alled the worst-ase

ondition numbers of the multiple eigenvalue �

1

.
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We now use a simple numerial example ited from [97, p.300℄ to test our results.

Example 4.5.10. Consider the eigenproblem (4.5.1) with

A =

�

2 0

0 2000

�

; B =

�

1 0

0 1000

�

: (4:5:49)

We have

X

T

AX = diag(2; 2); X

T

BX = I;

where X = diag(�

1

; �

2

) with the singular values

�

1

= 1; �

2

= 1=

p

1000 � 0:0316:

Obviously, the real symmetri pair (A;B) has a double eigenvalue �

1

= 2. It is known (see

Stewart and Sun [97, p.300℄) that one of the eigenvalues is very sensitive to perturbations

of order 0.1, whereas the other is not. We now use the results of this subsetion to analyze

the phenomenon.

By (4.5.40), (4.5.43) and (4.5.44) we have



(abs)

1

(�

1

) =

q

1 + �

2

1

�

2

1

� 2:2361;



(abs)

2

(�

1

) =

q

1 + �

2

1

�

1

�

2

� 7:0711� 10

�2

;



(rel)

1

(�

1

) =

p

kAk

2

2

+ �

2

1

kBk

2

2

j�

1

j

�

2

1

� 1:4142� 10

3

;



(rel)

2

(�

1

) =

p

kAk

2

2

+ �

2

1

kBk

2

2

j�

1

j

�

1

�

2

� 4:4721� 10:

Let (E;F ) be any symmetri perturbation satisfying kEk

2

= kFk

2

= 0:1, and let

~

�

1

;

~

�

2

be

the eigenvalues of (A + E;B + F ). Then by (4.5.45) and (4.5.46) we have the �rst order

perturbation estimates

j

~

�

1

� �

1

j

<

�

�

(abs)

1

� 3:1623� 10

�1

; j

~

�

2

� �

1

j

<

�

�

(abs)

2

� 1:0000� 10

�2

;

j

~

�

1

� �

1

j

j�

1

j

<

�

�

(rel)

1

� 1:5811� 10

�1

;

j

~

�

2

� �

1

j

j�

1

j

<

�

�

(rel)

2

� 5:0000� 10

�3

:

(4:5:50)

From the estimates of (4.5.50) we an understand why one of the eigenvalues of the matrix

pair (4.5.49) is usually muh more sensitive than the other. Hene, the results of this sub-

setion give an answer to the open researh problem proposed in [97, p.300℄.

Remark 4.5.11. For the multiple eigenvalue �

1

we an use the Frobenius norm

k � k

F

to de�ne the ondition numbers ̂

j

(�

1

) by

̂

j

(�

1

) = lim

Æ!0

sup











 

kEk

F

�

kFk

F

�

!











2

�Æ

j�

j

(H)j

Æ

; j = 1; : : : ; r;
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where H is the matrix of (4.5.31), the eigenvalues �

j

(H) satisfy (4.5.32), and �; �; 

are positive parameters. A onjeture: The ondition numbers ̂

j

(�

1

) an be ex-

pressed by

̂

j

(�

1

) =

q

�

2

+ �

2

1

�

2



p

j

�

j

; j = 1; : : : ; r;

where the salars �

j

are de�ned by (4.5.40), in whih �

k

for k = 1; : : : ; r are the

singular values of X

1

(see (4.5.35).

4.5.3 Strutured Bakward Errors

Let �

1

be a nonzero eigenvalue of the eigenproblem (4.5.1) with multipliity r � 1,

and x

1

; : : : ; x

l

be assoiated eigenvetors. Suppose that

~

�

1

; : : : ;

~

�

r

are approxima-

tions of �

1

, and ~x

1

; : : : ; ~x

r

are assoiated approximate eigenvetors, among whih

~x

1

; : : : ; ~x

r

are linearly independent. Then there is a question: Are

~

�

1

; : : : ;

~

�

r

and

~x

1

; : : : ; ~x

r

the eigenvalues and assoiated eigenvetors of a \nearby" generalized sym-

metri eigenvalue problem?

In this subsetion we suggest a measure for appraising the quality of the approx-

imate solution f~x

1

; : : : ; ~x

r

;

~

�g, where

~

� is de�ned by

~

� = (

~

�

1

+ � � �+

~

�

r

)=r;

and assume

~

� 6= 0.

Let

~

X

1

= (~x

1

; : : : ; ~x

r

):

By x1.9, we de�ne the bakward error �

(!)

(

~

X

1

;

~

�) by

�

(!)

(

~

X

1

;

~

�) = min

(











 

kEk

2

!kFk

2

!











2

:

E; F 2 S

n�n

;

(A+E)

~

X

1

=

~

�(B + F )

~

X

1

)

; (4:5:51)

where ! is a positive parameter.

For deriving a omputable formula of �

(!)

(

~

X

1

;

~

�), we �rst onsider a speial ase

where only the matrix A is perturbed. De�ne the orresponding bakward error

�

0

(

~

X

1

;

~

�) by

�

0

(

~

X

1

;

~

�) = minfkEk

2

: E 2 S

n�n

; (A+E)

~

X

1

=

~

�B

~

X

1

g: (4:5:52)

Take the QR fatorization of

~

X

1

:

~

X

1

= Q

1

R

1

; (4:5:53)

where Q

1

2 O

n�r

, and R

1

2 R

r�r

is upper triangular and nonsingular. The follow-

ing result gives a omputable formula of �

0

(

~

X

1

;

~

�).
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Theorem 4.5.12. Let �

0

(

~

X

1

;

~

�) be the bakward error de�ned by (4.5.52), and

let R be the residual de�ned by

R = (

~

�B �A)Q

1

: (4:5:54)

Then

�

0

(

~

X

1

;

~

�) = kRk

2

: (4:5:55)

Proof. Using the QR fatorization (4.5.53), the onstraint (A+E)

~

X

1

=

~

�B

~

X

1

in (4.5.52) is equivalent to

EQ

1

= R:

Consequently, the de�nition (4.5.52) an be written

�

0

(

~

X

1

;

~

�) = min

E2G

0

kEk

2

; (4:5:56)

where the set G

0

is de�ned by

G

0

=

�

E 2 S

n�n

: EQ

1

= R

	

:

Choose Q

2

so that Q = (Q

1

; Q

2

) 2 O

n�n

. By Theorem 1.5.2, G

0

6= ;, and any

E 2 G

0

an be expressed by

E = RQ

T

1

+Q

1

R

T

�Q

1

R

T

Q

1

Q

T

1

+Q

2

Q

T

2

TQ

2

Q

T

2

;

where T 2 S

n�n

. Thus, from (4.5.56)

�

0

(

~

X

1

;

~

�) = min

E2G

0

kQ

T

EQk

2

= min

T2S

n�n











 

Q

T

1

R R

T

Q

2

Q

T

2

R Q

T

2

TQ

2

!











2

= kRk

2

; (4:5:57)

where we have applied Theorem 1.2.3, and used the fat that the matrix T =

Q

2

WQ

T

2

satis�es T 2 S

n�n

and Q

T

2

TQ

2

=W for any W 2 S

(n�r)�(n�r)

. The proof

is ompleted. 2

De�ne the set G by

G = f(E;F ) : E;F 2 S

n�n

; EQ

1

=

~

�FQ

1

+Rg; (4:5:58)

and for an arbitrarily �xed F 2 S

n�n

, de�ne the set G

F

by

G

F

= fE 2 S

n�n

: EQ

1

=

~

�FQ

1

+Rg; (4:5:59)

where Q

1

and R are de�ned by (4.5.53) and (4.5.54), respetively. The following

result gives a omputable formula of �

(!)

(

~

X

1

;

~

�).

Theorem 4.5.13. The bakward error �

(!)

(

~

X

1

;

~

�) de�ned by (4.5.51) has the

expression

�

(!)

(

~

X

1

;

~

�) =

!

q

~

�

2

+ !

2

kRk

2

; (4:5:60)
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where R is the residual de�ned by (4.5.54).

Before we give a proof of Theorem 4.5.13, we �rst prove the following lemma.

Lemma 4.5.14. Let G 2 R

m�n

and  > 0 be given. Then for any matrix norm

k � k we have

min

Z2R

m�n

�

kZ +Gk

2

+ kZk

2

�

=



1 + 

kGk

2

: (4:5:61)

Proof. It is easy to verify that the inequality



1 + 

(�+ �)

2

� �

2

+ �

2

(4:5:62)

holds for any �; �;  � 0. We now use the inequality (4.5.62) to prove (4.5.61).

For any Z 2 R

m�n

we have



1 + 

kGk

2

�



1 + 

(kZ +Gk+ kZk)

2

� kZ +Gk

2

+ kZk

2

: (by (4:5:62))

(4:5:63)

Moreover, the matrix

b

Z = �

1

1 + 

G (4:5:64)

satis�es

k

b

Z +Gk

2

+ k

b

Zk

2

=



1 + 

kGk

2

:

Combining it with (4.5.63) shows (4.5.61). 2

Proof of Theorem 4.5.13. From (4.5.51), (4.5.58) and (4.5.59) it follows that

h

�

(!)

(

~

X

1

;

~

�)

i

2

= min

(E;F )2G

�

kEk

2

2

+ !

2

kFk

2

2

�

= min

F2S

n�n

�

!

2

kFk

2

2

+ min

E2G

F

kEk

2

2

�

:

Observe the following fats: (i) Using the QR fatorization (4.5.53) of

~

X

1

, the

onstraint (A+E)

~

X

1

=

~

�(B + F )

~

X

1

in (4.5.51) is equivalent to

EQ

1

=

~

�FQ

1

+R;

where R is the residual de�ned by (4.5.54); (ii) By Theorem 4.5.11, we have

min

E2G

F

kEk

2

= k

~

�FQ

1

+Rk

2

;
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(iii) The spetral norm is a unitarily invariant norm. Hene,

h

�

(!)

(

~

X

1

;

~

�)

i

2

= min

F2S

n�n

�

!

2

kQ

T

FQk

2

2

+ kQ

T

(

~

�FQ

1

+R)k

2

2

�

= min

H2S

n�n

0

�

!

2

kHk

2

2

+











 

~

�H

11

+Q

T

1

R

~

�H

21

+Q

T

2

R

!











2

2

1

A

= min

H

11

2 S

r�r

H

21

2 R

(n�r)�r

0

�

!

2

min

H

22

2S

(n�r)�(n�r)

kHk

2

2

+











~

�

 

H

11

H

21

!

+Q

T

R











2

2

1

A

;

(4:5:65)

where H =

 

H

11

H

T

21

H

21

H

22

!

. By Theorem 1.2.3, we have

min

H

22

2S

(n�r)�(n�r)











 

H

11

H

T

21

H

21

H

22

!











2

=











 

H

11

H

21

!











2

:

Substituting it into (4.5.65) shows

h

�

(!)

(

~

X

1

;

~

�)

i

2

= min

H

11

2 S

r�r

H

21

2 R

(n�r)�r

0

�











~

�

 

H

11

H

21

!

+Q

T

R











2

2

+ !

2











 

H

11

H

21

!











2

2

1

A

:

(4:5:66)

Further, by Lemma 4.5.14 and (4.5.64)), the minimum in (4.5.66) is ahieved for

 

b

H

11

b

H

21

!

= �

~

�

~

�

2

+ !

2

Q

T

R;

where

b

H

11

= Q

T

1

R = Q

T

1

(

~

�B �A)Q

1

2 S

r�r

;

and we have

h

�

(!)

(

~

X

1

;

~

�)

i

2

=

!

2

~

�

2

+ !

2

kQ

T

Rk

2

2

;

whih gives (4.5.60). 2

Remark 4.5.15. Taking ! ! 1 fores F = 0 in (4.5.51) and (4.5.60), we get

the expression (4.5.55) of the bakward error �

0

(

~

X

1

;

~

�) de�ned by (4.5.52).

Remark 4.5.16. Let

~

� and

~

X

1

be as in (4.5.51). We now de�ne the absolute

bakward error �

abs

(

~

X

1

;

~

�

1

) by

�

abs

(

~

X

1

;

~

�

1

) = min

(











 

kEk

2

kFk

2

!











2

:

E;F 2 S

n�n

;

(A+E)

~

X

1

=

~

�

1

(B + F )

~

X

1

;

)

;
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and de�ne the relative bakward error �

rel

(

~

X

1

;

~

�

1

) by

�

rel

(

~

X

1

;

~

�

1

) = min

(











 

kEk

2

=kAk

2

kFk

2

=kBk

2

!











2

:

E;F 2 S

n�n

;

(A+E)

~

X

1

=

~

�

1

(B + F )

~

X

1

;

)

;

then by (4.5.60) we have the omputable formulas

�

abs

(

~

X

1

;

~

�

1

) = �

(1)

(

~

X

1

;

~

�

1

) =

kRk

2

q

1 +

~

�

2

1

; (4:5:67)

and

�

rel

(

~

X

1

;

~

�

1

) =

1

kAk

2

�

(kAk

2

=kBk

2

)

(

~

X

1

;

~

�

1

) =

kRk

2

q

kAk

2

2

+

~

�

2

1

kBk

2

2

; (4:5:68)

where R is the residual de�ned by (4.5.54).

Example 4.5.17. Consider the symmetri-de�nite generalized eigenproblem (4.5.1)

with

A =

0

B

B

B

B

B

B

B

B

�

9 �19 �23 33 �20 �2 �5

�19 56 5 0 6 �2 0

�23 5 26 5 41 0 5

33 0 5 94 30 0 �20

20 6 41 30 65 �2 20

�2 �2 0 0 �2 4 0

�5 0 5 �20 20 0 10

1

C

C

C

C

C

C

C

C

A

and

B =

0

B

B

B

B

B

B

B

B

�

8 �3 �7 �1 �4 �2 �1

�3 12 1 0 2 �2 0

�7 1 11 1 5 0 1

�1 0 1 34 6 0 �4

�4 2 5 6 23 �2 4

�2 �2 0 0 �2 4 0

�1 0 1 �4 4 0 2

1

C

C

C

C

C

C

C

C

A

:

The eigenvalues of the eigenproblem are

�

1

= �

2

= �

3

= 5; �

4

= 3; �

5

= 1; �

6

= �6; �

7

= �14:

We ompute X 2 R

7�7

and � = diag(�

1

; : : : ; �

7

) of (4.5.2) by the following steps (see

Golub and Van Loan [41, Algorithm 8.7.1℄):

Compute the Cholesky fatorization B = GG

T

, where G is a lower triangular

matrix with positive diagonal elements.

Compute C = G

�1

AG

�T

.

Use the symmetri QR algorithm to ompute the Shur deompositionQ

T

CQ =

diag(�

1

; : : : ; �

7

).

Set X = G

�T

Q.



4.5. SYMMETRIC-DEFINITE GENERALIZED EIGENPROBLEMS 195

Write the omputed X and �

j

as

~

X and

~

�

j

(j = 1; : : : ; 7), respetively. By (4.5.53) and

(4.5.54) we ompute the residual R, and then applying (4.5.67) and (4.5.68) we get

�

abs

(

~

X

1

;

~

�) = 7:63� 10

�15

; �

rel

(

~

X

1

;

~

�) = 1:74� 10

�16

;

where

~

� = (

~

�

1

+

~

�

2

+

~

�

3

)=3 is an approximation of �

1

, and

~

X

1

onsists of the assoiated

eigenvetors of

~

�

1

,

~

�

2

,

~

�

3

.

Similarly, for

~

�

4

;

~

�

5

;

~

�

6

;

~

�

7

and assoiated ~x

4

; ~x

5

; ~x

6

; ~x

7

, we get

�

abs

(~x

4

;

~

�

4

) = 3:27� 10

�15

; �

rel

(~x

4

;

~

�

4

) = 6:22� 10

�17

;

�

abs

(~x

5

;

~

�

5

) = 8:95� 10

�15

; �

rel

(~x

5

;

~

�

5

) = 9:93� 10

�17

;

�

abs

(~x

6

;

~

�

6

) = 1:99� 10

�15

; �

rel

(~x

6

;

~

�

6

) = 4:71� 10

�17

;

�

abs

(~x

7

;

~

�

7

) = 2:80� 10

�15

; �

rel

(~x

7

;

~

�

7

) = 7:28� 10

�17

:

The results show that eah omputed eigenvalue and assoiated eigenvetor are an exat

eigenvalue and an assoiated eigenvetor of a very slightly perturbed symmetri generalized

eigenproblem; in other words, the omputation has proeeded quite stably.

Remark 4.5.18. For the approximate solution f~x

1

; : : : ; ~x

r

;

~

�g given at the be-

ginning of this subsetion we an use the Frobenius norm k�k

F

to de�ne the bakward

error

^

�

(!)

(

~

X

1

;

~

�) by

^

�

(!)

(

~

X

1

;

~

�) = min

(











 

kEk

F

!kFk

F

!











2

:

E; F 2 S

n�n

;

(A+E)

~

X

1

=

~

�(B + F )

~

X

1

)

;

where

~

X

1

= (~x

1

; : : : ; ~x

r

), and ! is a positive parameter. It an be proved that there

is a omputable formula for the bakward error

^

�

(!)

(

~

X

1

;

~

�):

^

�

(!)

(

~

X

1

;

~

�) =

!

q

~

�

2

+ !

2

q

2kRk

2

F

� kQ

T

1

Rk

2

F

;

where R is the residual de�ned by (4.5.54), and Q

1

is the orthogonal fator of

~

X

1

in its QR fatorization (see (4.5.53)). The proof is left as an exerise.

Notes and Referenes

NR 4.5{1. x4.5.1 and x4.5.2 are based on Sun [107℄.

NR 4.5{2. Example 4.5.1 is ited from Wang and Garbow [126, p.606℄.

NR 4.5{3. Rellih Theorem [87℄. Let A(�) 2 S

n�n

be an analyti matrix-

valued funtion of a single real variable � in a neighborhood of the origin, and let
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�

1

be an eigenvalue of A(0) with multipliity r. Then there exist r real analyti

funtions �

1

(�); : : : ; �

r

(�) in a neighborhood of the origin, suh that �

1

(�); : : : ; �

r

(�)

are eigenvalues of A(�) and

�

s

(0) = �

1

; s = 1; : : : ; r:

NR 4.5{4. The Rellih theorem stated in NR 4.5{3 is only a real form of Rel-

lih's result on the eigenvalues of a Hermitian matrix-valued funtion of a single

real variable. By Rellih [87, p.31℄, the general result an be stated as follows: Let

A(�) 2 H

n�n

for real � with small j�j, and let the elements of A(�) be onvergent

power series for small j�j. Then the eigenvalues of A(�) an be onsidered as power

series in � onvergent for small j�j. Wimmer [132℄ gives a short proof of the Rel-

lih theorem based on the fat that the ring H(
) of omplex funtions whih are

holomorphi in a region 
 is an elementary divisor domain. Besides, the Rellih

theorem is extended to normal matries by Lanaster and Tismenetsky [67, Chapter

11, Theorem 2℄.

NR 4.5{5. Gershgorin Theorem. For A = (�

ij

) 2 C

n�n

let

G

i

(A) = fz 2 C : jz � �

ii

j �

X

j 6=i

j�

ij

jg:

Then

�(A) �

n

[

i=1

G

i

(A):

Moreover, if m of the Gershgorin diss G

i

(A) are isolated from the other n � m

diss, then there are preisely m eigenvalues of A in their union. (See, e.g., Stewart

and Sun [97, Chapter IV, Theorem 2.1℄.)

NR 4.5{6. The relations of (4.5.27) are obtained by Fox and Kapoor [38℄.

NR 4.5{7. The perturbation analyses of eigenvalues of real symmetri posi-

tive de�nite matries are made by Polak and Wardi [85℄, and these analyses an be

arried over to the ases of symmetri matries and bilinear forms (e.g., the loal

Lipshitz ontinuity of the eigenvalues and the generalized gradient introdued by

Clarke [22℄ of multiple eigenvalues).

NR 4.5{8. Some results on the generalized gradients of multiple eigenvalues of

the symmetri-de�nite generalized eigenproblem (4.5.3) are given by Sun [108℄.

NR 4.5{9. The following two theorems on singular values are ited from the

literature. The �rst one is used to prove Theorem 4.5.5, and the seond one is used

to show the fat (ii) in Remark 4.5.9.
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Theorem 4.5.16. Let K;L 2 C

m�n

(m � n) be given, let the ordered singular

values of K;L and KL

H

be

�

1

(K) � � � � � �

n

(K); �

1

(L) � � � � � �

n

(L);

and

�

1

(KL

H

) � � � � � �

n

(KL

H

) � �

n+1

(KL

H

) = � � � = �

m

(KL

H

) = 0;

respetively. Then

�

j

(KL

H

) � min

1�k�j

f�

k

(K)�

j�k+1

(L)g; j = 1; : : : ; n:

See Horn and Johnson [55, p.423℄ for the proof of Theorem 4.5.16.

Theorem 4.5.17. Let K;L 2 C

n�n

be given, let the ordered singular values of

K;L and KL be

�

1

(K) � � � � � �

n

(K); �

1

(L) � � � � � �

n

(L);

and

�

1

(KL) � � � � � �

n

(KL);

respetively. Then

Q

j

k=1

�

k

(KL) �

Q

j

k=1

�

k

(K)�

k

(L); j = 1; : : : ; n� 1;

Q

n

k=1

�

k

(KL) =

Q

n

k=1

�

k

(K)�

k

(L):

This result is proved by Horn [54℄. An alternative proof an be found in Marshall

and Olkin's book [75℄.
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