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Abstract. We present a summary of results on random context picture
grammars (rcpgs), which are a method of syntactic picture generation.
The productions of such a grammar are context-free, but their appli-
cation is regulated—permitted or forbidden—by context randomly dis-
tributed in the developing picture. Thus far we have investigated three
important subclasses of rcpgs, namely random permitting context pic-
ture grammars, random forbidding context picture grammars and table-
driven context-free picture grammars. For each subclass we have proven
characterization theorems and shown that it is properly contained in the
class of rcpgs. We have also developed a characterization theorem for all
picture sets generated by rcpgs, and used it to find a set that cannot be
generated by any rcpg.

Key words: formal languages, picture grammars, syntactic picture gen-
eration, image analysis, random context grammars, scene understanding

1 Introduction

Picture generation is a challenging task in Computer Science and applied ar-
eas, such as document processing (character recognition), industrial automation
(inspection) and medicine (radiology).

Syntactic methods of picture generation have become established during the
last decade or two. A variety of methods is discussed and extensive lists of
references are given in [9, 11, 12]. Random context picture grammars (rcpgs) [7]
generate pictures through successive refinement. They are context-free grammars
with regulated rewriting; the motivation for their development was the fact that
context-free grammars are often too weak to describe a given picture set, eg. the
approximations of the Sierpiński carpet, while context-sensitive grammars are
too complex to use.

Random context picture grammars have at least three interesting subclasses,
namely random permitting context picture grammars (rPcpgs), random forbid-
ding context picture grammars (rFcpgs) and table-driven context-free picture
grammars (Tcfpgs). For each of these classes we have developed characteriza-
tion theorems. In particular, for rPcpgs we proved a pumping lemma and used
it to show that these grammars are strictly weaker than rcpgs [5]. For rFcpgs we
proved a shrinking lemma [4], and showed that they too are strictly weaker than
rcpgs [6]. In the case of Tcfpgs, we developed two characterization theorems and
showed that these grammars are strictly weaker than rFcpgs [1].

Finally, we have developed a characterization theorem for all galleries gen-
erated by rcpgs, and used it to find a picture set, more commonly known as a
gallery, that cannot be generated by any rcpg [13].

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 135–147, 2009.
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In this paper we present a summary of the above results. We formally define
rcpgs in Section 2. In Section 3 we present the pumping lemma for rPcpgs, and
use it to show that no rPcpg can generate the approximations of the Sierpiński
carpet. In Section 4 we state the shrinking lemma for rFcpgs, and present a
gallery that cannot be generated by any rFcpg. Then, in Section 5, we define
Tcfpgs, present two characterization theorems for these grammars and show that
they are strictly weaker than rFcpgs. In Section 6 we present a property of all
galleries generated with rcpgs, and then construct a gallery that does not belong
to this class. We briefly touch on a generalization of rcpgs in Section 7. Future
work is recommended in Section 8.

2 Random context picture grammars

In this section we introduce random context picture grammars. For picture gram-
mars we need a geometric context; we choose the situation of squares divided
into equal squares.

In the following, let N+ = {1, 2, 3, . . .}. For k ∈ N+, let [k] = {1, 2, . . . , k}.

A −→

xm1 xm2 . . . xmm

...
...

. . .
...

x21 x22 . . . x2m

x11 x12 . . . x1m

(P;F)

Fig. 1. Production.

Random context picture grammars generate pictures using productions of
the form in Figure 1, where A is a variable, m ∈ N+, x12, . . . , xmm are variables
or terminals, and P and F are sets of variables. The interpretation is as follows:
if a developing picture contains a square labelled A and if all variables of P and
none of F appear as labels of squares in the picture, then the square labelled A
may be divided into equal squares with labels x11, x12, . . . , xmm.

We denote a square by a lowercase Greek letter, eg., (A,α) denotes a square
α labelled A. If α is a square, α11, α12, . . . , αmm denote the equal subsquares
into which α can be divided, with, eg., α11 denoting the left bottom one.

A random context picture grammar G = (VN, VT, P, (S, σ)) has a finite al-
phabet V of labels, consisting of disjoint subsets VN of variables and VT of termi-
nals. P is a finite set of productions of the form A→ [x11, x12, . . . , xmm](P;F),
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m ∈ N+, where A ∈ VN, x11, x12, . . . , xmm ∈ V and P,F ⊆ VN. Finally, there is
an initial labelled square (S, σ) with S ∈ VN.

A pictorial form is any finite set of nonoverlapping labelled squares in the
plane. If Π is a pictorial form, we denote by l(Π) the set of labels used in Π.

Thirdly, the size of a pictorial form Π is the number of squares contained in
it, denoted |Π|.

For an rcpg G and pictorial forms Π and Γ we write Π =⇒G Γ if there is
a production A→ [x11, x12, . . . , xmm](P;F) in G, Π contains a labelled square
(A,α), l(Π\{(A,α)}) ⊇ P and l(Π\{(A,α)})∩F = ∅, and Γ = (Π\{(A,α)})∪
{(x11, α11), (x12, α12), . . . , (xmm, αmm)}. As usual, =⇒∗G denotes the reflexive
transitive closure of =⇒G.

If every production in G has P = F = ∅, we call G a context-free picture
grammar (cfpg); if F = ∅ for every production, G is a random permitting context
picture grammar , and when P = ∅, G is a random forbidding context picture
grammar . The gallery G(G) generated by a grammar G = (VN, VT, P, (S, σ)) is
{Φ | {(S, σ)} =⇒∗G Φ and l(Φ) ⊆ VT}. An element of G(G) is called a picture.

Let Φ be a picture in the square σ. For any m ∈ N+, let σ be divided into
equal subsquares, say σ11, σ12, . . . , σmm. A subpicture Γ of Φ is any subset of
Φ that fills a square σij , i, j ∈ [m], i.e., the union of all the squares in Γ is the
square σij .

Finally, please note that we write a production A→ [x11](P;F) as
A→ x11(P;F).

3 Permitting context only

In this section we concentrate on grammars that use permitting context only.
We present a pumping lemma for the corresponding galleries, and show that
rPcpgs cannot generate Gcarpet, the gallery of approximations of the Sierpiński
carpet.

We first introduce some notation. Let Π be a pictorial form that occupies a
square α, i.e., the union of all the squares in Π is the square α; this we denote
by (Π,α). Let β be any square in the plane. Then (Π → β) denotes the pictorial
form obtained from Π by uniformly scaling (up or down) and translating all the
labeled squares in Π to fill the square β, retaining all the labels.

The pumping lemma for rPcpgs and some corollaries are proven in [5]. It
states:

Theorem 1. For any rPcpg G there is an m ∈ N+ such that for any picture
Φ ∈ G(G) with |Φ| ≥ m there is a number l, l ∈ [m], such that:

1. Φ contains l mutually disjoint nonempty subpictures (Ω1, α1), . . . , (Ωl, αl)
and l mutually disjoint nonempty subpictures (Ψ1, β1), . . . , (Ψl, βl), these be-
ing related by a function ϑ : {1, . . . , l} → {1, . . . , l} such that for each i,
i ∈ [l], βi ⊆ αϑ(i) and for at least one i, i ∈ [l], βi

⊂
6= αϑ(i);

2. the picture obtained from Φ by substituting (Ωi → βi) for (Ψi, βi) for all i,
i ∈ [l], is in G(G);
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3. recursively carrying out the operation described in (2) always results in a
picture in G(G).

Example 1. Consider Φ1 in Figure 2(a). Let (Ω1, α1) be the lower left hand quar-
ter, (Ω2, α2) the lower right hand quarter, (Ω3, α3) the upper left hand quarter
and (Ω4, α4) the upper right hand quarter of Φ1. Furthermore, let (Ψ1, β1) be
equal to (Ω2, α2), (Ψ2, β2) the letter Y , (Ψ3, β3) the letter Z and (Ψ4, β4) the
letter H. Then ϑ(1) = 2, ϑ(2) = ϑ(3) = 1 and ϑ(4) = 4.

We obtain Φ2 in Figure 2(b) by substituting (Ωi → βi) for (Ψi, βi), i ∈ [4],
in Φ1. Then we obtain Φ3 in Figure 2(c) by carrying out this operation on Φ2.

(a) Φ1

(b) Φ2 (c) Φ3

Fig. 2. Pumping Φ1.

An immediate consequence of the pumping property is that the set of sizes
of the pictures in an infinite gallery generated by an rPcpg contains an infinite
arithmetic progression. From this it follows that Gcarpet, two pictures of which
are shown in Figure 3, cannot be generated using permitting context only. This
gallery can be created by an rFcpg, as is shown in [1].



Random Context Picture Grammars: The State of the Art 139

Fig. 3. Two pictures from Gcarpet.

4 Forbidding context only

In this section we concentrate on grammars that use forbidding context only and
present a shrinking lemma for the corresponding galleries. The lemma is proven
in [4] and states:

Theorem 2. Let G be an rFcpg. For any integer t ≥ 2 there exists an integer
k = k(t) such that for any picture Φ ∈ G(G) with |Φ| ≥ k there are t pictures
Φ1, . . . , Φt = Φ in G(G) and t − 1 numbers l2, . . . , lt such that for each j, 2 ≤
j ≤ t,

1. Φj contains lj mutually disjoint nonempty subpictures (Φj1, αj1), . . .,
(Φjlj , αjlj ) and lj mutually disjoint nonempty subpictures (φj1, βj1), . . .,
(φjlj , βjlj ), these being related by a function ϑj : {1, . . . , lj} → {1, . . . , lj}
such that for each i, i ∈ [lj ], βji ⊆ αjϑj(i) and for at least one i, i ∈ [lj ],
βji

⊂
6= αjϑj(i);

2. the picture Φj−1 is obtained by substituting (φji → αji) for (Φji, αji) for all
i, i ∈ [lj ], in Φj.

Example 2. Consider Φ3 in Figure 4(a). We can choose (Φ31, α31) as the lower left
hand quarter, (Φ32, α32) as the lower right hand quarter and (Φ33, α33) as the up-
per right hand quarter of Φ3, furthermore (φ31, β31) equal to (Φ32, α32), (φ32, β32)
as the letter X and (φ33, β33) as the lower right hand quarter of (Φ33, α33). Here
l3 = 3 and ϑ3(1) = 2, ϑ3(2) = 1 and ϑ3(3) = 3.

Φ2 in Figure 4(b) is obtained by substituting (φ3i → α3i) for (Φ3i, α3i),
1 ≤ i ≤ 3, in Φ3.

Now consider Φ2 in Figure 4(b). We can choose (Φ21, α21) as the lower left
hand quarter, (Φ22, α22) as the lower right hand quarter, (Φ23, α23) as the up-
per left hand quarter and (Φ24, α24) as the upper right hand quarter of Φ2,
furthermore (φ21, β21) equal to (Φ22, α22), (φ22, β22) as the letter Y , (φ23, β23)
as the letter Z and (φ24, β24) as the letter H. Here l2 = 4 and ϑ2(1) = 2,
ϑ2(2) = ϑ2(3) = 1 and ϑ2(4) = 4.

Φ1 in Figure 4(c) is obtained by substituting (φ2i → α2i) for (Φ2i, α2i),
1 ≤ i ≤ 4, in Φ2.
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(a) Φ3

(b) Φ2 (c) Φ1

Fig. 4. Shrinking Φ3.

In [6] we use the technique developed for the proof of the shrinking lemma
to show that a certain gallery, Gtrail, cannot be generated by any rFcpg, but can
be generated by an rcpg. Therefore rFcpgs are strictly weaker than rcpgs.

Consider Gtrail =
{
Φ1, Φ2, . . .

}
, where Φ1, Φ2 and Φ3 are shown in Fig-

ures 5(a), 5(b) and 5(c), respectively. For the sake of clarity, an enlargement
of the bottom left hand ninth of Φ3 is given in Figure 5(d).

For i = 2, 3, . . ., Φi is obtained by dividing each dark square in Φi−1 into four
and placing a copy of Φ1, modified so that it has exactly i+ 2 dark squares, all
on the bottom left to top right diagonal, into each quarter.

The modification of Φ1 is effected in its middle dark square only and proceeds
in detail as follows: The square is divided into four and the newly-created bottom
left hand quarter coloured dark. The newly-created top right hand quarter is
again divided into four and its bottom left hand quarter coloured dark. This
successive quartering of the top right hand square is repeated until a total of
i − 1 dark squares have been created, then the top right hand square is also
coloured dark. The new dark squares thus get successively smaller, except for
the last two, which are of equal size.
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(a) Φ1 (b) Φ2

(c) Φ3 (d) Bottom left hand ninth of Φ3 en-
larged

Fig. 5. The pictures Φ1, Φ2 and Φ3 from Gtrail.

5 Table-driven context-free picture grammars

In [1] we introduce table-driven context-free picture grammars, and compare
them to cfpgs, rPcpgs and rFcpgs. We also give two necessary conditions for a
gallery to be generated by a Tcfpg, and use them to find galleries that cannot
be made by any Tcfpg.

A table-driven context-free picture grammar is a system G =
(VN, VT, T , (S, σ)), where VN, VT, V = VN ∪ VT and (S, σ) are as defined in
Section 2. T is a finite set of tables, each table R ∈ T satisfying the following
two conditions:

1. R is a finite set of productions of the form A→ [x11, x12, . . . , xmm], m ∈ N+,
where A ∈ VN, and x11, x12, . . . , xmm ∈ V.

2. R is complete, i.e., for each A ∈ VN, there exist an m ∈ N+ and
x11, x12, . . . , xmm ∈ V such that A→ [x11, x12, . . . , xmm] is in R.

As in the case of rcpgs, the squares containing variables are replaced, but the
terminals are never rewritten. Every direct derivation must replace all variables
in the pictorial form; the completeness condition ensures that this is possible.



142 Sigrid Ewert

For any production p, say A→ [x11, x12, . . . , xmm], A is called the left hand
side of p, and [x11, x12, . . . , xmm] the right hand side of p, denoted by lhs (p) and
rhs (p), respectively.

For a labelled square (A,α) and a production p with
A = lhs (p), say A→ [x11, x12, . . . , xmm], m ∈ N+, we denote
{(x11, α11), (x12, α12), . . . , (xmm, αmm)} by repl ((A,α)) p 1.

For pictorial form Π, we define var (Π) = {(A,α) ∈ Π | A ∈ VN}. For pic-
torial form Π and table R, we call b : var (Π) → R a base 2 on Π if for each
(A,α) ∈ var (Π), lhs (b ((A,α))) = A.

Let Π and Γ be pictorial forms. We say that Π directly derives Γ (Π =⇒ Γ )
if there exists a base b on Π such that

Γ = Π \ var (Π) ∪
⋃

(A,α)∈var(Π)

repl ((A,α)) b ((A,α)).

For Tcfpgs, the terms =⇒∗G, gallery , and picture are defined as for rcpgs in
Section 2.

Finally, please note that we write a production A→ [x11] as A→ x11.
In [1] we present a Tcfpg that generates Gcarpet. From this it follows that

Tcfpgs can generate a gallery that no rPcpg can and that Tcfpgs are strictly
more powerful than context-free picture grammars.

In [1] we state two necessary conditions for a gallery to be generated by a
Tcfpg.

Before we can state the first such condition, we need a definition. Let Π be
a pictorial form and B a set. Then #B (Π) denotes the number of occurrences
of elements of B in Π.

Theorem 3. Let G be a gallery generated by a Tcfpg with terminal alphabet VT.
Then for every B ⊆ VT, B 6= ∅, there exists a positive integer k such that, for
every picture Φ ∈ G either

1. #B (Φ) ≤ 1, or
2. Φ contains a subpicture Ψ such that |Ψ | ≤ k and #B (Ψ) ≥ 2, or
3. there exist infinitely many Υ ∈ G such that #B (Υ ) = #B (Φ).

In [1] we use Theorem 3 to show that a certain gallery, Gnot−Tcfpg, cannot
be generated by any Tcfpg. Consider Gnot−Tcfpg =

{
Φ1, Φ2, . . .

}
, where Φ1, Φ2

and Φ3 are given in Figure 6 from left to right. Let the terminals b, g and w
represent squares with the colours black, grey and white respectively. Then Φn,
n ∈ N+, is such that the terminals on its diagonal, read from bottom left to top
right, form the string b (bgn)n, while the rest of the picture is white.

Before we can state the second necessary condition for a gallery to be gen-
erated by a Tcfpg, we introduce the properties nonfrequent and rare, which are
based on properties presented in [3]. Let G be a set of pictures with labels from
the alphabet VT, and B a nonempty subset of VT. Then
1 The use of “repl” was inspired by the concept repl defined in [2].
2 The use of “base” was inspired by the concept base defined in [2].
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Fig. 6. The pictures Φ1, Φ2 and Φ3 from the gallery Gnot−Tcfpg.

– B is called nonfrequent in G if there exists a constant k such that for every
Φ ∈ G, #B(Φ) < k.

– B is rare in G if for every k ∈ N+ there exists an nk > 0 such that for every
n ∈ N with n > nk, if a picture Φ ∈ G contains n occurrences of letters from
B then for each two such occurrences, the smallest subpicture containing
those occurrences has size at least k.

Theorem 4. Let G = (VN, VT, T , (S, σ)) be a Tcfpg and B ⊆ VT, B 6= ∅. If B
is rare in G(G), then B is nonfrequent in G(G).

In [1] we use Theorem 4 to show that a certain gallery, GrFcpg−Tcfpg, cannot be
generated by any Tcfpg. Consider GrFcpg−Tcfpg = {Φm,n | n ≥ 1,m ≥ n}, where
Φ2,2 and Φ4,3 are given in Figure 7 from left to right. Let the terminals b, g and
w represent squares with the colours black, grey and white respectively. Then
Φm,n is such that the terminals on its diagonal, read from bottom left to top
right, form the string (bgm)n, while the rest of the picture is white.

In [1] we show that every gallery generated by a Tcfpg can be generated by
an rFcpg. Then we present an rFcpg that generates the gallery GrFcpg−Tcfpg.
From that it follows that Tcfpgs are strictly weaker than rFcpgs.

6 The Limitations of Random Context

In [13] we investigate the limitations of random context picture grammars. First
we study those grammars that generate only pictures that are composed of
squares of equal size and show that the corresponding galleries enjoy a certain
commutativity. This enables us to construct a set of pictures that cannot be
generated by any rcpg. Then we generalize the commutativity theorem to the
class of all rcpgs.

For the sake of simplicity, we consider only rcpgs of which every production
that effects a subdivision produces exactly four subsquares. Also, we let σ be
the unit square ((0, 0) , (1, 1)). The result we state below can be formulated for
the case of rcpgs with productions that effect other subdivisions [13].
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Fig. 7. The pictures Φ2,2 and Φ4,3 from the gallery GrFcpg−Tcfpg.

Before we can state the theorem, we need some definitions. A picture is
called n-divided , for n ∈ N+, if it consists of 4n equal subsquares, each labeled
with a terminal. For example, the picture on the left hand side of Figure 8 is
4-divided. A level-m subsquare of an n-divided picture, with 1 ≤ m ≤ n, is a
square ((x2−m, y2−m) , ((x+ 1)2−m, (y + 1)2−m)), where x and y are integers
and 0 ≤ x, y < 2m. Note that, for m < n, a level-m subsquare consists of
all 4n−m labeled subsquares contained in it. For example, the upper left hand
quarter of the above mentioned picture is a level-1 subsquare of the picture and
consists of 43 labeled subsquares.

Two n-divided pictures Φ1 and Φ2 are said to commute at level m if Φ1

contains two different level-m subsquares α and β such that Φ2 can be obtained
by simply interchanging the labeling of α and β. A picture Φ1 is called self-
commutative at level m if Φ1 and Φ1 commute at level m.

In [13] we give a proof of the following theorem:

Theorem 5. Let G = (VN, VT, P, (S, σ)) be an rcpg that generates an infinite
gallery of n-divided pictures, where n ∈ N+. Then there exist an m and a c
such that each picture that is c-divided is either self-commutative at level m or
commutes with another picture in the gallery at level m.

We now use Theorem 5 to construct a gallery that cannot be generated by
any rcpg.

Let m ∈ N+. Consider the 2m-divided picture Φ that is constructed as fol-
lows: For any level-m subsquare α in Φ, if α is in row i and column j of Φ, then
the level-2m subsquare in row i and column j of α is coloured dark. All the other
level-2m subsquares are coloured light.

For example, in Figure 8, m = 2. The picture on the left hand side is 2× 2-
divided, i.e., 4-divided. On the right hand side, we show the level-2 subsquares
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α1 in row 2, column 2, and α2 in row 3, column 4. The level-4 subsquare in
row 2, column 2 of α1 is coloured dark and all other level-4 subsquares of α1

are coloured light. Similarly, the level-4 subsquare in row 3, column 4 of α2 is
coloured dark and all other level-4 subsquares of α2 are coloured light.

Then Φ is not self-commutative at level m. Thus we have:

Theorem 6. There exists a set of pictures, each consisting of the unit square
subdivided into equal subsquares and coloured with two colours, that cannot be
generated by an rcpg.

Fig. 8. 4-divided.

In [13] we generalize Theorem 5 to the class of all rcpgs.

7 Generalized Random Context Picture Grammars

As geometric context for random context picture grammars we used squares
divided into equal, non-overlapping squares. Clearly we could start with another
shape, eg. a triangle, and divide it successively into non-overlapping triangles of
equal size. We could also divide a shape into shapes that do not all have the
same size or have the same shape as the original. For any given gallery there
may be a combination of shapes and arrangement of subshapes that is most
effective. This leads us to a generalization of rcpgs, so-called generalized random
context picture grammars (grcpgs). In [8] we define grcpgs as grammars where
the terminals are subsets of the Euclidean plane and the replacement of variables
involves the building of functions that will eventually be applied to terminals.
Context is again used to enable or inhibit the application of production rules.

In this form generalized random context picture grammars can be seen as a
generalization of (context-free) collage grammars [9].

Iterated Function Systems (IFSs) are among the best-known methods for
constructing fractals. In [8] we show that any picture sequence generated by an
IFS can also be generated by a grcpg that uses forbidding context only. Moreover,
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since grcpgs use context to control the sequence in which functions are applied,
they can generate a wider range of fractals or, more generally, pictures than IFSs
[8].

Mutually Recursive Function Systems (MRFSs) are a generalization of IFSs.
In [10] we show that any picture sequence generated by an IFS can also be
generated by a grcpg that uses forbidding context only. Moreover, grcpgs can
generate sequences of pictures that MRFSs cannot [10].

8 Future work

In this paper we give a summary of results for random context picture gram-
mars and three of their more interesting subclasses, namely random permitting
context picture grammars, random forbidding context picture grammars and
table-driven context-free picture grammars.

It has been established that Tcfpgs are strictly weaker than rFcpgs. Moreover,
it is known that Tcfpgs can generate a gallery that rPcpgs cannot, namely the
gallery of approximations of the Sierpiński carpet. However, it is not known
whether there exists a gallery that can be generated by an rPcpg, but not by any
Tcfpg. Moreover, it is also not known if there is a gallery that can be generated
by an rPcpg, but not by any rFcpg.
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