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Abstract. We present Local Church-Rosser, Parallelism, and Concur-
rency Theorems for rules with nested application conditions in the frame-
work of weak adhesive HLR categories including different kinds of graphs.
The proofs of the statements are based on the corresponding statements
for rules without application conditions and two Shift-Lemmas, saying
that nested application conditions can be shifted over morphisms and
rules.
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1 Introduction

Graph replacement systems have been studied extensively and applied to several
areas of computer science [1,2,3] and were generalized to high-level replacement
(HLR) systems [4] and weak adhesive HLR systems [5,6]. Application conditions
restrict the applicability of a rule. Originally, they were defined in [7], special-
ized to negative application conditions (NACs) [8], and generalized to nested
application conditions (ACs) [9].

The Local Church-Rosser, Parallelism, and Concurrency Theorems are well-
known theorems for graph replacement systems on rules without application con-
ditions [10,11,12,13,14,15] and are generalized to high-level replacement (HLR)
systems [4] and rules with negative application conditions [16]. Nested applica-
tion conditions (ACs) were introduced in [9] and intensively studied in [17]. They
generalize the well-known negative application conditions (NACs) in the sense
of [8,16] and are expressively equivalent to first order formulas on graphs. In this
paper, we generalize the theorems to weak adhesive HLR systems on rules with
nested application conditions.

Theorem without ACs with NACs with ACs
Local Church-Rosser [10,13,4,6] [8,16] this paper

Parallelism [11,12,4,6] [8,16] this paper
Concurrency [14,15,4,6] [16] this paper

The proofs of the theorems are based on the corresponding theorems for weak
adhesive HLR systems on rules without application conditions in [6] and facts
on nested application conditions in [17], saying that application conditions can
be shifted over morphisms and rules.

Theorem + Shift-Lemmas for ACs ⇒ Theorem for rules with ACs

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 109–133, 2009.
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The paper is organized as follows: In Sections 2 and 3, we review the definitions
of a weak adhesive HLR category, nested conditions, and rules. In Section 4, we
state and prove the Local Church-Rosser, Parallelism, and Concurrency Theo-
rems for rules with nested application conditions. The concepts are illustrated
by examples in the category of graphs with the class M of all injective graph
morphisms. A conclusion including further work is given in Section 5.

2 Graphs and high-level structures

We recall the basic notions of directed, labeled graphs [13,18] and generalize
them to high-level structures [4]. The idea behind the consideration of high-
level structures is to avoid similar investigations for similar structures such as
Petri-nets and hypergraphs.

Directed, labeled graphs and graph morphisms are defined as follows.

Definition 1 (graphs and graph morphisms). Let C = 〈CV, CE〉 be a fixed,
finite label alphabet. A graph over C is a system G = (VG, EG, sG, tG, lG, mG)
consisting of two finite sets VG and EG of nodes (or vertices) and edges, source
and target functions sG, tG: EG → VG, and two labeling functions lG: VG → CV

and mG: EG → CE. A graph with an empty set of nodes is empty and denoted
by ∅. A graph morphism g: G→ H consists of two functions gV: VG → VH and
gE: EG → EH that preserve sources, targets, and labels, that is, sH ◦gE = gV◦sG,
tH ◦ gE = gV ◦ tG, lH ◦ gV = lG, and mH ◦ gE = mG. A morphism g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it
is both injective and surjective. The composition h ◦ g of g with a morphism
h: H →M consists of the composed functions hV ◦ gV and hE ◦ gE.

Our considerations are based on weak adhesive HLR categories, i.e. categories
based on objects of many kinds of structures which are of interest in computer
science and mathematics, e.g. Petri-nets, (hyper)graphs, and algebraic specifica-
tions, together with their corresponding morphisms and with specific properties.
Readers interested in the category-theoretic background of these concepts may
consult e.g. [6].

Definition 2 (weak adhesive HLR category). A category C with a morphism
classM is a weak adhesive HLR category, if the following properties hold:

1. M is a class of monomorphisms closed under isomorphisms, composition,
and decomposition. I.e. for morphisms g ◦ f : f ∈M, g isomorphism (or vice
versa) implies g◦f ∈ M; f, g ∈M implies g◦f ∈M; and g◦f ∈M, g ∈M
implies f ∈ M.

2. C has pushouts and pullbacks along M-morphisms, i.e. pushouts and pull-
backs, where at least one of the given morphisms is inM, andM-morphisms
are closed under pushouts and pullbacks, i.e. given a pushout (1) as in the
figure below, m ∈ M implies n ∈ M and, given a pullback (1), n ∈ M
implies m ∈M.
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3. Pushouts in C along M-morphisms are weak VK-squares, i.e. for any com-
mutative cube in C where we have the pushout with m ∈ M and (f ∈ M
or b, c, d ∈ M) in the bottom and the back faces are pullbacks, it holds: the
top is pushout iff the front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C′

f

c
B′

B D

D′

b d
m

Fact 1. The category 〈Graphs, Inj〉 of graphs with class Inj of all injective graph
morphisms is a weak adhesive HLR category [6].

Further examples of weak adhesive HLR categories are the categories of hy-
pergraphs with all injective hypergraph morphisms, place-transition nets with
all injective net morphisms, and algebraic specifications with all strict injective
specification morphisms [6]. Weak adhesive HLR-categories have a number of
nice properties, called HLR properties [4].

Fact 2 (properties of weak adhesive HLR categories [19,6]). For a weak
adhesive HLR-category 〈C,M〉, the following properties hold:

1. Pushouts alongM-morphisms are pullbacks.
2. M pushout-pullback decomposition. If the diagram (1)+(2) in the figure

below is a pushout, (2) a pullback, w ∈M and (l ∈ M or c ∈ M), then (1)
and (2) are pushouts and also pullbacks.

3. Cube pushout-pullback decomposition. Given the commutative cube (3) in
the figure below, where all morphisms in the top and the bottom are inM,
the top is pullback, and the front faces are pushouts, then the bottom is a
pullback iff the back faces of the cube are pushouts.

A C E

B D F

c r

u w

l s v(1) (2)

A′

AC

C′

B′

BD

D′

(3)

4. Uniqueness of pushout complements. Given morphisms c: A→ C inM and
s: C → D, then there is, up to isomorphism, at most one B with l: A → B

and u: B → D such that diagram (1) is a pushout.

In the following, we consider weak adhesive HLR categories with an epi-M
factorization and binary coproducts.
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Definition 3 (epi-M factorization). A weak adhesive HLR category 〈C,M〉
has an epi-M factorization if, for every morphism, there is an epi-mono factori-
zation with monomorphism in M and this decomposition is unique up to iso-
morphism.

Remark 1 (binary coproducts). In a weak adhesive HLR category 〈C,M〉
with binary coproducts, the binary coproducts are compatible with M in the
sense that f, g ∈ M implies f+g ∈ M. In fact, PO (1) in the figure below with
f ∈ M implies (f+id) ∈ M and PO (2) with g ∈ M implies (id+g) ∈ M, but
now (f+g) = (id+g) ◦ (f+id) ∈M by closure under composition.[1em]

A B

A+C B+C B+D

DC
f g

f+id id+g

(1) (2)

[1em] For the category 〈Graphs, Inj〉 of graphs with class Inj of all injective graph
morphisms, these specific properties are satisfied.

Fact 3. 〈Graphs, Inj〉 has an epi-Inj factorization and binary coproducts [6].

3 Conditions and rules

We use the framework of weak adhesive HLR categories and introduce conditions
and rules for high-level structures like Petri nets, (hyper)graphs, and algebraic
specifications.

Assumption 1. We assume that 〈C,M〉 is a weak adhesive HLR category with
an epi-M factorization and binary coproducts.

Conditions are defined as in [9,17]. Syntactically, the conditions may be seen as
a tree of morphisms equipped with certain logical symbols such as quantifiers
and connectives.

Definition 4 (conditions). A (nested) condition over an object P is of the
form true or ∃(a, c), where a: P → C is a morphism and c is a condition over
C. Moreover, Boolean formulas over conditions over P are conditions over P :
for conditions c, ci over P with i ∈ I (for all index sets I), ¬ c and ∧i∈Ici are
conditions over P . ∃a abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c). Every
morphism satisfies true. A morphism p: P → G satisfies a condition ∃(a, c) if
there exists a morphism q in M such that q ◦ a = p and q |= c.

P

G

C,
a

p q
=

c

|=

)∃(
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The satisfaction of conditions over P by morphisms with domain P is extended
to Boolean formulas over conditions in the usual way. We write p |= c to denote
that the morphism p satisfies c. Two conditions c and c′ over P are equivalent,
denoted by c ≡ c′, if for all morphisms p with domain P , p |= c iff p |= c′.

Remark 2. The definition of conditions generalizes those in [8,20,21,5]. In the
context of rules, conditions are also called application conditions. Negative appli-
cation conditions [8,16] correspond to nested application conditions of the form
∄a. Examples of nested application conditions are given in Figure 1.

∃(
1 2

→֒
1 2

) There is an edge from the image of 1 to the im. of 2.
∄(

1 2
→֒

1 2
) There is no edge from the image of 1 to the im. of 2.

∃(
1 2

→֒
1 2

)
∧∄(

1 2
→֒

1 2
)

There is a directed path of length 2, but not of
length 1, from the image of 1 to the image of 2.

∃(
1
→֒

1 2
,

∄(
1 2

→֒
1 2

))
There is a proper edge outgoing from the image of 1
without edge in converse direction.

∀(
1
→֒

1 2
,

∃(
1 2

→֒
1 2

))
For every proper edge outgoing from the image of 1,
the target has a loop.

∃(
1
→֒

1 2
,

∀(
1 2

→֒
1 2 3

,

∃(
1 2 3

→֒

1 2 3
)))

For the image of node 1, there exists an outgoing
edge such that, for all edges outgoing from the
target, the target has a loop.

Fig. 1. Nested application conditions

In the presence of an M-initial object I [17], conditions ∃(a, c) with morphism
a: I → C can be used to define constraints for objects G, namely G satisfies
∃(a, c) if the initial morphism iG satisfies ∃(a, c).

Remark 3. In general, one could choose a satisfiability notion, i.e. a class of
morphisms M′, and require that the morphism q in Definition 4 is in M′. Ex-
amples are A- and M-satisfiability [22] where A and M are the classes of all
morphisms and all monomorphisms, respectively.

Conditions can be shifted over morphisms into corresponding conditions over
the codomain of the morphism. We present a Shift-construction based on jointly
epimorphic pairs of morphisms. A morphism pair (e1, e2) with ei: Ai → B (i =
1, 2) is jointly epimorphic if, for all morphisms g, h: B → C with g ◦ ei = h ◦ ei

for i = 1, 2, we have g = h. In the case of graphs, “jointly epimorphic” means
“jointly surjective”: a morphism pair (e1, e2) is jointly surjective, if for each
b ∈ B there is a preimage a1 ∈ A1 with e1(a1) = b or a2 ∈ A2 with e2(a2) = b.

Definition 5 (shift of conditions over morphisms). Let 〈C,M〉 be a weak
adhesive HLR category with epi-M-factorization. The transformation Shift is
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inductively defined as follows:

P

C

P ′

C′

a a′(1)

b

b′

c

Shift(b, true) = true.
Shift(b, ∃(a, c)) =

∨

(a′,b′)∈F
∃(a′, Shift(b′, c))

with F = {(a′, b′) | (a′, b′) jointly epimorphic, b′ ∈ M, and
(1) commutes}.

For Boolean formulas over conditions, Shift is extended in the usual way: For
conditions c, ci with i ∈ I (for all index sets I), Shift(b,¬c) = ¬Shift(b, c) and
Shift(b,∧i∈Ici) = ∧i∈IShift(b, ci).

Remark 4. In the special case that F is empty, the result of the transformation
is false. For previous versions of the Shift-construction see [16,17].

Example 1. Given the morphism b: P → P ′ below, the condition ∃ a is shifted
into the condition Shift(b, ∃ a) = ∃ a′ ∨ ∃ a′′ ∨ ∃ idP ′ where a′ is the morphism
depicted in the figure below and a′′ obtained from a′ by identifying the nodes
with label ordernr in C′. The condition can be simplified to true because ∃ idP ′ is
equivalent to true. The condition ∄ a is shifted into the condition Shift(b, ∄ a) =
¬Shift(b, ∃ a) ≡ ¬ true ≡ false.

�
�

�
�name

�



�
	orders

�



�
	name’

P �
�

�
�name

�



�
	orders

�



�
	name’

�



�
	ordernr

�



�
	title

P ′

�
�

�
�name

�



�
	orders

�



�
	name’

�



�
	ordernr

C

�
�

�
�name

�



�
	orders

�



�
	name’

�



�
	ordernr

�



�
	ordernr

�



�
	title

C′

b

b′

a a′

Lemma 1 (shift of conditions over morphisms). Let 〈C,M〉 be a weak
adhesive HLR category with epi-M-factorization. Then, for all conditions c over
P and all morphisms b: P → P ′, n: P ′ → H , n ◦ b |= c⇔ n |= Shift(b, c).

P

H

P ′
b

n ◦ b n

Shift(b, c)c
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Proof. The statement is proved by structural induction.
Basis. For the condition true, the equivalence holds trivially.
Inductive step. For a condition of the form ∃(a, c), we have to show

n ◦ b |= ∃(a, c)⇔ n |= Shift(b, ∃(a, c)).

”⇒”: Let n◦ b |= ∃(a, c). By definition of satisfiability, there is some q ∈M with
q ◦a = n◦b and q |= c. Let (ā, b̄) be the pushout in (1) in the left diagram below.
By the universal property of pushouts, there is an induced morphism q̄: C̄ → H

such that q = q̄ ◦ b̄ and n = q̄ ◦ ā. By epi-M factorization of q̄, q̄ = m ◦ e with
epimorphism e and monomorphism m ∈M. Define now a′ = e◦ ā and b′ = e◦ b̄.
Then the diagram PP ′CC′ commutes. Since M is closed under decomposition,
q = m ◦ b′ ∈ M, m ∈ M implies b′ ∈ M. Since 〈ā, b̄〉 is jointly epimorphic and
e is an epimorphism, (a′, b′) is jointly epimorphic. Thus, (a′, b′) ∈ F . By the in-
ductive hypothesis, q = m◦b′ |= c⇔ m |= Shift(b′, c). Now n |= ∃(a′, Shift(b′, c))
and, by definition of Shift, n |= ∃(b, Shift(a, c)).

P

P ′

C

C̄

C′

H

a

ā

a′

n

b b̄

b′

e

m

q̄

q

(1)

c
P

P ′

C

C′

H

a

a′

b b′

n m

c

”⇐”: Let n |= Shift(b, ∃(a, c)). By definition of Shift, there is some (a′, b′) ∈ F
with b′ ∈ M such that n |= ∃(a′, Shift(b′, c)). By definition of satisfiability, there
is some m ∈ M such that m ◦ a′ = n and m |= Shift(b′, c). By the inductive
hypothesis, m |= Shift(b′, c) ⇔ m ◦ b′ |= c. Now m ◦ b′ ∈ M, m ◦ b′ ◦ a = n ◦ b

(see the right diagram above), and m ◦ b′ |= c, i.e., n ◦ b |= ∃(a, c). 2

Rules are defined as in [5,17]. They are specified by a span of M-morphisms
〈

L ←֓ K →֒ R
〉

with a left and a right application condition. We consider the
classical semantics based on the double-pushout construction [13,18].

Definition 6 (rules). A rule ρ = 〈p, acL, acR〉 consists of a plain rule p =
〈

L ←֓ K →֒ R
〉

with K →֒ L and K →֒ R inM and two application conditions
acL and acR over L and R, respectively. L and R are called the left- and the
right-hand side of p and K the interface; acL and acR are the left and right
application condition of p.

L K R

DG H

m m∗(1) (2)

acL

=
|

acR

|=
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A direct derivation consists of two pushouts (1) and (2) such that m |= acL and
m∗ |= acR. We write G ⇒ρ,m,m∗ H and say that m: L → G is the match of ρ

in G and m∗: R → H is the comatch of ρ in H . We also write G ⇒ρ,m H or
G ⇒ρ H to express that there is an m∗ or there are m and m∗, respectively,
such that G⇒ρ,m,m∗ H .

The concept of rules is completely symmetric.

Fact 4. For ρ = 〈p, acL, acR〉 with p =
〈

L ←֓ K →֒ R
〉

, ρ−1 = 〈p−1, acR, acL〉

with p−1 =
〈

R ←֓ K →֒ L
〉

, is the inverse rule of ρ. For every direct derivation
G⇒ρ,m,m∗ H , there is a direct derivation H ⇒ρ−1,m∗,m G via the inverse rule.

Notation. In the case of graphs, a rule
〈

L ←֓ K →֒ R
〉

with discrete interface
K is shortly depicted by L ⇒ R, where the nodes of K are indexed in the left-
and the right-hand side of the rule. A negative application condition of the form
∄(L →֒ L′) is integrated in the left-hand side of a rule by crossing the part L′−L

out. E.g. the rule

p =
〈�



�
	authors ←֓

�



�
	authors →֒

�



�
	authors

�
�

�
�name
〉

with

acL = ∄
( �



�
	authors →֒

�



�
	authors

�
�

�
�name
)

is depicted by

�



�
	authors
1

�
�

�
�name =⇒

�



�
	authors
1

�
�

�
�name .

A conjunction
∧

i ∄(Li →֒ L′
i) of negative application conditions is represented

by coloring the parts L′
i−Li in grey and crossing them out. A grey edge with

labels l1, . . . , ln represents the conjunction of the negative application conditions
“There does not exist an li-labelled edge” for i = 1, . . . , n.

Example 2. In the figure below, rules with left application conditions are given,
corresponding more or less to the operations of the small library system originally
investigated in [23].
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AddAuthor(name):

�



�
	authors
1

�
�

�
�name =⇒

�



�
	authors
1

�
�

�
�name

AddPublisher(name’):
�



�
	publishers
1

�
�

�
�name =⇒

�



�
	publishers
1

�
�

�
�name

AddReader(readernr):

�



�
	readers
1

�



�
	readernr =⇒

�



�
	readers
1

�



�
	readernr

OrderBook(ordernr,name,title,name’):

�
�

�
�name
2�



�
	orders
1 �



�
	name’
3

�



�
	ordernr =⇒

�
�

�
�name
2�



�
	orders
1

�



�
	ordernr

�



�
	title

�



�
	name’
3

RegisterBook(ordernr,catnr):

�



�
	orders
1

�



�
	catalog
5

�



�
	ordernr

�



�
	catnr

�
�

�
�name
2�



�
	title
3�



�
	name’
4

+,-
=⇒

�



�
	orders
1

�



�
	catalog
4

�



�
	catnr

�
�

�
�name
2�



�
	title
3�



�
	name’
4

+

LendBook(catnr,readernr):
�



�
	catalog
1

�



�
	catnr
2

�



�
	readernr
3

+
=⇒

�



�
	catalog
1

�



�
	catnr
2

�



�
	readernr
3

–

By Theorem 6 in [17], right application conditions of rules can be shifted into
corresponding left application conditions and vice versa.

Lemma 2 (shift of conditions over rules). There are transformations L and
R of application conditions such that, for every right application condition acR

and every left application condition acL of a rule ρ and every direct derivation
G⇒ρ,m,m∗ H , m |= L(ρ, acR)⇔ m∗ |= acR and m |= acL ⇔ m∗ |= R(ρ, acL).

L K R

DG H

m m∗(1) (2)

L(ρ, acR)

=
|

acR

|=
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Construction. The transformation L is inductively defined as follows:

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

L(ρ∗, ac) ac

L(ρ, true) = true
L(ρ, ∃(a, ac)) = ∃(b, L(ρ∗, ac)) if 〈r, a〉 has a pushout
complement (1) and ρ∗ = 〈Y ← Z → X〉 is the
derived rule by constructing the pushout (2).
L(ρ, ∃(a, ac)) = false, otherwise.

For Boolean formulas over application conditions, L is extended in the usual way:
For conditions c, ci with i ∈ I, L(b,¬c) = ¬L(b, c) and L(b,∧i∈Ici) = ∧i∈IL(b, ci).
The transformation R is given by R(ρ, acL) = L(ρ−1, acL).

Example 3. Given the library rule ρ = OrderBook(ordernr, name, title, name′)
in the upper row of the figure below, the right application condition ∄(R → X)
is shifted over ρ into the left application condition ∄(L→ Y ).

�
�

�
�name

�



�
	orders

�



�
	name’

L �
�

�
�name

�



�
	orders

�



�
	name’

K �
�

�
�name

�



�
	orders

�



�
	name’

�



�
	ordernr

�



�
	title

R

�
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr

Z

�
�

�
�name

�



�
	orders

�



�
	name’

�



�
	ordernr

Y

�
�

�
�name

�



�
	orders

�



�
	ordernr

�



�
	title

�



�
	ordernr

�



�
	name’

X

In the following, we define the equivalence of rules and the equivalence of appli-
cation conditions with respect to a rule. The equivalence with respect to a rule
is more restrictive than the unrestricted one in Definition 4.

Definition 7 (equivalence). Two rules ρ and ρ′ are equivalent, denoted by
ρ ≡ ρ′, if the relations⇒ρ and⇒ρ′ are equal. For a rule ρ, two left (right) appli-
cation conditions ac and ac′ are ρ-equivalent, denoted by ac ≡ρ ac′, if the rules
obtained from ρ by adding the application condition ac and ac′, respectively, are
equivalent.

There is a close relationship between the transformations L and R: For every
rule ρ, Shift of a condition over the rule to the left and then over the rule to the
right is ρ-equivalent to the original condition.

Fact 5 (L and R). For every rule ρ and every application condition ac over R,
the right-hand side of the plain rule of ρ, the application conditions R(ρ, L(ρ, ac))
and ac are ρ-equivalent: R(ρ, L(ρ, ac)) ≡ρ ac.
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Proof. By the Shift-Lemma 2, for every direct derivation G⇒ρ,m,m∗ H , m∗ |=
R(ρ, L(ρ, ac)) ⇔ m |= L(ρ, ac) ⇔ m∗ |= ac, i.e., the application conditions
R(ρ, L(ρ, ac)) and ac are ρ-equivalent. 2

Remark 5. In general, the application conditions R(ρ, L(ρ, ac)) and ac are not
equivalent in the sense of Definition 4. E.g., for the rule ρ =

〈

∅ ←֓ ∅ →֒
1

〉

and
the application condition ac = ∃(

1
→

1
), L(ρ,¬ac) = ¬L(ρ, ac) = ¬false ≡

true and R(ρ, L(ρ,¬ac)) = R(ρ, true) = true 6≡ ¬ac.

Furthermore, there is a nice interchange result of Shift and L saying that, for
a rule ρ, the shift of a right application condition over a rule and a match is
ρ-equivalent to the shift of the application condition over the comatch and the
rule induced by the match.

Lemma 3 (Shift and L). For every direct derivation L∗ ⇒ρ,k,k∗ R∗ via a rule
ρ and every application condition ac, Shift(k, L(ρ, ac)) ≡ρ∗ L(ρ∗, Shift(k∗, ac)),
where ρ∗ denotes the rule derived from ρ and k. A corresponding statement holds
for Shift and R.

L K R

K∗L∗ R∗

k k∗(11) (21)

Proof. Let G⇒ρ∗,l,l∗ H be a direct derivation, m = l ◦ k and m∗ = l∗ ◦ k∗. By
Shift-Lemmas 1 and 2, we have l |= Shift(k, L(ρ, ac)) ⇔ m |= L(ρ, ac) ⇔ m∗ |=
acR ⇔ l∗ |= Shift(k∗, ac)⇔ l |= L(ρ∗, Shift(k∗, ac)).

L K R

K∗L∗ R∗

DG H

k k∗

l l∗

(11) (21)

(12) (22)

m m∗

2

As a consequence of Shift-Lemma 2, every rule can be transformed into an equiv-
alent one with true right application condition. A rule of the form 〈p, acL, true〉
is said to be a rule with left application condition and is abbreviated by 〈p, acL〉.

Corollary 1 (rules with left application condition). There is a transfor-
mation Left from rules into rules with left application condition such that, for
every rule ρ, ρ, and Left(ρ) are equivalent.

Proof. For a rule ρ = 〈p, acL, acR〉, the transformation Left is defined by
Left(ρ) = 〈p, acL ∧ L(ρ, acR)〉. By Definition 6, Shift-Lemma 2, and the defi-
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nition of Left,

G⇒ρ,m,m∗ H ⇔ G⇒p,m,m∗ H ∧m |= acL ∧m∗ |= acR

⇔ G⇒p,m,m∗ H ∧m |= acL ∧m |= L(ρ, acR)
⇔ G⇒p,m,m∗ H ∧m |= acL ∧ L(ρ, acR)
⇔ G⇒Left(ρ),m,m∗ H,

i.e., the rules ρ and Left(ρ) are equivalent. 2

4 Local Church-Rosser, Parallelism, and Concurrency

In this section, we present Local Church-Rosser, Parallelism, and Concurrency
Theorems for rules with application conditions. The proofs of the statements are
based on the corresponding statements for rules without application conditions
[6] and Shift-Lemmas 1 and 2, saying that application conditions can be shifted
over morphisms and rules.

First, we study parallel and sequential independence of direct derivations leading
to the Local Church-Rosser and Parallelism Theorems for rules with application
conditions. By Corollary 1, we may assume that the rules are rules with left
application condition.

Assumption 2. In the following, let ρ1 = 〈p1, acL1
〉 and ρ2 = 〈p2, acL2

〉 be
rules with pi =

〈

Li ←֓ Ki →֒ Ri

〉

for i = 1, 2.

Roughly speaking, two direct derivations are parallel (sequentially) independent
if the underlying direct derivations without application conditions are parallel
(sequentially) independent and the induced matches satisfy the corresponding
application conditions. For rules with negative application conditions, the defi-
nition corresponds to the one in [24].

Definition 8 (parallel and sequential independence). Two direct deriva-
tions H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 are parallel independent if there are morphisms

d2: L1 → D2 and d1: L2 → D1 such that the triangles L1D2G and L2D1G com-
mute, m′

1 = c2 ◦ d2 |= acL1
, and m′

2 = c1 ◦ d1 |= acL2
.

GD1H1

R1 K1 L1

D2 H2

R2K2L2

=c1 = c2

d1 d2

acL1
acL2

Two direct derivations G ⇒ρ1,m1
H1 ⇒ρ2,m′

2
M are sequentially independent

if there are morphisms d2: R1 → D2 and d1: L2 → D1 such that the triangles
R1D2H1 and L2D1H1 commute, m′∗

1 = c2 ◦d2 |= R(ρ1, acL1
) and m2 = c1◦d1 |=

acL2
.
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H1D1G

L1 K1 R1

D2 M

R2K2L2

=c1 = c2

d1 d2

acL1
acL2

Two direct derivations that are not parallel (sequentially) independent, are called
parallel (sequentially) dependent.

By definition, parallel and sequential independence are closely related.

Fact 6 (parallel and sequential independence are closely related). Two
direct derivations H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 are parallel independent iff the two

direct derivations H1 ⇒ρ
−1

1
,m∗

1

G⇒ρ2,m2
H2 are sequentially independent, where

m∗
1 is the comatch of ρ1 in H1.

Example 4. The two direct derivations H1 ⇐ρ1
G ⇒ρ2

H2 via the rules ρ1 =
AddAuthor(name) and ρ2 = AddPublisher(name′) are parallel independent.

�



�
	authors

�



�
	publishers

�



�
	authors

�



�
	publishers

�



�
	authors

�



�
	publishers

�
�

�
�name

�



�
	authors

�
�

�
�name

�



�
	authors

�



�
	authors

�



�
	authors

�



�
	publishers

�



�
	authors

�



�
	publishers

�



�
	name’

�



�
	publishers

�



�
	name’

�



�
	publishers

�



�
	publishers

GH1 D1 D2 H2

In the proofs of the Local Church-Rosser, Parallelism and Concurrency Theo-
rems, we proceed as follows: (1) We switch from derivations with ACs to the
corresponding derivations without ACs, (2) use the results for derivations with-
out ACs, and (3) lift the results without ACs to ACs.

derivations with ACs =⇒ result with ACs
↓ ↑

derivations without ACs =⇒ result without ACs

Fact 7 (Every derivation with ACs induces a derivation without ACs).
For every direct derivation G ⇒ρ,m H via the rule ρ = 〈p, ac〉, there is a direct
derivation G⇒p,m H via the plain rule p, called the underlying direct derivation
without ACs.

Fact 8 (independence with ACs implies independence without ACs).
Parallel (sequential) independence of direct derivations implies parallel (sequen-
tial) independence of the underlying direct derivations without ACs.
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Now we present a Local Church-Rosser Theorem for rules with application con-
ditions. It generalizes the well-known Local Church-Rosser Theorems for rules
without application conditions [6] and with negative application conditions [24].

Theorem 1 (Local Church-Rosser Theorem). Given two parallel indepen-
dent direct derivations H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2, there are an object M and

direct derivations H1 ⇒ρ2,m′

2
M ⇐ρ1,m′

1
H2 such that G⇒ρ1,m1

H1 ⇒ρ2,m′

2
M

and G ⇒ρ2,m2
H2 ⇒ρ1,m′

1
M are sequentially independent. Given two sequen-

tially independent direct derivations G ⇒ρ1,m1
H1 ⇒ρ2,m′

2
M , there are an

object H2 and direct derivations G⇒ρ2,m2
H2 ⇒ρ1,m′

1
M such that H1 ⇐ρ1,m1

G⇒ρ2,m2
H2 are parallel independent.

G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

Proof. Let H1 ⇐ρ1,m1
G ⇒ρ2,m2

H2 be parallel independent. Then the un-
derlying direct derivations without ACs are parallel independent. By the Local
Church-Rosser Theorem without ACs [6], there are an object M and direct
derivations H1 ⇒p2,m′

2
M ⇐p1,m′

1
H2 such that G ⇒p1,m1

H1 ⇒p2,m′

2
M and

G⇒p2,m2
H2 ⇒p1,m′

1
M are sequentially independent. By assumption, mi, m

′
i |=

acLi
for i = 1, 2. Thus, there are direct derivations H1 ⇒ρ2,m′

2
M ⇐ρ1,m′

1
H2

with ACs. Let R1 → D̄2 and L2 → D1 be the morphisms in Figure 2. Then
R1 → D̄2 → H1 = m∗

1 and L2 → D1 → H1 = m′
2. By Shift-Lemma 2,

R1 → D̄2 → M = m′∗
1 |= R(ρ1, acL1

) and L2 → D1 → G = m2 |= acL2
.

Thus, the derivation G⇒ρ1,m1
H1 ⇒ρ2,m′

2
M is sequentially independent. Anal-

ogously, the second derivation is sequentially independent.
Vice versa, let G ⇒ρ1,m1

H1 ⇒ρ2,m′

2
M be sequentially independent. Then the

underlying direct derivations without ACs are sequentially independent. By the
Local Church-Rosser Theorem without ACs [6], there are an object H2 and di-
rect derivations G⇒p2,m2

H2 ⇒p1,m′

1
M such that H1 ⇐p1,m1

G⇒p2,m2
H2 are

parallel independent. By assumption, we know that m1, m
′
1 |= acL1

, m2 |= acL2

(by Shift-Lemma 2, m′∗
1 |= R(ρ1, acL1

) implies m′
1 |= acL1

). Thus, G ⇒ρ2,m2

H2 ⇒ρ1,m′

1
M is a derivation with ACs. Let L2 → D1 and L1 → D2 in Figure 2

be the morphisms with L1 → D2 → G = L1 → G and L2 → D1 → G = L→ G.
Then L1 → D2 → H2 = m′

1 and L2 → D1 → H1 = m′
2 |= acL2

. Thus, the
direct derivations H1 ⇐p1,m1

G ⇒p2,m2
H2 become parallel independent. The

statement also can be proved with the help of the first statement and Fact 6. 2

For clarifying the notations, a sketch a part of the proof of Local Church-Rosser
Theorem for rules without ACs is given oriented at the one in [30].

Sketch of proof. Let H1 ⇐p1,m1
G ⇒p2,m2

H2 be parallel independent. Then
there are morphisms L1 → D2 and L2 → D1 such that the triangles L1D2G
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andL2D1G in the figure below commute.

GD1H1

R1 K1 L1

D2 H2

R2K2L2

(1)(2) (3) (4)

The morphisms are used for the decomposition of the pushouts (i) into pushouts
(i1),(i2) for i = 1, . . . , 4 (Figure 2.1). The pushouts can be rearranged as in
Figure 2.2 and 2.3. Furthermore, diagram (5) is constructed as pushout. Since the
composition of pushouts yields pushouts, we obtain direct derivations H1 ⇒p2,m′

2

M ⇐p1,m′

1
H2 such that the direct derivations G ⇒p1,m1

H1 ⇒p2,m′

2
M and

G⇒p2,m2
H2 ⇒p1,m′

1
M are sequentially independent. 2

GD1H1 D2 H2

D̄2 D0 D2 D0D1 D̄1

R1 K1 L1 R2K2L2

m1 m2m∗

1 m∗

2

(21)

(22)

(11)

(12)

(31)

(32)

(41)

(42)

H1D1G D̄2 M

D2 D0 D̄2 D0D1 D̄1

L1 K1 R1 R2K2L2

m1 m∗

1 m′

2 m′∗

2

(11)

(12)

(21)

(22)

(31)

(22)

(41)

(5)

H2D2G D̄1 M

D1 D0 D̄1 D0D2 D̄2

L2 K2 R2 R1K1L1

m2 m∗

2 m′

1 m′∗

1

(31)

(12)

(41)

(42)

(11)

(42)

(21)

(5)

Fig. 2. Decomposition and composition
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Next, we present the construction of a parallel rule of rules with application
conditions. It generalizes the construction of a parallel rule of rules without
application conditions [6] and makes use of the Shift of application conditions
over morphisms and rules (see Shift-Lemmas 1 and 2). As in [6], we have to
assume that 〈C,M〉 has binary coproducts. The application condition of the
parallel rule ρ1 + ρ2 guarantees that, whenever the parallel rule is applicable,
the rules ρ1 and ρ2 are applicable and, after the application of ρ1, the rule ρ2 is
applicable and, after the application of ρ2, the rule ρ1 is applicable.

Definition 9 (parallel rule and derivation). The parallel rule of ρ1 and ρ2

is the rule ρ1+ρ2 = 〈p, ac′L〉 where p = p1+p2 is the parallel rule of p1 and p2,
and acL′ = acL ∧ L(ρ1+ρ2, acR), where

acL = Shift(k1, acL1
) ∧ Shift(k2, acL2

)
acR = Shift(k∗

1 , R(ρ1, acL1
)) ∧ Shift(k∗

2 , R(ρ2, acL2
)).

L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1

k∗
1

k2 k∗
2

A direct derivation via a parallel rule is called parallel direct derivation or parallel
derivation, for short.

Example 5. The parallel rule of AddAuthor(name) and AddPublisher(name′)
is the rule with the plain rule

p =

〈

�



�
	authors

�



�
	publishers
←֓

�



�
	authors

�



�
	publishers
→֒

�



�
	authors

�
�

�
�name

�



�
	publishers

�



�
	name’

〉

and the application conditions

acL = ∄
(

�



�
	publishers
�



�
	authors

�
�

�
�name
)

∧ ∄
( �



�
	authors
�



�
	publishers

�



�
	name’
)

acR = ∄









�



�
	authors

�
�

�
�name

�
�

�
�name

�



�
	publishers

�



�
	name’









∧ ∄









�



�
	authors

�



�
	publishers

�
�

�
�name

�



�
	name’

�



�
	name’









requiring that “There does not exist an author node with label name”, “There
does not exist a publisher node with label name′”, “Afterwards, there do not
exist two author nodes with label name”, and “Afterwards, there do not exist
two publisher nodes with label name′”. Here an author node is a node which
is connected with the node with label authors by a directed edge. Shifting the
application condition acR over the rule ρ yields the application condition acL.
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Thus, the parallel rule is equivalent to the rule with left application condition
depicted below.

AddAuthorPublisher(name, name′):

�



�
	authors

�
�

�
�name

�



�
	publishers

�



�
	name’

=⇒

�



�
	authors

�
�

�
�name

�



�
	publishers

�



�
	name’

The connection between sequentially independent direct derivations and paral-
lel direct derivations is expressed by the Parallelism Theorem. We present the
Parallelism Theorem for rules with application conditions. It generalizes the
well-known Parallelism Theorems for rules without application conditions [6]
and with negative application conditions [16].

Theorem 2 (Parallelism). Given sequentially independent direct derivations
G⇒ρ1,m1

H1 ⇒ρ2,m′

2
M , there is a parallel derivation G⇒ρ1+ρ2,m M . Given a

parallel derivation G⇒ρ1+ρ2,m M , there are two sequentially independent direct
derivations G⇒ρ1,m1

H1 ⇒ρ2,m′

2
M and G⇒ρ2,m2

H2 ⇒ρ1,m′

1
M .

G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

ρ1 + ρ2

Proof. Let G⇒ρ1,m1
H1 ⇒ρ2,m′

2
M be sequentially independent. Then the un-

derlying derivation without ACs is sequentially independent and, by the Paral-
lelism Theorem without ACs [6], there is a parallel derivation G⇒p1+p2,m M . By
Shift-Lemmas 1 and 2, (*) m |= acL and m∗ |= acR if and only if mi, m

′
i |= acLi

for i = 1, 2. This may be seen as follows:

m |= acL ⇔ m |= Shift(k1, acL1
) ∧ Shift(k2, acL2

)
⇔ m1 |= acL1

and m2 |= acL2

m∗ |= acR ⇔ m∗ |= Shift(k∗
1 , R(ρ1, acL1

)) ∧ Shift(k∗
2 , R(ρ2, acL2

))
⇔ m′∗

1 |= R(ρ1, acL1
) and m′∗

2 |= R(ρ2, acL2
)

⇔ m′
1 |= acL1

and m′
2 |= acL2

L1 L1+L2 L2

G

k1 k2

m1 m2m

R1 R1+R2 R2

M

k∗

1 k∗

2

m′∗

1 m′∗

2m∗

By assumption, mi, m
′
i |= acLi

for i = 1, 2. By (∗), m |= acL and m∗ |= acR,
i.e., G ⇒p1+p2,m M satisfies ACs. Vice versa, let G ⇒ρ1+ρ2,m M be a parallel
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derivation. Then there is an underlying parallel derivation without ACs, and,
by the Parallelism Theorem without ACs [6], there are sequentially independent
direct derivations G ⇒p1,m1

H1 ⇒p2,m′

2
M and G ⇒p2,m2

H2 ⇒p1,m′

1
M . By

assumption, m |= acL and m∗ |= acR. By (∗), mi, m
′
i |= acLi

for i = 1, 2, i.e.,
the sequentially independent direct derivations satisfy ACs. 2

Shift operations over parallel rules can be sequentialized into a sequence of shifts
over induced rules.

Fact 9 (shift over parallel rules). For every parallel rule ρ = ρ1+ρ2, ev-
ery right application condition ac for ρ, and i, j ∈ {1, 2} with i 6= j, we have
L(ρ, ac) ≡ρ L(ρ∗i , L(ρ∗j , ac)) where ρ∗i is induced by ρi and ki and ρ∗j is induced
by ρj and k′

j .

Proof. By the Parallelism Theorem, for every direct derivation G ⇒ρ,m,m∗ M

there are direct derivations G ⇒ρi,mi
Hi ⇒ρj ,mj

M . By analysis arguments
as in the proof of the Parallelism Theorem [6], there are direct derivations
G ⇒ρ∗

i
,m Hi ⇒ρ∗

j
,m′ M depicted in Figure 3. By the Shift-Lemma 2, m |=

L(ρ, ac)⇔ m∗ |= ac ⇔ m′ |= L(ρ∗j , ac)⇔ m |= L(ρ∗i , L(ρ∗j , ac)), i.e, the applica-
tion conditions L(ρ, ac) and L(ρ∗i , L(ρ∗j , ac)) are ρ-equivalent. 2

Ri+LjKi+LjLi+Lj Ri+Kj Ri+Rj

Li Ki Ri KjLj Rj

HiE1G E2 M

Ki+Kj

E

ki

m m′

k′

j k∗

j

m∗

(PO) (PO) (PO) (PO)

(PO)
(PO)

(PO) (PO)

Fig. 3. Sequentialization of a parallel derivation

Finally, we present the construction of a concurrent rule for rules with application
conditions. It generalizes the construction of concurrent rules for rules without
application conditions [6] and makes use of shifting of application conditions
over morphisms and rules (see Shift-Lemmas 1 and 2).

Definition 10 (E-concurrent rule). Let E ′ be a class of morphism pairs with
the same codomain. Given two rules ρ1 and ρ2, an object E with morphisms
e1: R1 → E and e2: L2 → E is an E-dependency relation for ρ1 and ρ2 if (e1, e2) ∈



Parallelism and Concurrency Theorems for Rules with NACs 127

E ′ and the pushout complements (1) and (2) over K1 →֒ R1 → E and K2 →֒
L2 → E in the figure below exist. Given such an E-dependency relation for
ρ1 and ρ2, the E-concurrent rule of ρ1 and ρ2 is the rule ρ1 ∗E ρ2 = 〈p, acL〉
where p = p1 ∗E p2 is E-concurrent rule of p1 and p2 with pushouts (3), (4) and
pullback (5), ρ∗1 =

〈

L ←֓ D1 →֒ E
〉

is the rule derived by ρ1 and k1, and

acL = Shift(k1, acL1
) ∧ L(ρ∗1, Shift(k2, acL2

).

ED1L

L1 K1 R1

D2

K

R

R2K2L2

K

k1 k2(3) (1) (2) (4)

(5)

Example 6. The E-concurrent rule of ρ1=OrderBook(ordernr, name, title,
name′) and ρ2 = RegisterBook(ordernr, catnr) according to the dependency
relation E, being the right-hand side E of ρ1 and the left-hand side of ρ2, is the
rule

p =

〈 �



�
	orders

�



�
	catalog

�
�

�
�name

�



�
	name’

←֓
�



�
	orders

�



�
	catalog

�
�

�
�name

�



�
	name’

→֒
�



�
	orders

�



�
	catalog

�
�

�
�name

�



�
	title

�



�
	name’

�



�
	catnr

+

〉

with the left application condition

acL = ∄

(

�



�
	orders

�



�
	catalog

�
�

�
�name

�



�
	name’

�



�
	catnr

)

∧ ∄

(

�



�
	orders

�



�
	catalog

�
�

�
�name

�



�
	name’

�



�
	ordernr

)

requiring that “There does not exist a catalog node with label catnr” and “There
does not exist an order node with label ordernr”. The E-concurrent rule may be
depicted as follows.

Order;RegisterBook(ordernr, catnr, name, title, name′):

�



�
	orders
1�



�
	catalog
4

�
�

�
�name
2�



�
	name’
3

�



�
	ordernr

�



�
	catnr

=⇒

�



�
	orders
1�



�
	catalog
4

�



�
	catnr

�
�

�
�name
2�



�
	title

�



�
	name’
3

+

The non-existence of a node with label catnr guarantees that, whenever the
E-concurrent rule of ρ1 and ρ2 is applicable, then the rule ρ1 with ordernr is
applicable and, afterwards, the rule ρ2 with catnr is applicable.
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For rules without ACs, the parallel rule is a special case of the concurrent rule
[6]. For rules with ACs, in general, this is not the case: While the application
conditions for the parallel rule must guarantee the applicability of the rules in
each order, the application condition for the concurrent rule only must guarantee
the applicability of the rules in the given order. Nevertheless, the parallel rule
of two rules can be constructed from two concurrent rules of the rules, one for
each order.

Fact 10. The parallel rule ρ1+ρ2 = 〈p1+p2, acL, acR〉 and the rule 〈p1+p2, acL12
∧

acL21
〉 obtained from the R1+L2-concurrent rule 〈p1 + p2, acL12

〉 of ρ1 and ρ2

and the R2+L1-concurrent rule 〈p2 + p1, acL21
〉 of ρ2 and ρ1 are equivalent.

R1+L2K1+L2L1+L2

L1 K1 R1 L2

k1 k′
2

R2+L1K2+L1L2+L1

L2 K2 R2 L1

k2 k′
1

Proof. For every parallel derivation G⇒ρ1+ρ2,m,m∗ M (see Figure 3) and i, j ∈
{1, 2} with i 6= j, we have

(∗ ∗ ∗) m∗ |= Shift(k∗
j , R(ρj , acLj

))
⇔ m∗ |= R(ρ∗j , Shift(kj , acLj

)) (Lemma 3)
⇔ m |= L(ρ∗j , R(ρ∗j , Shift(kj , acLj

)) (Shift-Lemma 2)
⇔ m |= Shift(kj , acLj

)) (Fact 5)

By the definitions and statement (***),

m |= acL and m∗ |= acR

⇔ m |= Shift(k1, acL1
) ∧ Shift(k2, acL2

) and
m∗ |= Shift(k∗

1 , R(ρ1, acL1
)) ∧ Shift(k∗

2 , R(ρ2, acL2
)) (Definition 9)

⇔ m |= Shift(k1, acL1
) ∧ L(ρ∗1, Shift(k′

2, acL2
)) and

m |= Shift(k2, acL2
) ∧ L(ρ∗2, Shift(k′

1, acL1
)) (***)

⇔ m |= acL12
∧ acL21

(Definition 10)

i.e., the parallel rule and the rule constructed from the concurrent rules are
equivalent. 2

We consider E-concurrent derivations via E-concurrent rules and E-related
derivations via pairs of rules.

Definition 11 (E-concurrent and E-related derivation). A direct deriva-
tion via an E-concurrent rule is called E-concurrent direct derivation or E-
concurrent derivation, for short. A derivation G ⇒ρ1

H ⇒ρ2
M is E-related if

there are morphisms E → H , D1 → E1, and D2 → E2 as shown below such
that the triangles R1EH , L2EH , K1D1E1, and K2D2E2 in the figure below
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commute and the diagrams (6) and (7) are pushouts.

E

R1K1L1

D1

L2 K2 R2

D2

E1 E2G MH

(6) (7)

= =
= =

Now we present a Concurrency Theorem for rules with application conditions. It
generalizes the well-known Concurrency Theorems for rules without application
conditions [6] and with negative application conditions [16].

Theorem 3 (Concurrency). Let E be a dependency relation for ρ1 and ρ2.
For every E-related derivation G⇒ρ1,m1

H ⇒ρ2,m2
M , there is an E-concurrent

derivation G⇒ρ1∗Eρ2,m M . Vice versa, for every E-concurrent derivation
G⇒ρ1∗Eρ2,m M , there is an E-related derivation G⇒ρ1,m1

H ⇒ρ2,m2
M .

G

H

M

ρ1 ρ2

ρ1 ∗E ρ2

Proof. Let G ⇒ρ1,m1
H ⇒ρ2,m2

M be E-related. Then the underlying deriva-
tion without ACs is E-related and, by the Concurrency Theorem without ACs
[6], there is an E-concurrent derivation G ⇒p1∗p2,m M . By Shift-Lemmas 1
and 2, (**) m1 |= acL1

and m2 |= acL2
iff m |= acL. This may be seen as follows:

m1 |= acL1
and m2 |= acL2

⇔ m |= Shift(k1, acL1
) and m′ |= Shift(k2, acL2

)
⇔ m |= Shift(k1, acL1

) and m |= L(p∗1, Shift(k2, acL2
))

⇔ m |= Shift(k1, acL1
) ∧ L(p∗1, Shift(k2, acL2

)) = acL.

By assumption, mi |= acLi
for i = 1, 2. By (**), m |= acL, i.e. the E-concurrent

derivation satisfies ACs.

ED1L

L1 K1 R1

D2 R

R2K2L2

E1 E2G MH

k1 k2(3) (1) (2) (4)

(3’) (1’) (2’) (4’)m m′

m1
m2

Vice versa, let G⇒ρ,m M be an E-concurrent derivation, then the underlying di-
rect derivation without ACs is E-concurrent, and, by the Concurrency Theorem
without ACs [6], there is an E-related derivation G ⇒p1,m1

H ⇒p2,m2
M . By

assumption, m |= acL. By (∗∗), m1 |= acL1
and m2 |= acL2

, i.e., the E-related
derivation satisfies ACs. 2
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5 Conclusion

In this paper we present the well-known Local Church-Rosser, Parallelism, and
Concurrency Theorems, known already for rules with negative application con-
ditions [16], for rules with nested application conditions. The proofs are based
on the corresponding theorems for rules without application conditions [6] and
two Shift-Lemmas [17], saying that application conditions can be shifted over
morphisms and rules and assume that 〈C,M〉 is a weak adhesive HLR category
with an epi-M-factorization and binary coproducts.

statement requirements
Local Church-Rosser Shift 1 & 2
Parallelism Shift 1 & 2, binary coproducts
Concurrency Shift 1 & 2
Shift 1 epi-M-factorization
Shift 2 –

Further topics might be the following:

– Amalgamation Theorem for rules with ACs. It would be important to
generalize the AmalgamationTheorem [25,18] to weak adhesive HLR systems
and rules with nested application conditions.

– Embedding and Local Confluence Theorems for rules with ACs.
It would be important to generalize the Embedding and Local Confluence
Theorems [26,13,27,28,6,29] to rules with nested application conditions.

– Theory to rules with merging. It would be important to generalize the
theory to the case of merging as indicated in [30].
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