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Abstract. We sketch the conceptual ideas that are intended to become
the basis for the Tree Automata Workbench MARBLES

1, an extensible
system that will facilitate the experimentation with virtually any kind
of algorithms on tree automata. Moreover, the system will come with a
library and an application programmer’s interface that can be used by
anyone wanting to apply such algorithms in research and development.

1 Introduction

Already in the 1960s, researchers in finite-automata theory realized that large
parts of this theory can be generalized by replacing strings with trees, with-
out loosing many of the positive algorithmic results, closure properties, and
the like. This observation gave rise to a flourishing theory, including a large
number of techniques and algorithms for analysis, modification, and synthe-
sis of various kinds of tree recognizers, tree grammars, and tree transducers
[GS84, NP92, GS97, FV98, CDG+07]. Throughout the rest of this paper, all
devices that fall into one of these categories will be called tree automata. Today,
probably more theoretical research than ever before is done in this area, moti-
vated by a constantly growing number of applications of tree automata in fields
such as verification and model checking [GK00, AJMd02, Löd02, FGVTT04],
natural language processing [KG05, GKM08], XML processing [Sch07], code se-
lection in compilers [FSW94], graph and picture generation [Eng94, Dre06], and
others.

The system TREEBAG
2 uses tree generators to generate sets of objects over

arbitrary domains. The central data type of TREEBAG is the ranked and ordered
tree, with nodes labelled by symbols taken from a ranked alphabet Σ. In other
words, every symbol f ∈ Σ comes with a rank k ≥ 0, such that a node labelled
with f is required to have exactly k children (which are totally ordered). This
means that a tree in the sense of TREEBAG is a term, i.e., a well-formed expression
composed of abstract (i.e., “meaningless”) operation symbols, each having a
specified rank that determines the number of subexpressions. TREEBAG deals
with two types of tree automata on this type of trees, namely tree grammars
and tree transducers. A tree grammar is a device that generates trees out of
itself, whereas a tree transducer is one that turns input trees into output trees.

⋆ Dedicated to Hans-Jörg Kreowski on the occasion of this 60th birthday.
1 Tree Automata Workbench = taw = a large marble, a game of marbles (Oxford

New Amer. Dict.).
2 Tree-Based Generator
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A tree generator is a tree grammar composed with a (possibly empty) sequence
of tree transducers.

In a well-known way, trees of the type described above can be assigned a
semantics by choosing a domain A and associating an operation on A (of the ap-
propriate arity) with each symbol in the ranked alphabet Σ considered. In other
words, a Σ-algebra is specified, so that every tree evaluates to an element of A.
This means that a device generating trees provides the syntactic basis for a tree-
based generator – a system consisting of a tree generator and an interpretation,
thus generating elements of A:

tree-based generator

tree generator interpretationgenerated

trees

generated

elements of A

TREEBAG makes it possible to assemble tree-based generators. This is ex-
plained in slightly more detail in Section 2, because MARBLES is to a certain
extent inspired by TREEBAG. However, in TREEBAG, all that can be done after
having assembled a tree generator is to execute it. In contrast, the usefulness of
tree automata in most application areas does not primarily lie in the fact that
they can be executed. Their real advantage is that they are simple enough to be
effectively analyzed and manipulated. For instance, in a model checking applica-
tion, tree automata may be generated that model safety and liveness properties
of a protocol to be verified. Analyzing these automata then corresponds to check-
ing correctness criteria, thus solving a model checking problem. The idea behind
MARBLES is, therefore, to make it possible to assemble algorithms on tree au-
tomata, thus perceiving tree automata mainly as the objects to be analyzed and
manipulated, rather than as executable algorithms. The major aim is to provide
researchers with a software environment and infrastructure that enables them
to create, use, and experiment with algorithms on tree automata.

In addition to TREEBAG, there are several other systems that implement
certain types of tree automata or algorithms on them.

AutoWrite (http://dept-info.labri.fr/~idurand/autowrite) is a sys-
tem that allows the user to check properties of term rewrite systems by means of
tree automata constructions. In particular, it allows to load, save, and combine
bottom-up tree recognizers. Using the graphical user interface, one can build
and manipulate bottom-up tree recognizers related to the term rewrite systems
whose properties one wants to check.

Forest FIRE (http://www.loekcleophas.com) is a toolkit focusing on
recognition, pattern matching, and parsing algorithms in connection with reg-
ular tree languages. The system has been developed on the basis of detailed
taxonomies, with the major purpose of gaining a deeper conceptual understand-
ing of how the ideas and techniques used in various tree automata constructions
are related to each other.

MONA (http://www.brics.dk/mona) is a tool for checking the validity of
formulas in the weak second-order theory of one successor (WS1S) or of two

http://dept-info.labri.fr/~idurand/autowrite
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successors (WS2S). For deciding WS2S, the decision procedures convert a given
formula into a so-called guided tree automaton, a variant of a bottom-up tree
recognizers, and analyse this automaton.

Tiburon (http://www.isi.edu/licensed-sw/tiburon) is a command-line
based package of algorithms on weighted regular tree grammars, context-free
string grammars, and tree transducers, including various analyzers, modifiers,
and synthesizers. The devices and algorithms implemented in Tiburon are typi-
cal even for MARBLES, but Tiburon has mainly been developed for applications
in Natural Language Processing, without MARBLES’ emphasis on a flexible envi-
ronment that can be adapted and extended to suit the needs of researchers who
study tree automata from different points of view.

Timbuk (http://www.irisa.fr/lande/genet/timbuk) is a collection of
tools for carrying out reachability proofs of term rewrite systems, among other
techniques by manipulating nondeterministic bottom-up tree recognizers. It is
intended to be used for the verification of programs and cryptographic protocols.

The proposed system MARBLES differs from each of these systems in sev-
eral respects. Most notably, the systems above have all been developed with a
particular application or problem area in mind. They are great for their par-
ticular purpose, but they are also restricted to it. In contrast, the intention
behind MARBLES is to support tree automata research in general, by providing
researchers with a suitable platform and infrastructure for their own extensions,
making it possible to experiment with and apply tree automata algorithms of
any kind.

The remainder of this paper is structured as follows. The next section presents
some aspects of TREEBAG that have, in one way or the other, inspired the in-
tended characteristics of MARBLES. In Section 3, some of the different types of
trees, tree automata, and tree automata algorithms that should, in principle,
be covered by MARBLES, are discussed. Section 4 presents initial ideas regard-
ing some of the concepts needed for making this possible. Finally, Section 5
concludes the paper.

2 TREEBAG

Let us now have a slightly closer look at the concepts and design principles of
TREEBAG. The following description is intentionally kept at a rather abstract
level, although concrete classes of, e.g., tree grammars and algebras available
in TREEBAG are sometimes mentioned as examples, maninly for readers who
happen to be familiar with tree automata theory. Readers who want to inform
themselves in more detail should consult the TREEBAG user manual available at
http://www.cs.umu.se/~drewes/treebag or, for the theory behind, [Dre06].

The work on TREEBAG was started during the second half of the 1990s, when
the author was a member of Hans-Jörg Kreowski’s research group at the Univer-
sity of Bremen. Around this time, a significant part of our research was dedicated
to context-free graph and collage grammars; see, e.g., [HKV91, HKL93, HKT93,
DHKT95, DK96, DHK97, DK99]. Both of these can be characterized by combi-

http://www.isi.edu/licensed-sw/tiburon
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nations of a certain type of tree grammars (namely regular tree grammars) with
suitable algebras in the style of Mezei and Wright [MW67], i.e., the grammars
can be viewed as tree-based generators. For graphs, this has been made explicit
by Engelfriet in [Eng94], and for collages by the author in [Dre96, Dre00]. See
also [DEKK03], where this characterization was used to establish certain de-
cidability results for collage languages. In this context, one should not forget to
mention Engelfriet’s paper [Eng80], where he discusses symbolic computation by
tree transductions, which is essentially the same idea, but now for transformation
rather than generation: a tree transduction, together with algebras interpreting
the input and output trees, is considered as a symbolic algorithm that performs
a computation on abstract trees rather than on the concrete objects of the two
domains in question.

Whereas the results mentioned above use only regular tree grammars, it is
obvious that one may in fact combine arbitrary kinds of tree generators with
any sort of algebra, yielding a large number of different grammatical formalisms
with comparatively little effort. Being a rather straightforward implementation
of this idea (in Java), TREEBAG allows its user to assemble tree-based generators
of various kinds. There are four major abstract classes, namely tree grammars,
tree transducers, algebras, and displays. The first three represent the correspond-
ing formal concepts, whereas displays are required for actually being able to
see the results of the generating process. Concrete subclasses of the four ab-
stract classes implement particular types of tree grammars, tree transducers,
algebras, and displays. For example, the classes generators.ET0LTreeGrammar
and generators.mtTransducer implement ET0L tree grammars and macro tree
transducers, resp. If a class such as these is available, this means that the user
can define specific instances (usually in ordinary ASCII text files) and use them
in assembling tree-based generators. Such instances are called components in the
following.

Figure 1 shows a typical situation when working with TREEBAG. Window 1
is the main window of the system, the so-called worksheet. When the user loads
a component, it is represented on the worksheet as a blob. These blobs repre-
sent the nodes of a directed acyclic graph whose edges determine the data flow
between components. The data-flow edges are interactively established by the
user, subject to a few rather obvious rules: The output of a tree grammar or tree
transducer can become the input of tree transducers or algebras, and the output
of an algebra can become the input of a display. The configuration in Figure 1
consists of a regular tree grammar, a free term algebra with a corresponding tree
display, a top-down tree transducer, and two copies of a collage algebra, each
with its corresponding collage display. With each display component, a window
is associated, namely the windows numbered 3–5. Thus, these windows show
the tree generated by the regular tree grammar, its interpretation by the collage
grammar, and the interpretation of the transformed tree by (another instance
of) the same collage algebra.

An additional window (numbered 2 in the figure) contains buttons that pro-
vide access to the user commands of the regular tree grammar. Double clicks on
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Fig. 1. A typical configuration of TREEBAG

the other components on the worksheet would open similar sections in this win-
dow for them, each one being populated by the individual commands understood
by the respective component.

Let us now discuss two aspects of the design of TREEBAG which are expected
to have some influence on MARBLES. In fact, these two aspects are quite closely
related and can be seen as the two sides of the same coin.

From the point of view of the user, the way in which components can be
interconnected depends only on their types, i.e., whether they are tree grammars,
tree transducers, algebras or displays. In other words, if the user wants to connect
a tree grammar and a tree transducer, this can be done regardless of whether the
tree grammar at hand is a regular tree grammar, ET0L tree grammar, context-
free tree grammar or whatever type of tree grammar might at some point in time
be implemented in TREEBAG. Of course, users must interconnect the “right”
components to achieve a particular effect desired, but the system gives users as
much freedom as possible. Every concrete component class provides the user with
a set of commands that can be used to interact with components of this class
(recall Window 2 in Figure 1, containing buttons for the commands provided
by the implementation of regular tree grammars). While the commands would
be different for, e.g., ET0L tree grammars, this has no influence on the way in
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which regular tree grammars or ET0L tree grammars can be connected to other
components.

The person who implements new classes of tree grammars, tree transducers,
algebras or displays will find out that the properties mentioned in the previous
paragraph simply reflect properties of the implementation. The core of TREEBAG

does not make any distinction between, e.g., different classes of tree grammars.
In fact, consider the file defining the regular tree grammar used in Figure 1:

generators.regularTreeGrammar("example grammar"):

( { S, A },

{ f:2, g:1, a:0 },

{ S -> f[S,S],

S -> g[A],

A -> f[A,A],

A -> a },

S )

When the user instructs TREEBAG to load this component, it parses only
the first line, to discover that the user wishes to load an instance of a compo-
nent class named generators.regularTreeGrammar. The rest of the file uses a
syntax which is unknown to (the core of) TREEBAG, as it is specific to the imple-
mentation of this class. To handle this, TREEBAG dynamically tries to load the
class generators.regularTreeGrammar and, upon success, creates an (unini-
tialized) object of this class. Now, it lets this very object, which is required to
contain a method called parse, initialize itself by parsing the remainder of the
file. Each of the four abstract component types of TREEBAG requires its concrete
subclasses to implement such a parsing method. To handle component-specific
user commands, each concrete subclass provides two further methods. The first
returns, at any point in time, the names of the user commands available at that
moment (which means that the list of commands may change), while the second
executes a given command.

This structure makes it possible to extend TREEBAG by new classes of tree
grammars, tree transducers, algebras, and displays in an easy way, without hav-
ing to change existing parts of the system. One only has to implement it as
a subclass of the appropriate abstract component class and place it in the ap-
propriate directory. Immediately afterwards (provided that everything has been
done correctly), it is possible to load instances of this class onto the worksheet,
interconnect them with other components, and work with them.

It may be interesting to note that the implementations of some of the classes
currently available in TREEBAG make use of decomposition results from the lit-
erature. For example, a so-called branching synchronization tree grammar of
nesting depth n can be decomposed into a regular tree grammar and a sequence
of n top-down tree transducers (see [DE04]). During the parsing step, the im-
plementation of this class in TREEBAG performs this decomposition and writes
the n+ 1 components onto the hard disk (in the syntax required by the respec-
tive classes). Afterwards, it uses TREEBAG’s loading mechanism to load them
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as internal variables hidden from the user (i.e., so that they do not appear on
the worksheet). Every user command is basically forwarded to these internal
components, and whichever output tree they produce is returned. In this way,
the implementation of the class becomes considerably easier and less error prone
than a direct one.

3 Trees, Tree Automata, and Tree Automata Algorithms

As mentioned in the introduction, the major intended purpose of MARBLES is
to make it possible to apply and experiment with algorithms on tree automata.
The aim is to design MARBLES in such a way that it accommodates virtually
all kinds of tree automata algorithms. While this does not mean that all such
algorithms should readily be implemented in the system, the design of MARBLES

should enable researchers (and application programmers) interested in a particu-
lar type of tree automata algorithms to make the necessary extensions. As in the
case of TREEBAG, this should be possible without requiring changes of already
existing parts. However, compared to TREEBAG, the design challenge is is con-
siderably bigger for MARBLES, because its intended coverage is much wider. It
seems to be reasonable to distinguish between (at least) three central categories
of objects: trees, tree automata, and tree automata algorithms. Each of them
may, in principle, have any number of subcategories one may wish to implement
in MARBLES. In the following, some of the possible subcategories of each will be
discussed to illustrate this point.

3.1 Trees

In the traditional setting (and in TREEBAG), tree automata work on trees over
ranked alphabets, as explained above. This is appropriate, because trees are sup-
posed to be evaluated by algebras by associating with every symbol of rank k a
k-ary function on some domain. However, tree automata on unranked trees have
received a lot of attention during recent years. Here, symbols are unranked, and
a node in a tree can have any finite number of children, regardless of the symbol
it is labeled with. It turns out that this variant is well suited for applications in
connection with XML, because XML documents can appropriately be viewed as
unranked trees. (For example, a node corresponding to a list structure in HTML
may have any number of children of type list item.) Thus, an XML document
type corresponds to a tree language of unranked trees, and a tree transducer on
unranked trees corresponds to a transformation between XML document types.

While the two types of trees mentioned are the only ones that play a major
role in contemporary research on tree automata, this situation may change in the
future. Thus, MARBLES should allow programmers to implement other classes of
trees than just these.
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3.2 Tree Automata

Tree automata can be classified according to various criteria. An important ob-
servation one can make is that the resulting classifications are, to a rather large
extent, orthogonal.

Perhaps the most obvious classification is the one that gave rise to the struc-
ture of TREEBAG, distinguishing between tree grammars, tree recognizers (not
directly available in TREEBAG), and tree transducers. From an abstract point
of view, a tree grammar is a formal device that generates output trees without
requiring input. As usual, the tree recognizer is the dual concept. It takes a tree
as input and computes an output value, usually in the range {0, 1}, indicating
whether the tree is accepted or not. Finally, a tree transducer is a formal device
transforming input trees into output trees.

The second classification distinguishes between tree automata according to
the type of trees they act upon, i.e., tree automata on ranked or unranked trees.
Each of the types of tree automata in the first classification can be ranked or
unranked. In this sense, these two classifications are orthogonal. In fact, one
may even wish to consider tree transducers that turn unranked trees into ranked
ones, or vice versa.

Finally, in addition to the traditional case of tree automata, one may consider
weighted ones [FV09]. Weighted tree automata deal with tree series instead of
tree languages, a tree series being a mapping ψ : TΣ → S, where TΣ denotes
the set of all trees over a given alphabet, and S is a semiring. In other words,
weighted tree automata generalize the traditional case, which is obtained by
choosing as S the Boolean semiring. Even this third classification is orthogonal
to the two previous ones, provided that we define the tree automata according
to the first classification in a way general enough to accommodate the weighted
case.

It is interesting to note that, from an abstract point of view, but even more
from the point of view of system design, weighted tree recognizers are very similar
to algebras. Both take a tree as input and compute a value in some other domain.

3.3 Algorithms on Tree Automata

Many useful algorithms on tree automata have been described in the literature.
For classification purposes, it is useful to distinguish between analyzers, synthe-
sizers, and decomposition algorithms.

An analyzer for tree automata takes a tree automaton as input and analyses
it with respect to certain properties. Well-known examples are algorithms that
decide whether the language represented by a tree recognizer or tree grammar
is empty or whether it is finite (cf., e.g., [DE98]).

A synthesizer is an algorithm that takes zero or more tree automata (and
maybe some additional data) as input and yields a tree automaton as output.
There are various important types of synthesizers:

– A generator is an algorithm that outputs tree automata without requiring
other tree automata as input. A prominent example is given by grammatical
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inference algorithms for tree automata. These are algorithms whose pur-
pose it is to “learn” tree languages. For this, the algorithm is provided with
some source of information regarding the tree language (or tree series) to
be learned, such as positive and negative examples. It is then expected to
construct a tree automaton representing the tree language in question. See,
e.g., the references in [Dre09] for a variety of approaches.
Conceptually, a tree automaton A may be considered as a generator that
outputs the constant value A.

– Conversion algorithms take a tree automaton as input and yield another tree
automaton as output, usually with the same semantics as the input automa-
ton. Well-known examples are conversions between regular tree grammars
and finite-state tree recognizers and algorithms that minimize tree automata,
make them deterministic, remove useless states or nonterminals, etc (see,
e.g., [CDG+07]). There are also conversion algorithms that do not retain the
semantics of the tree automaton they are applied to. For example, a macro
tree transducer mtt [EV85] may be turned into a finite-state tree recognizer
that accepts the pre-image of the tree transformation computed by mtt . A
conversion algorithm that inverts suitable types of top-down tree transducers
would be another example.

– Composition algorithms turn n tree automata (n > 1) into one. A wealth of
such algorithms can be found in the literature. One type of example is, of
course, given by composition in the strict sense. For instance, certain types of
tree transductions are known to be closed under composition. Another exam-
ple is the main result of [DE04], which provides an algorithm for converting a
regular tree grammar g and n top-down tree transducers td1, . . . , tdn into a
branching synchronization tree grammar generating the image of L(g) under
tdn ◦ · · · ◦ td1. Composition algorithms in a more general sense may not per-
form mathematical composition, but combine tree automata in a different
way. For example, two finite-state tree recognizers can be turned into one
that recognizes the intersection of the tree languages recognized by the two
individual automata.

Finally, decomposition algorithms are the conceptual inverse of composition
algorithms, turning one tree automaton into several others. For example, for
{x, y} = {top-down, bottom-up}, every x tree transducer may be decomposed
into two y tree transducers [Eng75]. A similar example is given by the result
that every deterministic total macro tree transducer may be decomposed into a
top-down tree transducer followed by a YIELD mapping [EV85].

Of course, algorithms on tree automata may additionally be classified ac-
cording to the types of tree automata they work on, similarly to the fact that
tree automata may be classified according to the types of trees they work on.

4 A Proposed Attribute Type System for MARBLES

As mentioned earlier, the goal behind the development of MARBLES is that it
should allow its user to assemble configurations of tree automata algorithms in
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a similar way as TREEBAG allows its user to assemble various sorts of tree-based
generators. In particular, there should be a way to load components represent-
ing (tree automata and) tree automata algorithms, establish a data-flow rela-
tion between, and execute them. However, while TREEBAG comes with a fixed
set of component types, something like this is neither possible nor desirable for
MARBLES. In contrast, users should be given the possibility to define and imple-
ment their own classes of tree automata algorithms and experiment with them.
The following two fictitious scenarios try to illustrate this.3

Scenario 1: Test Environment for Minimization Algorithms. Doctoral
student X works in a research group using bottom-up tree recognizers for model
checking purposes. A typical example is the verification of a process communica-
tion protocol P by generating a tree recognizer AP that models P ’s behavior and
then analyzing AP to establish P ’s correctness. The problem is that AP tends
to be huge, and often unnecessarily huge, so that its analysis takes too much
time. Unfortunately, AP is also nondeterministic, which means that it cannot
efficiently be minimized.

Therefore, in her thesis, X proposes and studies a number of efficient heuris-
tics for reducing nondeterministic tree recognizersA in size (called minimization,
for simplicity). The general technique used is to compute a suitable equivalence
≡ on the state set of A, such that the quotient automaton A/≡ accepts the
same language as A. The various heuristics studied differ only in the concrete
definition (and computation) of ≡. Besides studying the minimization algorithms
theoretically to establish their correctness and worst case complexity, X wants
to study empirically how they behave on real examples arising in the model
checking context, in terms of size reduction and efficiency. However, X does not
have the time to implement a test environment for her algorithms from scratch,
in addition to her theoretical studies. Therefore, she decides to use MARBLES.

First, she notices that there is a type of tree automata algorithms called
generator, a special type of synthesizer. She defines and implements a simple
generator which lets the user choose the name of a protocol (from a fixed set of
possible choices) and possibly some other parameters. The generator will then
output nondeterministic bottom-up tree recognizers of increasing size, whenever
the user presses a certain button.

Next, X discovers that there are so-called converters, and decides to imple-
ment a new type of converter as an abstract class. A concrete implementation
is obtained by providing a method that, for a given bottom-up tree recognizer
A, computes an equivalence relation ≡ on the states. The converter will then
return A/≡.

Fortunately, X finds out that someone else has already implemented two
useful auxiliary components. One of them is a wrapper for arbitrary converters
that simply executes them, but also reports how much time the execution takes.
The other one takes bottom-up tree recognizers as input and saves some statistics

3 While being fictitious, the scenarios have a real background, as they are inspired by
[Kaa08] and ongoing work in our own group, resp.
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about them to a file, such as the number of states and transitions. Now, X has
everything needed to make the desired tests. All she has to do is to implement the
different algorithms yielding the equivalence relations ≡, load and interconnect
the required components, and execute them.

Scenario 2: Simulation of Minimal Adequate Teachers Using Corpora.
The research group in which researcher Y is working has previously studied gram-
matical inference algorithms that, within Angluin’s learning model of a minimal
adequate teacher (MAT), construct bottom-up tree recognizers for recognizable
tree languages L. Now, they want to find out whether such an algorithm can
be used to learn the syntax of natural languages reasonably well, where the
necessary data is taken from a corpus.4

The major obstacle is the MAT, an oracle capable of answering two types
of queries, namely membership queries (Is the tree t in L?) and equivalence
queries (Does the bottom-up tree recognizer A satisfy L(A) = L? If not, return a
counterexample.) Clearly, a MAT is not available in the situation sketched above.
The research question is whether it can (imperfectly) be simulated on the basis
of a corpus, so that the inference algorithm as a whole runs with reasonable
efficiency and yields acceptable results.

Y decides to try out some approaches and to use MARBLES for that purpose.
Thus, she defines two new types of algorithms, namely MATs and learners. A
learner is a generator that must be connected to a MAT to create a tree automa-
ton. During the first phase, she only wants to test different realizations of the
MAT, to see whether the results are promising enough to continue. Therefore,
she implements a single learner (e.g., any of those in [Dre09]). In contrast, a vari-
ety of different MATs are implemented, using different approaches for answering
membership and equivalence queries based on a corpus.

To find out how good the various approaches are, Y implements a component
that has access to a sufficiently large sample of positive and negative examples.
It takes a tree recognizer as input, runs it on the samples, and returns statistics
regarding its sensitivity and specifitivity. In a second phase of her research work,
Y even wants to study other variants of the learner, which can be done in the
same setting by replacing the one learner with another.

In scenarios such as those above, the researcher who wants to use MARBLES

must implement certain extensions, new types of tree automata and algorithms
that become components of MARBLES. For both the system and the user, it is
necessary to know in which way instances of these components can be combined.
Thus, there must be a possibility to talk about the types of components in an
easy, but flexible way. A prerequisite for this is to be able to specify which basic
data types exist. Here, we only focus on the perspective of the user and the GUI,
which means that the only thing we need is a way to give name to different sorts
of data.

4 A corpus is a manually analyzed and annotated database of sentences in a natural
language.
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While the tree is the basic data type in MARBLES, it may not be the only
one. Moreover, there may be different sorts of trees. We now define basic types
which make it possible to name those structures.

Definition 1 (basic type). Let ATTR be a finite set of data attributes (briefly
called attributes). The set TEXP of all basic types is the smallest set of pairs
such that, for all finite subsets T of TEXP and all attributes a, we have (a, T ) ∈
TEXP. If T = {t1, . . . , tn}, then this basic type is also denoted by a〈t1, . . . , tn〉,
or by a if n = 0.

As an example, consider trees. We may, e.g., have ranked, unranked, ordered,
and unordered trees. Ranked trees may or may not be binary or monadic. Our
set of data attributes could then be ATTR = {tree, ranked , unranked , ordered ,
unordered , bin,mon}. The basic type for ranked unordered binary trees would
then be tree〈ranked〈bin〉, unordered〉. The attributes in such a basic type should
be seen as assertions stating that the data in question has certain properties.
In other words, the presence of an attribute restricts the data type. For exam-
ple, tree is a basic type meaning just any tree, and tree〈unordered〉 means “any
type of unordered trees”. Note that we, intentionally, do not associate a spe-
cific semantics with the attributes. It should, however, be possible to do this in
MARBLES by, e.g., associating an attribute with an abstract class in the imple-
mentation. A similar remark applies to the types at the higher levels discussed
next.

Next, we define what the type of an automaton looks like. We take a very
general approach, where an automaton is a device that turns a finite number of
input values of specified basic types and into a finite number of output values,
also of specified basic types.

Definition 2 (automaton type). An automaton type is a pair (in, out) with
in ∈ TEXPk and out ∈ TEXP l for some k, l ≥ 0. Such a type will normally be
written as in → out. The set of all automaton types is denoted by AUT.

As an example, a tree grammar of the most general form could be described
as being an automaton of type () → (tree), as it takes no input and yields
any type of tree as output. Slightly more specific would be a tree grammar
generating ranked trees, its type being () → (tree〈ranked〉). For weighted tree
automata over a semifield that work on ranked trees, the type (tree〈ranked〉) →
(semiring〈semifield〉) could be an appropriate description, and for tree trans-
ducers on unranked trees one could use (tree〈unranked〉) → (tree〈unranked〉).
Though uncommon in the literature, one may also wish to consider, e.g., tree
transducers that take two trees as input and produce one output tree, the cor-
responding type being (tree, tree) → (tree).

Note that the concept is very general. For example, an algebra can be seen
as an automaton of type (tree〈ranked〉) → (any), if we let any be the most
general basic type, standing for arbitrary data. Also weighted tree automata
over multioperator monoids [Kui00] have this type. In fact, the concept covers
even devices that do not work on trees at all.
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We finally define how to distinguish between different types of algorithms on
tree automata.

Definition 3 (algorithm type). The set ALG of algorithm types is induc-
tively defined to be the smallest set containing all triples (in , use, out) such that,
for some k, l,m ≥ 0, in ∈ AUT k, out ∈ AUTm, and use ∈ ALG l. Such a triple
is denoted by in

use
−−→ out.

The intuitive interpretation of in
use
−−→ out is that of an algorithm which turns

inputs according to in into outputs according to out , thereby possibly making
use of other algorithms given by use. A typical example is the MAT learner in

Scenario 2, which could be of the type ()
MAT
−−−→ (TA), where TA is the automaton

type tree〈ranked〉 → bool .
As mentioned earlier, one of the ideas behind MARBLES is that its GUI,

similar to the one of TREEBAG, should allow the user to assemble configurations
of tree automata in order to experiment with them. The basic (and still somewhat
tentative) plan is that every implementation of a class of tree automata or tree
automata algorithms comes with a specified type according to the definitions
above. When the user loads an instance of such a component, this information
is used in order to determine which connections between these components are
possible. For example, an algorithm of the type in Definition 3 will, from the
point of view of the user, have k + l+m slots representing the inputs, the used
algorithms, and the outputs. For instance, if a component has an output slot s
of type tree〈ranked〉 → bool (a recognizer for ranked trees) and another one has
an input slot s′ of type tree → bool (a recognizer for any sort of trees), then the
data flow can be directed from s to s′.

5 Concluding Remarks

In this paper, ideas and plans regarding a successor of the system TREEBAG have
been presented. While this work is still in a very preliminary phase, the overall
goal is clear. MARBLES should make it possible to experiment with configurations
of tree automata algorithms in a similar way as TREEBAG makes it possible to
experiment with tree-based generators. Moreover, MARBLES should be extensible
by researchers who are not directly involved in the development of the system
itself, but want to use it for their own purposes. For this, concepts such as those
presented in Section 4 seem to be a necessity, because the GUI must be able to
handle extensions without explicitly being adapted.

An aspect that has not been discussed in the present paper, but which is a
necessity as well, is to provide programmers with a well-documented library and
a clearly structured application programmer’s interface (API). Without this, it
would be too difficult, error prone, and time consuming for other researchers to
make their own extensions. In fact, it should also be possible to make use of the
API without adopting the rest of MARBLES, and especially its GUI. This would
programmers give the possibility to apply tree automata algorithms in their own
applications. Another aspect that has not yet been decided upon is whether and
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to what extent MARBLES shall be compatible and able to interoperate with other
systems dealing with tree automata, such as those mentioned in Section 1.
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