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Abstract. Model transformation is one of the key concepts in model-
driven software development. An increasingly popular technology to de-
fine modeling languages is provided by the Eclipse Modeling Framework
(EMF). Several EMF model transformation approaches have been devel-
oped, focusing on different transformation aspects. This paper proposes
parallel graph transformation introduced by Ehrig and Kreowski to be a
suitable framework for modeling EMF model transformations with multi-
object structures. Multi-object structures at transformation rule level
provide a flexible way to describe the transformation of structures with
a flexible number of recurring structures, dependent on concrete model
instances. Parallel graph transformation means massively parallelizing
the application of model transformation rules synchronized at a kernel
rule. We apply our extended EMF model transformation technique to
model the simulation of statecharts with AND-states.

1 Introduction

Model-driven software development is considered as a promising paradigm in
software engineering. Models are ideal means for abstraction and enable devel-
opers to master the increasing complexity of software systems. Since models are
central artifacts in model-driven software development, the quality of generated
software is directly dependent on the quality of models. Modifying models, i.e.
for behavior simulation or for performing model refactoring [1]) is an important
part of model development.

The Eclipse Modelling Framework (EMF) [2] has evolved to one of the stan-
dard technologies to define modeling languages. EMF provides a modelling and
code generation framework for Eclipse applications based on structured data
models. The modelling approach is similar to that of MOF, actually EMF sup-
ports Essential MOF (EMOF) as part of the OMG MOF 2.0 specification [3].

EMF models can be manipulated by several approaches to rule-based model
transformations. A transformation framework for EMF models which follows
the concepts of algebraic graph transformation [4] as far as possible, is presented
in [5, 6]. Although graph transformation is an expressive, graphical and formal
means to describe computations on graphs, it has limitations. For example, when
describing the operational semantics of behavioral models, one often has the
problem of modeling an arbitrary number of parallel actions at different places
in the same model. A simple example are transformations of object structures
of the same class occurring multiple times which all have the same properties
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(e.g. being contained in the same container, or referencing the same objects).
We call such object structures multi-object structures in this paper. One way to
transform multi-object structures is the sequential application of rules such that
we have to explicitly encode an iteration over all the actions to be performed.
Usually, this is not the most natural nor efficient way to express the semantics.
Thus, it is necessary to have a more powerful means to express parallel actions.

As main contribution of this paper, we propose the use of amalgamated graph
transformation concepts, based on parallel graph transformation, originally pro-
posed by Ehrig and Kreowski in [7] and extended to synchronized, overlapping
rules in [8], to define EMF model transformations with multi-object structures.
The essence of amalgamated graph transformation is that (possibly infinite) sets
of rules which have a certain regularity, so-called rule schemes, can be described
by a finite set of multi-rules modeling the elementary actions. For the description
of such rule schemes the concept of amalgamating rules at kernel rules [9] is used
in this paper to describe the application of multi-rules in an unknown context.
The synchronization of rules along kernel rules forces a transformation step to
be maximally parallel in the following sense: an amalgamated rule, induced by
a scheme, is constructed by a number of multi-rules being synchronized at the
kernel rule. The number of multi-rules is determined by the number of different
matches found such that they overlap in the match of the kernel rule. Hence,
transforming multi-object structures can be described in a general way though
the number of actually occurring objects in the instance model is variable.

In order to respect the special restrictions of EMF models (imposed by the
containment hierarchy), we lift the concept of amalgamated graph transforma-
tion to amalgamated EMF transformation by showing that the conditions from
our previous paper [5] are sufficient to guarantee the consistency of amalgamated
EMF model transformations.

We show the usefulness of amalgamated EMF model transformation by simu-
lating the behavior of statecharts with AND-states which may have an arbitrary
number of orthogonal components (called regions in UML state machines). For
example, when the system enters an AND-state, it actually goes to the initial
simple state in each region in parallel.

The paper is organized as follows. In Section 2, we introduce EMF models as
typed, attributed graphs and present our running example, an EMF model for
a simplified variant of statecharts with AND-states. Section 3 reviews the con-
cepts of parallel graph transformation and lifts them to EMF transformations
with multi-object structures. This section contains our main result on consis-
tency of amalgamated EMF model transformations. Using EMF transformations
with multi-object structures, we model a general simulator for statecharts with
AND-states. Section 4 presents related research, and Section 5 ends with the
conclusions and future work.
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2 EMF Models as Typed, Attributed Graphs with
Containment

The Eclipse Modeling Framework (EMF) [2] has evolved to one of the standard
technologies to define modeling languages. EMF provides a modeling and code
generation framework for Eclipse applications based on structured data mod-
els. The modeling approach is similar to that of MOF, actually EMF supports
Essential MOF (EMOF) as part of the OMG MOF 2.0 specification. Contain-
ment relations, i.e. aggregations, define an ownership relation between objects.
Thereby, they induce a tree structure in model instantiations.

In [5], we consider EMF instance models1 as typed graphs with special con-
tainment edges. Typing is expressed by a type graph. It has some similarities to
a meta-model, but does not contain multiplicities and other constraints. For sim-
plicity, we consider type graphs without inheritance in this paper. For a complete
definition of EMF model transformation based on type graphs with inheritance,
see [5].

Since the containment concept plays a special role in EMF models, we dis-
tinguish a special kind of edge types defining containments in the type graph.

Example 1 (EMF Model for statecharts with AND-States). Fig. 1 shows the EMF
model for statecharts with AND-states, where an arbitrary number of states may
be grouped in orthogonal regions of the same AND-state.

Fig. 1. EMF model for statecharts with AND-states

A State may contains Regions, each of them containing States again. We at-
tribute States by Boolean flags denoting whether they are initial or final states.
States are connected by Transitions which are triggered by Events. For simula-
tion, a Current object is needed which is linked to the currently active States. The
Current object receives an Event, the first element of a queue (Events linked by
next links). The type graph with containment corresponding to the EMF model

1 Note that the EMF community uses the terms “EMF model” for meta-model and
“EMF instance model” for a model conforming to a meta-model.
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in Fig. 1 looks like the EMF model but has no multiplicities. We have six con-
tainment edge types (three of them have type Statechart as source, type states
starts from type Region and type reg starts from type State). Types states and
reg could lead to cycles in EMF instance models (corresponding to graphs typed
over the type graph), because there could be theoretically a Region r which
contains a State which transitively contains Region r again. Hence, we call such
containment edge types cycle-capable.

In consistent EMF instance graphs, each object node has at most one con-
tainer and no containment cycles do occur. Graphs fulfilling these requirements
are called graphs with containment. Although EMF instance models do not need
to be rooted in general, this property is important for storing them, or more
general, to define the model’s extent.

Definition 2 (Graph with containment (C-graph)). A graph with con-
tainment, short C-graph, is a graph G = (GN , GE , sG, tG) with a distinguished
set of containment edges GC ⊆ GE. The containment edges induce the following
binary relation containsG (the transitive closure of GC):

– containsG = {(x, y) ∈ GN ×GN | ∃e ∈ GC : (sG(e) = x ∧ tG(e) = y) } ∪
{(x, y) ∈ GN ×GN | ∃z ∈ GN : (x containsG z ∧ z containsG y)}

All containment edges must fulfill the following properties (containment con-
straints):

– e1, e2 ∈ GC : tG(e1) = tG(e2) ⇒ e1 = e2 (at most one container).
– (x, x) /∈ containsG for all x ∈ GN (no containment cycles).

If G is typed over a type graph TG, there is a typing morphism type : G→ TG
which is consistent with containment, i.e. ∀e ∈ GC : typeGE

(e) ∈ TGC .

Please note that a type graph TG is no C-graph in general (see e.g. our type
graph for statecharts in Fig. 1, which has a containment cycle).

Definition 3 (Rooted graph). A C-graph G is called rooted, if there is a
node r ∈ GN , called root node, such that ∀x ∈ GN with x 6= r : r containsG x.

Example 4 (Consistent EMF instance graph). Fig. 2 shows a statechart with an
AND-state. We model an ATM (automated teller machine) where the user can
insert a bank card and, after the input of the correct pin, can draw a specified
amount of cash from her or his bank account. The display region of the AND-
state shows what is being displayed on screen, and, simultaneously, the card-slot
component models whether the card slot is holding a bank card or not. The enter
event triggers the transition before the AND-state to enter the AND-state. The
card-sensed event happens if the sensor has sensed a user’s bank card being put
into the card slot. This event triggers two transitions in parallel. The next events
(pin-input, pin-ok and amount-input) are local to the display region. The end
event again triggers two transitions if the current state is any but the welcome
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Fig. 2. EMF instance graph: a statechart modelling an ATM

state for the display region and holding for the card-slot region. Then, the final
states are reached and the AND-state can be left if the leave event happens.

Fig. 3 shows the abstract syntax of the EMF instance graph corresponding to
the ATM statechart in Fig. 2. This instance graph is typed over the type graph
in Fig. 1. The initial state where we want to start the simulation is the start
state before the AND-state ATM is entered. The Current object points to the
start state and is linked to an initial event queue consisting so far of the single
event enter (the event needed to enter the AND-state) followed by the special
event denoting the queue end. During the simulation, events may be added to
the event queue such that the queue holds the events that should be processed
during the simulation. For better readability, we write names which are not
empty in quotation marks and put the name of a boolean attribute type (Initial
or Final) if its value is true. Furthermore, we omitted the containment edges
in Fig. 3 from the Statechart object named ATM-SC to all Current and Event
objects, and from the Region objects to the corresponding Transition objects.

The EMF instance graph in Fig. 3 is a C-graph since each object is contained
in at most one container and there are no containment cycles. The C-graph is
rooted, as the root node is the Statechart object named ATM-SC which contains
all objects transitively.

3 EMF Model Transformations with Multi-Object
Structures

EMF models can be manipulated by several approaches to rule-based model
transformations. A transformation framework for EMF models which follows
the concepts of algebraic graph transformation [4] as far as possible, is presented
in [6]. But EMF model transformations do not always behave like algebraic graph
transformation. The main reason is the difficulty to always satisfy the contain-
ment constraints of EMF. Hence, in our previous paper [5], we identify a kind
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Fig. 3. Abstract Syntax of the ATM statechart in Fig. 2 with Current pointer

of model transformation rules which lead to consistent EMF model graphs (i.e.
fulfilling the containment constraints), if applied as normal graph transforma-
tion rules to consistent EMF model graphs. Thus, we identify a kind of EMF
model transformations which behave like algebraic graph transformations. The
advantage of this approach is that we provide a basis to apply the rich theory
of algebraic graph transformation [4, 11–13] to EMF model transformations.

In Section 3.1, we shortly review the basic notions from [5]. We then intro-
duce amalgamated EMF model transformation, i.e. EMF model transformation
with multi-object structures, based on parallel graph transformation concepts
in Section 3.2 and expand the capability of consistent EMF transformations by
showing that the application of an amalgamated EMF model transformation
rule to a consistent EMF model graph results in a consistent transformed EMF
model graph again.
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3.1 Consistent EMF Model Transformation Based on Graph
Transformation Concepts

In order to precisely define consistent graph rules, we have to define relations
between typed C-graphs, so-called C-graph morphisms. They define mappings
of nodes and edges respectively, such that they are compatible with typing,
source and target functions (like typed graph morphisms) and especially preserve
containment edge types.

Definition 5 (C-graph morphism). Given two C-graphs G, H, a pair of
functions (fN , fE) with fN : GN → HN and fE : GE → HE forms a valid
C-graph morphism f : G→ H, if it has the following properties:

– fN ◦ sG(e) = sH ◦ fE(e), fN ◦ tG(e) = tH ◦ fE(e), and
– ∀e ∈ GC ⇒ fE(e) ∈ HC (containment edges are preserved).

If G and H are typed over TG, f must be type compatible, i.e. typeG = typeH ◦f .
If fN and fE are inclusions, then G is called a subgraph of H, denoted by G ⊆ H.

Definition 6 (Graph rule). A graph rule typed over a type graph TG is
given by r = (L ⊇ K ⊆ R, type, NAC), where L, K and R are C-graphs,
type is a triple of typing morphisms type = (typeL : L → TG, typeK : K →
TG, typeR : R → TG), and NAC is a set of pairs NACi = (Ni, typeNi), i ∈ N
with L ⊆ Ni, and typeNi : Ni → TG a typing morphism, such that typeL ⊇
typeK ⊆ typeR.

As a drawing convention, we omit K. All objects with equal numbers in L
and R are also in K and are preserved when the rule is applied. A rule p can
contain one or more negative application conditions (NACs) denoting situations
which must not exist for the rule to be applicable. Formally this is expressed by
attributed graphs NACi and morphisms ni : NACi ← L. A rule is applicable
to a graph G at a match m : L → G if there is no injective C-graph morphism
n′

i : NACi → G such that m = n′
i ◦ ni for all i ∈ I. The application of rule r to

graph G leads to the derivation of a graph H. Formally, a derivation G
r=⇒ H

is a DPO construction in the category of typed attributed graphs and graph
morphisms.

Example 7 (Graph rule). Rule addEvent(e), shown in Fig. 4, allows to add a
new event of name e into the event queue. In this way, the events that should
be processed during a simulation run, can be defined in the beginning of the
simulation. Moreover, events also can be inserted while a simulation is running.

Now we define a special kind of graph transformation which formalizes a
form of EMF model transformation leading always to EMF models consistent
with typing and containment constraints. For that purpose, the form of allowed
transformation rules has to be restricted. Consistent transformation rules allow
the following kinds of actions which change containments:

1. Delete an object node with its containment relation.
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Fig. 4. Rule addEvent(e) to insert Event e into the Event Queue

2. Create a new object node and connect it immediately to its container.
3. Delete a containment edge together with its contained object node or change

the container of a preserved object node.
4. Create a containment edge with the contained object node or change the

container of an existing object node.
5. For an object node contained via a cycle-capable containment edge, change

its container only, if the old and the new container of the object node were
already transitively related by containment.

In the following definition, we formalize all actions that preserve consistent
containment relations which have been described above.

Definition 8 (Consistent graph rule). Let L′
C := LC − KC , R′

C := RC −
KC , L′

N := LN − KN and R′
N := RN − KN . A graph rule p = (L ⊇ K ⊆

R, type, NAC) is consistent wrt. containment if for each rule all of the following
constraints are satisfied:

1. (node deletion) ∀n ∈ L′
N : ∃e ∈ L′

C with tL′
C

(e) = n,
2. (node creation) ∀n ∈ R′

N : ∃e ∈ R′
C with tR(e) = n,

3. (containment edge deletion) ∀e ∈ L′
C with tL(e) = n:

n ∈ L′
N ∨ (n ∈ KN ∧ ∃e′ ∈ R′

C with tR(e′) = n)
4. (containment edge creation) ∀e ∈ R′

C with tR(e) = n:
n ∈ R′

N ∨ (n ∈ KN ∧ ∃e′ ∈ L′
C with tL(e′) = n)

5. (creation of cycle-capable containment edges)
∀e ∈ R′

C with sR(e) = n∧tR(e) = m : ∃e′ ∈ L′
C with sL(e′) = o∧tL(e′) = m :

((o, n) ∈ containsL ∧ (m, n) /∈ containsL) ∨ (n, o) ∈ containsL

Note that for item 5 (creation of cycle-capable containment edges), it is
sufficient to inspect the containment in the rule’s left-hand side. There cannot
be a containment edge from the matched node m to n in G, because then n
would have two containers m and o, and hence G would not be a C-graph.

Example 9 (Consistent graph rules). Rule addEvent(e) from Example 7 is a con-
sistent graph rule since for each created object its containment edge is created
as well. Two further rules are depicted in Fig. 5 which process sequential tran-
sitions outside of AND-states. Rule sequentialTransition processes a transition
in the current state which is triggered by the current event. This rule is con-
sistent since the removed event node is deleted together with its containment
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edge. Rule skipEvent models the situation that no transition is triggered by the
current event. In this case, the event is removed from the event queue. Again,
the event is deleted together with its containment edge.

Fig. 5. Rules sequentialTransition and skipEvent

In our main theorems in [5], we show that the application of a consistent
graph rule to a consistent (rooted) EMF instance graph always results again in
a consistent (rooted) EMF instance graph.

Theorem 10 (Consistent graph transformation step). Given a consistent
graph rule p = (L ⊇ K ⊆ R, type, NAC) and a match L

m−→ G to a C-graph
G which is typed by typeG : G→ TG and satisfies NAC. Then, the result graph
(H, typeH) of direct transformation (G, typeG)

p,m
=⇒ (H, typeH) is a C-graph.

Proof. See [5].

Theorem 11 (Rooted graph transformation step). A consistent graph
transformation step (G, typeG)

p,m
=⇒ (H, typeH) leads to a rooted result graph

H if graph G is rooted.

Proof. See [5].
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3.2 Consistent EMF Model Transformations with Multi-Object
Structures

In this section, we lift the essential concepts of parallel graph transformation [8]
to EMF model transformation and also lift the consistency result for EMF model
transformations from Section 3.1 to transformations with multi-object structures
which we also call amalgamated EMF transformations.

Using parallel graph transformation, a system state modeled by a graph can
be changed by several actions executed in parallel. Since graph transformation is
rule-based without restrictive execution prescription, parallel graph transforma-
tion offers the possibility for massively parallel execution. The synchronization
of parallel rule applications is described by common subrules, called kernel rules.

The simplest type of parallel actions is that of independent actions. If they
operate on different objects they can clearly be executed in parallel. If they
overlap just in reading actions on common objects, the situation does not change
essentially. In graph transformation, this is reflected by a parallel rule which is a
disjoint union of rules. The overlapping part, i.e. the objects which occur in the
match of more than one rule, is handled implicitly by the match of the parallel
rule. As the application of a parallel rule can model the parallel execution of
independent actions only, it is equivalent to the application of the original rules
in either order [7].

If actions are not independent of each other, they can still be applied in
parallel if they can be synchronized by subactions. If two actions contain the
deletion or the creation of the same node, this operation can be encapsulated in
a separate action which is a common subaction of the original ones. A common
subaction is modelled by the application of a kernel rule of all additional actions
(modelled by multi-rules). The application of rules synchronized by kernel rules
is then performed by gluing multi-rule instances at their kernel rules which leads
to the corresponding amalgamated rule. The application of an amalgamated rule
is called amalgamated graph transformation.

Formally, the synchronization possibilities of actions (multi-rule applications)
are defined by an interaction scheme. For consistent amalgamated EMF transfor-
mations (also called EMF model transformations with multi-object structures),
we need consistent interaction schemes where all rules are consistent.

Definition 12 (Consistent Interaction Scheme).
An interaction scheme I = (rK , M, ke) consists of a kernel rule rK , a set M =
{ri|1 ≤ i ≤ n} of rules called multi-rules, and a set ke of kernel rule embeddings
kei : rK → ri into the multi-rules (i.e. rK is subrule of all multi-rules). I is
consistent, if all rules are consistent.

Example 13. An example of the construction of an amalgamated EMF transfor-
mation rule from an interaction scheme is given in Fig. 6.

The common sub-action (adding a loop to a object 1) is modeled by kernel
rule rK . We have only one multi-rule r1 modeling that at each possible match
(the blue) object 2 shall be deleted together with its containment edge, and a
new (red) object shall be inserted such that it is contained in object 1. Both the
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Fig. 6. Construction of an amalgamated graph rule

kernel-rule and the multi-rule are consistent, and we have a subrule embedding
from the kernel rule to the multi-rule given by the three C-graph morphisms
LK → L1, KK → K1 and RK → R1. Given graph G, we have obviously three
different matches from the multi-rule r1 to G which overlap in the match from
the kernel rule to G. Hence, we have three multi-rule instances, each of them with
a different match to G. Gluing the multi-rule instances at their common kernel
rule, we get the amalgamated rule with respect to G, shown at the bottom of
Fig. 6. The amalgamated rule contains the common action and, additionally, all
actions from the multi-rules that do not overlap. Dashed arrows in Fig. 6 indicate
rule embedding morphisms, embedding the kernel rule into the corresponding
instances of the multi-rules, and the multi-rules into the amalgamated rule.

In addition to specifying how multi-rules should be synchronized, we must
decide where and how often a set of multi-rules should be applied. The basic
way to synchronize complex parallel operations is to require that a rule should
be applied at all different matches it has in a given graph (expressing massively
parallel execution). In this paper, we restrict the covering of G (the image of all
different matches from instances of multi-rules in G) to all different matches of
multi-rules that overlap in the match of their common kernel rule and do not
overlap anywhere else. For more complex covering constructions see [8].

Definition 14. (Amalgamated EMF model transformation rule)
Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤ n}, ke) with (Li −
LK)∩ (Lj −LK) = ∅ and a match mK for the kernel rule rK . An amalgamated
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EMF model transformation rule rA = (LA ← KA → RA) is an EMF model
transformation rule where as many copies riji

of multi-rules ri are joined as
there are different matches miji

: Li → G such that the copies riji
of ri in rA

all overlap at kernel rule rK and the matches miji
overlap at match mK only.

We speak of amalgamated EMF model transformation (or, alternatively, of
EMF model transformation with multi-object structures) if the definition of the
EMF model transformation is given by consistent interaction schemes. In this
case, the application of an amalgamated EMF model transformation rule de-
fines an EMF model transformation step. Note that a special interaction scheme
consists of only one rule, i.e. a kernel rule, such that the interaction scheme is
applied like a usual sequential rule.

In order to show that EMF instance graphs resulting from amalgamated EMF
model transformation are consistent (Theorem 15), we construct the amalga-
mated rule from a given consistent interaction scheme and show that this amal-
gamated rule is a consistent graph rule. Afterwards, we can apply Theorem 10.

Theorem 15. Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤
n}, ke) and matches mk and mi to G for all 1 ≤ i ≤ n. Then, if G is a C-
graph, the resulting amalgamated EMF model transformation rule is consistent.

Proof.
Case n = 0: No multi-rule is applied. The amalgamated rule rA is equal to the
kernel rule rK , which is consistent by assumption (I is consistent).

Case n = 1: There is one application of a multi-rule. The amalgamated rule rK

is equal to this multi-rule, thus it is consistent by assumption.

Case n > 1: We have to show that the amalgamated rule rA satisfies all five
consistency constraints for EMF rules according to Def. 8:

1. (node deletion) To show: ∀n ∈ L′
AN

: ∃e ∈ L′
AC

with tL′
AC

(e) = n.
W.l.o.g. n ∈ L′

iN
: Then, there is e ∈ L′

iC
with tL′

iC
(e) = n, since ri is

consistent.
2. (node creation) To show: ∀n ∈ R′

AN
: ∃!e ∈ R′

AC
with tRA

(e) = n.
W.l.o.g. n ∈ R′

iN
: Then, there is a unique e ∈ R′

iC
with tR′

iC
(e) = n, since

ri is consistent. There cannot be another e ∈ R′
AC

with tRA
(e) = n, since

the assumption allows an overlap of multi-rules in the kernel rule only. In
this case, they would have to overlap in node n, too, which is not necessarily
required here.

3. (containment edge deletion) To show: ∀e ∈ L′
AC

with tLA
(e) = n:

n ∈ L′
AN

∨ (n ∈ KAN
∧ ∃e′ ∈ R′

AC
with tRA

(e′) = n).
W.l.o.g. e ∈ L′

iC
with tLi(e) = n. Then, n ∈ L′

iN
∨ (n ∈ KiN

∧ ∃e′ ∈ R′
iC

with tRi(e
′) = n), since ri is consistent.

4. (containment edge creation) To show: ∀e ∈ R′
AC

with tRA
(e) = n:

n ∈ R′
AN

∨ (n ∈ KAN
∧ ∃e′ ∈ L′

AC
with tLA

(e′) = n)
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W.l.o.g. ∀e ∈ R′
iC

with tRi
(e) = n. Then, n ∈ R′

iN
∨ (n ∈ KiN

∧ ∃e′ ∈ L′
iC

with tLi(e
′) = n), since ri is consistent.

5. (creation of cycle-capable containment edges)
To show: ∀e ∈ R′

ACCycle
with sRA

(e) = n ∧ tRA
(e) = m : ∃e′ ∈ L′

AC
with

sLA
(e′) = o ∧ tLA

(e′) = m :
((o, n) ∈ containsLA

∧ (m, n) /∈ containsLA
) ∨ (n, o) ∈ containsLA

.
W.l.o.g. e ∈ R′

iCCycle
with sRi(e) = n ∧ tRi(e) = m. Then, there is e′ ∈ L′

iC

with sLi(e
′) = o ∧ tLi(e

′) = m :
((o, n) ∈ containsLi

∧ (m, n) /∈ containsLi
) ∨ (n, o) ∈ containsLi

.
In addition, we have to show that there is no (m, n) ∈ containsLj

for some
j 6= i. Since ri and rj overlap in rK only, m, n ∈ L′

KN
⊆ L′

iN
and (m, n) /∈

containsLi
=⇒ (m, n) /∈ containsLj

.

Corollary 16. Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤
n}, ke) and matches mk and mi to G for all 1 ≤ i ≤ n. Then, if G is a C-graph,
the result graph H after applying interaction scheme I to G is a C-graph as well.

Proof. Due to Theorem 15, the amalgamated rule constructed from I is con-
sistent. By Theorem 10, consistent rules preserve C-graphs. Hence, the result
graph H is again a C-graph.

Corollary 17. Given a consistent interaction scheme I like in Corollary 16.
Then, if G is a rooted C-graph, the result graph H after applying the interaction
scheme I to G is a rooted C-graph as well.

Proof. Due to Theorem 15, the amalgamated rule constructed from I is consis-
tent. By Theorems 10 and 11, we know that consistent rules preserve C-graphs
and the rootedness of C-graphs. Hence, the result graph H is a rooted C-graph.

Example 18 (Simulator for statecharts with AND-States).
In our statecharts variant, every region belonging to an AND-state has ex-

actly one initial state and at least one final state. The intended semantics for
our statecharts requires that if an AND-state is reached, the active states be-
come the initial ones of each region. A transition is processed if its pre-state
is active and its triggering event is the same as the event which is received by
the Current object (the first event in the queue). Afterwards, the state(s) fol-
lowing the transition become(s) active, the event of the processed transition is
removed from the queue, and the previously active state(s) (the pre-state(s) of
the transition) is/are not active anymore. More than one transition are processed
simultaneously if they belong to different regions of the same AND-state, if their
pre-states are all active and if they are all triggered by the same event which
is received by the Current object. All regions belonging to the same AND-state
must have reached a final state before the AND-state can be left and the transi-
tion from the AND-state to the next state can be processed. For our simulator
we use the Current object not only as object which receives the next event (and
is linked to the event queue) but also as pointer to the current active states.
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Thus, our simulation rules model the relinking of the Current object to the next
active states and the updating of the event queue.

Note that in the following screenshots of interaction schemes we use an inte-
grated notation, where we define the kernel rule and one multi-rule within one
rule picture. This is possible since each of our interaction schemes consists of
a kernel rule and one multi-rule only. We distinguish objects belonging to the
multi-rule by drawing them as multi-objects (with indicated multiple boxes in-
stead of simple rectangles). The kernel rule consists of all simple objects which
are not drawn as multiple boxes. All arcs adjacent to multi-objects belong to
the multi-rule only, but not to the kernel rule. All multi-objects together with
their adjacent arcs in one multi-rule form a multi-object structure.

The upper part of Fig. 7 shows the interaction scheme enterRegion which
moves the Current pointer along a transition that connects a state to an AND-
state. In this case, the Current pointer has not only to point to the AND-state
afterwards but also to all initial states of all regions of the AND-state. Hence,
the amalgamated rule consists of as many copies of the multi-rule as there are
regions in the AND-state (provided that each component has exactly one initial
state which has to be ensured by a suitable syntax grammar).

Fig. 7. Interaction Schemes enterRegion and leaveRegion

Vice versa, when an AND-state is left, the Current pointer has to be removed
from all of its regions. This step is realized by the interaction scheme leaveRegion
at the bottom of Fig. 7. The fact that the active states of all regions have to be
Final is modelled by the NAC. The multi-rule models how all inner links from
the Current pointer to the regions’ final states are removed.
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A simultaneous transition is modelled by interaction scheme simultanTrans in
Fig. 8. Here, an arbitrary number of transitions in different regions of an AND-
state are processed if triggered by the same event. In our ATM example this
happens at different points of the simulation: When the AND-state is entered
and the event card-sensed is happening, then the two first transitions of the two
regions are processed simultaneously. Similarly, at any state of the display the
user can abort the transaction: the end event triggers the return of the display
region to state welcome and the return of the card-slot region to state empty.

Fig. 8. Interaction Scheme simultanTrans

The simultanTrans interaction scheme is a good example for a concise way
to model simultaneous transitions which are triggered by a single event. This
would be quite difficult to model using simple rules. Note that this scheme is
applicable also for sequential transition processing within an AND-state. Then
there is only one copy of the multi-rule, similar to rule sequentialTrans. In the
case that no transition leaving an active state is triggered by the current event,
we have the situation that there is no copy of the multi-rule of simultanTrans,
but the kernel rule can be applied anyway. This means that an event which does
not trigger any transition inside of an AND-state simply is removed from the
event queue. Again, this is similar to applying rule skipEvent with the difference
that regions are used here.

4 Related Work

There are two tool-based approaches known to us which also realize parallel
graph transformation: AToM3 and GROOVE, where AToM3 supports the ex-
plicit definition of interaction schemes in different rule editors [14] and GROOVE
implements rule amalgamation based on nested graph predicates [15]. A related
conceptual approach aiming at transforming collections of similar subgraphs is
presented in [16]. The main conceptual difference is that we amalgamate rule in-
stances whereas the authors of [16] replace all collection operators (multi-object
structures) in a rule by the mapped number of collection match copies. Sim-
ilarly, Hoffmann et al. define a cloning operator in [17] where cloned nodes
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correspond to multi-objects, but complete multi-object structures cannot be
described. Moreover, the graph transformation tools PROGRES [18] and Fu-
JaBA [19] feature so-called set nodes which are duplicated as often as necessary,
but are not based on amalgamated graph transformation. None of the related
approaches support the transformation of EMF models.

5 Conclusions and Future Work

This paper presented amalgamated EMF transformation as a valuable means for
modelling and simulation. They extend the capabilities of EMF transformation
based on simple graph transformation [5] by allowing parallel execution of syn-
chronized EMF transformation rules. This is useful for specifying simulators for
formalisms in which parallel actions happen. This is the case for a great number
of formalisms, such as statecharts with AND states. It has been shown in the
paper that amalgamated EMF transformation always leads to consistent EMF
instance models which satisfy the containment constraints of EMF.

In the future, we plan to apply the approach to other kinds of EMF model
transformations, such as model refactorings, where multi-object structures are
found frequently.

Amalgamated EMF transformation are currently being implemented in the
tool EMF Tiger [10, 6] (Transformation generation), a recently developed
Eclipse plug-in supporting modeling and code generation for EMF model trans-
formations, based on structured data models and graph transformation concepts.
The goal of EMF Tiger is to provide the means to graphically define rule-based
transformations on EMF models. Rule applications change an EMF model in-
stance in-place, i.e. an EMF instance model is modified directly, without copying
it before. Moreover, control of rule applications is supported by EMF Tiger,
as well as pre-definition of (parts of) the match. EMF Tiger currently consists
of a graphical editor for visually defining EMF model transformation rules, and
a compiler, generating Java code from these transformation rules to be included
into existing projects performing EMF model transformation. It also contains an
interpreter which translates EMF transformation rules to AGG. This interpreter
is useful for verification purposes.
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