
Algebraic Model Checking

Peter Padawitz

Abstract. Several more or less algebraic approaches to model checking
are presented and compared with each other with respect to their range
of applications and their degree of automation. All of them have been
implemented and tested in our Haskell-based formal-reasoning system
Expander2. Besides realizing and integrating state-of-the art proof and
computation rules the system admits rarely restricted specifications of
the models to be checked in terms of rewrite rules and functional-logic
programs. It also offers flexible features for visualizing and even ani-
mating models and computations. Indeed, this paper does not present
purely theoretical work. Due to the increasing abstraction potential of
programming languages like Haskell the boundaries between developing
a formal system and implementing it or making it ‘user-friendly’ as well
as between systems developed in different communities become more and
more obsolete. The individual topics discussed in the paper reflect this
observation.

1 Introduction

Model checking means proving properties of labelled or unlabelled transition
systems (TRS). Modal, temporal or dynamic logics have been developed to for-
malize the properties and provide methods for proving them (see e.g. [4, 13, 26]).
In contrast to classical predicate logic, modal logics hide the relations (here: the
transition systems) they are talking about. Translations of the latter into the
former are well-known (see e.g. [1, 18]), but did not affect very much the di-
rection of research in model checking. With the invention of coalgebraic logics
(see e.g. [14, 25, 15, 8, 2]) the direction of translation is reversed: these logics
generalize the ‘relation-hiding’ concept of modal logics from merely unstructured
states and transitions to arbitrary destructor-based types and thus open up al-
ternatives to classical predicate-logic-based data type verification. Moreover, the
use of coalgebraic concepts reveals the intrinsic algebraic flavor of modal logics
(usually called its global semantics): their formulas denote relations; the logical
operators (including fixpoint operators!) are functions building relations from
relations. The underlying data are either states (elements of a destructor-based
type) or paths (which also form a destructor-based type).

We have investigated and implemented in our proof assistant Expander2 [20,
21, 22] four approaches to model checking. The first one may be called purely
algebraic because proving a formula boils down to its complete evaluation. In
the second one, formulas are proved by solving sets of regular equations rep-
resented by data flow graphs. The third technique uses simplification rules and
must accompany the first one if, for instance, the underlying type has infinitely

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 287–303, 2009.

288 Peter Padawitz

many elements (such as the set of paths of a TRS). The fourth method applies
co/Horn logic, extends the others by powerful inference rules (mainly parallel
co/resolution and incremental co/induction) and thus imposes the fewest restric-
tions on the formulas to be proved. On the other hand, this technique requires
more manual control of the proof process than the others.

For lack of space the present paper skips the data flow approach. The other
methods are illustrated mainly with a couple of axiomatic specifications of small
Kripke structures and the verification of properties given by path formulas.
All model representations and proof records given here were generated by Ex-
pander2. To a great extent, Expander2 specifications follow the syntax of the
functional programming language Haskell (see haskell.org) with which we as-
sume a little familiarity. We also use Haskell for some definitions that involve
data structures like lists or trees. Neither a purely set-theoretical notation nor
an - unfortunately still prevailing - imperative syntax can cope with the elegance
and adequacy of Haskell.

Although it is long ago, the extremely inspiring work with Hans-Jörg Kreowski
(and my supervisors Hartmut Ehrig and Dirk Siefkes) at the computer science
department of the Technical University of Berlin, lasting from 1974 to 1983, have
influenced the direction of my research over the entire subsequent 25 years. We
worked in three areas: automata theory, graph grammars and algebraic software
specification. In all of them, constructions and methods from universal algebra
played the key rôle. My additional work on Horn logic and rewrite systems was
also led by the algebraic viewpoint. Last not least, graph grammar concepts left
their mark on the treatment of term graphs in Expander2.

2 Kripke structures in Expander2

Since we want to use the same techniques for several variants of transition sys-
tems and modal logics, the following definitions take into account deterministic
and nondeterministic, labelled and unlabelled systems as well as state and path
formulas:

A Kripke structure K = (St,At, Lab,→, val, valL) consists of a set St of
states, a set At of atoms, a set Lab of labels (actions, input, output, etc.),
a transition relation → ⊆ St × St or → ⊆ St × Lab × St and state
valuations val ⊆ At × St and valL ⊆ At × Lab × St. If Lab is nonempty, →
denotes ∪{lab→ | lab ∈ Lab}.

Let s ∈ St, lab ∈ Lab and sts ∪ sts′ ⊆ St. sucs(s) = {s′ ∈ St | s → s′} and
sucsL(s, lab) = {s′ ∈ St | s lab−→ s′} denote the sets of all (direct) successors of s
resp. all successors of s after input/execution of lab.

path(K) = {p ∈ StN | ∀ i ∈ N : pi → pi+1 ∨ (sucs(pi) = ∅ ∧ pi = pi+1)}

Algebraic Model Checking 289

denotes the set of paths of K. Given a function f : St→ P(St),

imgsShares(sts)(f)(sts′) = {s ∈ sts | f(s) ∩ sts′ 6= ∅},
imgsSubset(sts)(f)(sts′) = {s ∈ sts | f(s) ⊆ sts′}

denote the sets of states s ∈ sts such that at least one resp. all f -images of s
are in sts′. Expander2 admits the specification of Kripke structures in terms of
rewrite rules (axioms for ->) as in the following example. It is small and not very
practical, but involves a couple of frequently used functional or logical operators.

-- TRANS
constructs: less SAT -- constructors
defuncts: inits states atoms drawSF -- defined functions
fovars: n x y -- first-order variables
axioms: inits == [0] &

atoms == map(less)[0..10] &
(n < 6 & n ‘mod‘ 2 = 0 ==> n -> n<+>n+1) &
(n < 6 & n ‘mod‘ 2 =/= 0 ==> n -> n+1) &
6 -> branch$[1,3,5]++[7..10]++[4,2] &
7 -> 14 &
less(x) -> branch$filter(rel(y,y<x))$states &
drawSF == wtree$fun(SAT(x),rframe$text$x,

x,x)

After the specification has been entered and the button build Kripke model has
been pushed, Expander2 constructs the set states of states, the transition re-
lation and the state valuation of the model from the axioms for the binary
predicate ->. For instance, states is the set of terms that are reachable from
inits via the transitive closure of ->. & and | denote conjunction resp. dis-
junction. Equational axioms involving == are used as simplification rules (see
below). <+> and branch are constructors for building sets of successor states.
The apply-operator $ and the list functions map, ++ and filter are interpreted
as in Haskell. fun and rel are the λ-abstraction operators for functions resp.
relations. For instance, fun(p,t,q,u) denotes the function that, when applied
to v, yields the corresponding instance of t resp. u if v matches p resp. q.

wtree(f)(t) turns each node n of the term t into a graphical widget by applying
f to the term representation (!) of n. In the drawSF axiom of TRANS, nodes
matching SAT(x) are framed by a rectangle, others are (re-)turned into their
string representation. The result of simplifying wtree(f)(t) is interpreted by
the painter module of Expander2 (see, e.g., Fig. 3). Another graphical interpreter
of Expander2 turns binary or ternary relations into matrices:

290 Peter Padawitz

Fig. 1. The term (graph) representing the transition relation of TRANS and its
interpretation by the matrix interpreter of Expander2

The solver module of Expander2 always produces or transforms term graphs like
the one on the left-hand side of Fig. 1. Basically, term graphs are trees, but they
may involve additional edges (those with tips). The solver module computes
further term representations of a binary or ternary relation: a list of pairs resp.
triples and a conjunction of regular equations (see Fig. 2).

Fig. 2. A list of pairs and a conjunction of regular equations representing the
transition relation of TRANS

3 Modal logic and algebra

Let Var be a set of variables denoting sets of states or paths (sequences of
states). The words generated from sf resp. pf by the following context-free
rules are called state formulas resp. path formulas: Let at ∈ At, lab ∈ Lab

Algebraic Model Checking 291

and x ∈ Var .

sf → at | true | false | ¬sf | sf ∨ sf | sf ∧ sf | sf ⇒ sf
(1) sf → EX sf | AX sf | 〈lab〉sf | [lab]sf
(2) sf → x | µx.sf | νx.sf

sf → EF sf | AF sf | EG sf | AG sf | sf EU sf | sf AU sf
pf → at | true | false | ¬pf | pf ∨ pf | pf ∧ pf | pf ⇒ pf

(3) pf → next pf | 〈lab〉pf | [lab]pf
(4) pf → x | µx pf | νx pf

pf → F pf | G pf | pf U pf

Some of the above operators are subsumed by others. This is intended because
we favor natural deduction where the user is allowed to formalize conjectures as
adequately as possible. The reduction to a minimal set of operators should be
left to the model checker. Ours will turn all formulas into equivalent ones that
consist of propositional, next-step ((1) resp. (3)) and fixpoint operators ((2) resp.
(4)).

Like every context-free grammar the above one defines an algebraic signature
Σ = (PS, S,OP) with a set PS of primitive sorts (here: at, lab and x), a set
S of further sorts, one for each nonterminal of the grammar, and a set OP of
operators, one for each rule of the grammar: a rule A→ w becomes an operator
of type v → A where v is the product of the nonterminals of w. In the above
case, Σ-terms represent formulas, and proving the latter means evaluating the
former with respect to a suitable interpretation of Σ, i.e. a Σ-algebra, say A.

Each sort s ∈ PS ∪ S is interpreted by a ‘carrier’ set sA and each operator
f by a function fA whose domain and range comply with the interpretation
of the sorts involved in the type of f . The nature of primitive sorts is to have
the same interpretation in every Σ-algebra A. Hence at, lab and x are always
interpreted as the given sets At, Lab and Var of atoms, labels and variables,
respectively. The interpretation of sf and pf reflects what is often called the a
global semantics of modal logic:

sfA = (Var → P(St))→ P(St)
pfA = (Var → P(path(K)))→ P(path(K))

In Σ, each atom at becomes a constant of sort sf and also a constant of sort
pf . Both fixpoint operators (µ and ν) have the types Var × sf → sf and
Var × pf → pf . Analoguous binding operators occur in other term languages
as well, e.g., the abstraction and least-fixpoint operators λ resp. µ for building
higher-order functions or the quantification operators ∀ and ∃ that come with
an algebraic view on predicate logic.

Fixpoint operators are the main model builders. Be it single objects (including
functions of arbitrary order), types (sets of objects) or relations (predicates) of
arbitrary arity, whatever cannot be constructed by simply combining given ob-
jects (resp. sets) conjunctive- or disjunctively, is defined as a solution of a system
of regular equations between variables on the left- and terms/formulas on the

292 Peter Padawitz

right-hand side, i.e. as a fixpoint of the function induced by the equations. From
the classical theory of recursive functions via the semantics of logic programming
languages up to domain theory and universal co/algebra, fixpoints provide the
link between description, computation and proof in all these approaches.

The existence of a fixpoint requires the monotonicity of the functions used in
the equations to be solved. Its stepwise constructability requires the stronger
property of (upward or downward) continuity. In the case of a modal formula
ϕ, monotonicity is ensured if each free occurrence of x ∈ Var in ϕ has positive
polarity, i.e. the number of negations on the path from the binder of x (µ or
ν) to the occurrence is even. Continuity is guaranteed if, in addition to the
monotonicity requirement, the transition relation is image finite, i.e. for all s ∈ St
and lab ∈ Lab, sucs(s) resp. sucsL(lab)(s) is finite. Hence, if St is finite, the
global semantics of a modal formula is stepwise computable if all free variable
occurrences in ϕ have positive polarity.

Given a Kripke structure K, the above interpretations of sf and pf extend
to a Σ-algebra, called the modal algebra over K: Let s ∈ St, lab ∈ Lab,
ϕ,ψ ∈ sfA ∪ pfA, b : Var → P(St) and c : Var → P(path(K)).

atA(b) =def val(at)
atA(c) =def {p ∈ path(K) | p0 ∈ val(at)}
trueA(b) =def St

falseA(b) =def ∅
¬A(ϕ)(b) =def St \ ϕ(b)
(ϕ ∨A ψ)(b) =def ϕ(b) ∪ ψ(b)
(ϕ ∧A ψ)(b) =def ϕ(b) ∩ ψ(b)
ϕ⇒A ψ =def ¬A(ϕ) ∨A ψ
EXA(ϕ) =def imgsShares(St)(sucs) ◦ ϕ
AXA(ϕ) =def imgsSubset(St)(sucs) ◦ ϕ
〈lab〉A(ϕ) =def imgsShares(St)(sucsL(lab)) ◦ ϕ
[lab]A(ϕ) =def imgsSubset(St)(sucsL(lab)) ◦ ϕ
xA(b) =def b(x)
nextA(ϕ)(c) =def {p ∈ path(K) | λi.pi+1 ∈ ϕ(c)}
(µx)A(ϕ)(b) =def up(ϕ(λy.b[y/x]))(∅)
(νx)A(ϕ)(b) =def down(ϕ(λy.b[y/x]))(St)

f [a/x] denotes an update of (the valuation or substitution) f : f [a/x](x) = a and
for all y 6= a, f [a/x](y) = f(y).

The synonymous operators on path formulas are interpreted analogously: just
replace the state valuation b by the path valuation c. The functions up and down
are defined (in Haskell) as follows:
up, down :: Eq a => ([a] -> [a]) -> [a] -> [a]
up f = g where g s = if all (‘elem‘ s) fs then s else g fs

where fs = f s
down f = g where g s = if all (‘elem‘ fs) s then s else g fs

where fs = f s

Algebraic Model Checking 293

They transform a finite set by repeatedly applying f until it does not change
any more. If applied to s = ∅ resp. s = St and provided that St is finite, the
iteration terminates and—by Kleene’s fixpoint theorem—return the least resp.
greatest solution of the equation x = ϕ in P(St).

All operators of Σ that are not interpreted directly in the modal algebra over
K can be reduced to fixpoints:

EF (ϕ) = µx(ϕ ∨ EX(x)) finally
AF (ϕ) = µx(ϕ ∨ (EX(true) ∧AX(x)))
EG(ϕ) = νx(ϕ ∧ (AX(false) ∨ EX(x))) generally
AG(ϕ) = νx(ϕ ∧AX(x))
ϕ EU ψ = µx(ψ ∨ (ϕ ∧ EX(x))) until
ϕ AU ψ = µx(ψ ∨ (ϕ ∧AX(x)))
F (ϕ) = µx(ϕ ∨ next(x)) finally
G(ϕ) = νx(ϕ ∧ next(x)) generally
ϕ U ψ = µx(ψ ∨ (ϕ ∧ next(x))) until

Provided that the Kripke structure K has only finitely many states, each state
formula ϕ can be completely evaluated in the modal algebra over K. For this
purpose Expander2 derives K from a specification like TRANS and thus makes
the following simplification rules applicable to state formulas ϕ resp. state sets
sts:

State formula evaluation

ϕ(s)
True

s ∈ ϕA ϕ(s)
False

s ∈ St \ ϕA sols(ϕ)
ϕA

(1)

embed(sts)
transition graph with each state s ∈ sts replaced by SAT (s)

(2)

Fig. 3. The result of applying (1), (2) and the function drawSF of TRANS to
solsEFatom$less$4

294 Peter Padawitz

4 Model checking by simplification

A path formula like ∀ pa : ϕ(pa) quantifies over the infinite set of paths of the un-
derlying Kripke structure K and thus cannot be proved by simply evaluating it in
the modal algebra over K: the implementation of the fixpoint operators µ and ν
with the functions upWith and downWith will not terminate. However, as fixpoint
operators are ubiquitous in model design, so are the key proof rules induction,
coinduction and expansion for properties of a fixpoint, say a = (a1, . . . , an). If
a solves the equation (x1, . . . , xn) = t(x1, . . . , xn), expanding a term or formula
ϕ means replacing all occurrences of a (or components thereof) in ϕ by (the
corresponding projections on) t(a). Expansion is sound for all solutions of the
equation, induction and coinduction only for the least resp. greatest one.

Expansion Let op be a fixpoint operator, u = (t1, . . . , tn) and 1 ≤ i ≤ n.

op x1 . . . xn.t

t[πi(op x1 . . . xn.t)/xi | 1 ≤ i ≤ n]
πi(op x1 . . . xn.u)

ti[πj(op x1 . . . xn.u)/xj | 1 ≤ j ≤ n]

πi, 1 ≤ i ≤ n, denotes the projection of an n-tuple on its i-th component. In the
case of unary fixpoints (like the modal operators µ and ν), projections do not
occur and we only need the first rule. In general, non-unary fixpoints arise from
mutually recursive definitions of several functions or relations.

For reducing the danger of non-termination Expander2 applies expansion rules
only to formulas that lack redices for other simplification rules. The simplifier
traverses a formula tree depthfirst (leftmost-outermost) or breadthfirst (parallel-
outermost) when searching for the next rule redex. The strategy of parallel-
outermost simplification that postpones expansion steps as far as possible is a
fixpoint strategy, i.e. terminates whenever any strategy terminates [16]. This
suggests why the evaluation of path formulas in the modal algebra may not
terminate: evaluation in an algebra always proceeds bottom-up and thus follows
an innermost strategy!

Expansion rules are applied to the fixpoint itself (or a component thereof). The
redices of induction and coinduction, however, are implications with the fixpoint
as its premise resp. conclusion:

Induction and coinduction

µx1 . . . xn.ϕ⇒ ψ

ϕ[πi(ψ)/xi | 1 ≤ i ≤ n]⇒ ψ
⇑ ψ ⇒ νx1 . . . xn.ϕ

ψ ⇒ ϕ[πi(ψ)/xi | 1 ≤ i ≤ n]
⇑

The arrow ⇑ indicates that the succedent of the rule, i.e., the formula below the
horizontal line, implies the antecedent, but not necessarily vice versa. Anyhow,
we write the conclusion of the implication above the line because the rule syntax
should reflect the order in which the rules are applied in a proof.

Hence it may happen that induction or coinduction is applicable to a valid
formula, but the rule succedent does not hold true. Then the co/induction hy-
pothesis, which is given by ψ, was too weak (resp. too strong). ψ must then

Algebraic Model Checking 295

be generalized, i.e. extended to some δ by adding a factor (resp. summand). It
follows from the incompleteness of second-order logic that the candidates for δ
cannot be enumerated. The following rule shows the boundaries within which δ
must be searched for:

Second-order induction and coinduction

µx1 . . . xn.ϕ⇒ ψ

∃δ : ϕ[πi(δ)/xi | 1 ≤ i ≤ n]⇒ δ ⇒ ψ
m ψ ⇒ νx1 . . . xn.ϕ

∃δ : ψ ⇒ δ ⇒ ϕ[πi(δ)/xi | 1 ≤ i ≤ n]
m

The soundness of (first-order) co/induction is easy to show: µx1 . . . xn.ϕ and
νx1 . . . xn.ϕ denote solutions of the equation (x1, . . . , xn) = ϕ in the modal
algebra A (see section 3). Since the operators of ϕA are monotone, the fixpoint
theorem of Knaster and Tarski tells us that the least resp. greatest solution of
(x1, . . . , xn) = ϕ in A is the least resp. greatest tuple B = (B1, . . . , Bn) of sets
such that (1) ϕ[Bi/xi | 1 ≤ i ≤ n]A ⊆ B or (2) B ⊆ ϕ[Bi/xi | 1 ≤ i ≤ n]A,
respectively. Since ⇒ is interpreted in A by set inclusion, the conclusion of the
co/induction rule is valid iff (1)/(2) with Bi replaced by πi(ψ)A holds true.
Consequently, the rule antecedent follows from the minimality resp. maximality
of B with respect to (1)/(2).

Since co/induction is part of the simplifier of Expander2, the system takes care
of not destroying co/induction redices. For instance, the following simplification
rules are applied only to formulas that are not such redices:

Implication splitting Suppose that ϕ and ψ are simplified.

ϕ ⇒ ψ1 ∧ . . . ∧ ψn

ϕ⇒ ψ1 ∧ . . . ∧ ϕ⇒ ψn
m ϕ1 ∨ . . . ∨ ϕn ⇒ ψ

ϕ1 ⇒ ψ ∧ . . . ∧ ϕn ⇒ ψ
m

The above statements on (the necessity of) generalizations should convince the
reader that the co/inductive provability of the premise of a splitting rule does
not imply the co/inductive provability of its conclusion! On the other hand, if
implication splitting does not interfere with co/induction, it should be applied
because, as a hidden distribution of ∧ over ∨, it is a step towards a disjunctive
normal form. More crucial than Boolean simplifications is the simplifier’s han-
dling of quantified variables. Here the aim is to move quantifiers such that most
of them occur in existentially quantified conjunctions of equations or, dually, uni-
versally quantified disjunctions of inequations. Such subformulas are then treated
separately by term replacement, atom splitting and atom removal, which often
reduces the number of variables or even eliminates all of them.

At first, the simplifier of Expander2 treats a formula as a term to be evaluated
bottom-up by applying interpretations of the involved operators in a suitable
algebra, say B. In contrast to the modal algebra, B is a term algebra, i.e. it
consists of formulas, but usually smaller ones than the original equivalent ones.
For instance, an existential quantifier is (1) merged with directly following ones,
(2) distributed over a subsequent implication or disjunction and (3) restricted
to those variables that have free occurrences in the quantified formula.

296 Peter Padawitz

If a formula has been evaluated in this way, the simplifier applies rules (including
the ones presented in this and the previous section) only to outermost redices as
described above. Since path formulas cannot be evaluated in the modal algebra,
we specify temporal operators in terms of further simplification rules that will
be used in proofs together with expansion and co/induction.

-- LTLS
preds: P Q true false hatom not \/ /\ ‘then‘ F G ‘U‘

-- predicates
constructs: blink -- the stream 010101...
fovars: at s -- first-order variables
hovars: X P Q -- higher-order variables
axioms:

(true$s <==> True)
& (false$s <==> False)
& (hatom(at)$s <==> at -> head$s)
& (not(P)$s <==> Not(P$s))
& ((P\/Q)$s <==> (P$s | Q$s))
& ((P/\Q)$s <==> (P$s & Q$s))
& ((P‘then‘Q)$s <==> (P$s ==> Q$s))
& (F$P <==> MU X.(P\/X.tail)) -- finally
& (G$P <==> NU X.(P/\X.tail)) -- generally
& ((P‘U‘Q) <==> MU X.(Q\/(P/\X.tail))) -- until
& head$blink == 0
& tail$blink == 1:blink -- coalgebraic specification of blink

Except for the fixpoint operators, the axioms directly implement the interpre-
tation of temporal operators in the modal algebra. State operators could be
axiomatized analogously. However, this is not needed if the underlying Kripke
structure is finite. The formula hatom(at)$s checks whether the head of the
path s satisfies at ∈ At (see section 2). The functions head and tail are defined
as in Haskell. They provide the destructors of the data type of paths and are
used here for specifying the stream 010101... A point in terms denotes function
composition. The conjecture

s = blink | s = 1:blink ==> G(F$(=0).head)$s (1)

says that the streams blink and 1:blink are fair insofar as they contain in-
finitely many zeros. By the G-axiom of LTLS, (1) simplifies to:

s = blink | s = 1:blink ==> NU X.(F((=0).head)/\X.tail)$s (2)

(2) is an instance of the antecendent of coinduction (see above). Applying the
rule yields:

All s:(s = blink | s = 1:blink ==>
(F((=0).head)/\(rel(s,s=blink|s=1:blink).tail))$s) (3)

47 further simplification steps including three expansion steps turn (3) into True.
The entire proof goes through automatically.

The second sample proof is based on a model of a microwave controller [4]:

Algebraic Model Checking 297

-- MICROS
specs: LTLS -- imported specifications
constructs: start close heat error SAT
defuncts: inits states atoms drawK
fovars: ats
axioms:
inits == [1] & atoms == [start,close,heat,error] &
1 -> branch[2,3] & 2 -> 5 & 3 -> branch[1,6] &
4 -> branch[1,3,4] & 5 -> branch[2,3] & 6 -> 7 & 7 -> 4
& start -> branch[2,5,6,7]
& close -> branch[3,4,5,6,7]
& heat -> branch[4,7]
& error -> branch[2,5]
& drawK == wtree$fun(x‘sat‘ats,rframe$matrix[x,satisfies(ats)],

x,x)

The Kripke model that Expander2 derives from MICROS and the function drawK

The conjecture

G(hatom$error)$s ==> G(not$hatom$heat)$s (1)

says that a path consisting of error states never contains heat states. By the
G-axiom of LTLS, (1) simplifies to:

NU X.(hatom(error)/\X.tail)$s ==>
NU X.(not(hatom$heat)/\X.tail)$s (2)

Applying the coinduction rule yields:

298 Peter Padawitz

All pa:(NU X.(hatom(error)/\X.tail)$s ==>
(not(hatom$heat)/\
(rel(s,NU X.(hatom(error)/\X.tail)$s).tail))$s) (3)

41 further simplification steps lead (3) to True. Three expansion steps are
needed, and the entire proof goes through automatically.

5 Model checking by co/resolution and co/induction

Both evaluation and simplification regard modal formulas as representations of
data, namely (tuples of) sets. This is the actual reason for the algebraic flavor of
modal logics: their operators denote functions that generate or transform data.
Fixpoint operators are no exception. They map the left-hand sides of regular
equations to the equations’ solutions (see section 3). First-order predicate logic
as well as logic programming follow a different view. Their formulas do not denote
data, but propositions or statements about data. Set membership takes us from
the (sets-as-)data view to the propositional one, set comprehension back from
the propositional to the data view. So where is the difference? It comes with the
fixpoint property that cannot be expressed within first-order logic. Instead, we
axiomatize co/predicates in terms of (generalized) co/Horn clauses and fix their
interpretation as the least resp. greatest relations (on a given data model) that
satisfy the axioms. Details of this approach and its connection with relational
and functional programming can be found in [18, 19].

For checking Kripke structures with co/Horn logic we replace the modal algebra
of section 3 and the specification LTLS of section 4 by the following one:

-- LTL
preds: P Q true false hatom not \/ /\ ‘then‘ F ‘U‘
copreds: G -- copredicates
fovars: s
hovars: P Q
axioms:

(F(P)$s <=== P$s | F(P)$tail$s) -- finally
& (G(P)$s ===> P$s & G(P)$tail$s) -- generally
& ((P‘U‘Q)$s <=== Q$s | P$s & (P‘U‘Q)$tail$s) -- until

In addition, the propositional operators are specified in the same way as in LTLS
in terms of simplification rules. The modal operators, however, now have co/Horn
axioms. The direction of the implication arrow (<=== or ===>) indicates whether
the axiom is called a Horn or a co-Horn clause and the relational expression on
its left-hand side a predicate or a copredicate and thus interpreted as the least or
greatest relation satisfying the axiom(s). When applied in a logical derivation,
a co/Horn clause is always applied from left to right. Besides premise and/or
conclusion a clause may contain a guard that confines redices to formulas that
unify with the left-hand side (premise resp. conclusion) and satisfy the guard
(see the co/resolution rules given below).

Algebraic Model Checking 299

An expansion step is replaced by the simultaneous application of all axioms with
the same relational expression on the left-hand side:

Parallel resolution upon the predicate p

p(t)∨k
i=1 ∃Zi : (ϕiσi ∧ x = xσi)

m

where γ1 ⇒ (p(t1) ⇐= ϕ1), . . . , γn ⇒ (p(tn) ⇐= ϕn) are the (Horn) axioms for
p (with guards γ1, . . . , γn).

Parallel coresolution upon the copredicate p

p(t)∧k
i=1 ∀Zi : (x = xσi ⇒ ϕiσi)

m

where γ1 ⇒ (p(t1) =⇒ ϕ1), . . . , γn ⇒ (p(tn) =⇒ ϕn) are the (co-Horn) axioms
for p (with guards γ1, . . . , γn).

In both rules, x is a vector of ‘new’ variables, for all 1 ≤ i ≤ k, tσi = tiσi,
γiσi ` True and Zi = var(ti, ϕi), and for all k < i ≤ n, t is not unifiable with ti.

As in section 4, co/induction can only be applied to implications with a predicate
(the first-order analog of a variable bound by µ) in the premise or a copredicate
(the first-order analog of a variable bound by ν) in the conclusion. In contrast to
co/induction as a simplification rule, we may now start a proof with the original
conjecture and generalize it later—when simplification rules are no longer appli-
cable and generalization candidates have emerged from preceding proof steps.
Restricted to the proof of bisimilarities (relations describing behavioral equality),
this incremental procedure is also known as circular coinduction [7, 11].

Incremental induction upon the predicate p

p(x) ⇒ ψ(x)∧
p(t)⇐ϕ∈AXp

(ϕ[p′/p]⇒ ψ(t))
⇑ p′(x) ⇒ δ(x)∧

p(t)⇐ϕ∈AXp
(ϕ[p′/p]⇒ δ(t))

⇑ p 6∈ ψ ∪ δ

AXp denotes the set of axioms for p. When the first rule is applied, p′ is stored
as a new copredicate with the axiom p′(x) ⇒ ψ(x). When the second rule is
applied, the axiom p′(x)⇒ δ(x) is added.

Incremental coinduction upon the copredicate p

ψ(x) ⇒ p(x)∧
p(t)⇒ϕ∈AXp

(ψ(t)⇒ ϕ[p′/p])
⇑ δ(x) ⇒ p′(x)∧

p(t)⇒ϕ∈AXp
(δ(t)⇒ ϕ[p′/p])

⇑ p 6∈ ψ ∪ δ

When the first rule is applied, p′ is stored as a new predicate with the axiom(s)
p′(x)⇐ ψ(x) and, if p is behavioral equality, Horn clauses that establish p′ as an
equivalence relation. When the second rule is applied, the axiom p′(x) ⇐ δ(x)
is added.

Co/resolution and co/induction complement each other in the way axioms work
together with conjectures in proofs. Roughly said, co/resolution applies axioms

300 Peter Padawitz

to conjectures and the proof proceeds with the modified conjectures. Conversely,
co/induction applies conjectures to axioms and establishes the modified axioms
as new conjectures.

The generalization of the above rules to several co/predicates (the first-order
analog of a fixpoint formula with several bound variables) is straightforward.

In contrast to section 4, incremental coinduction allows us to start a proof that
the stream blink is fair with the conjecture

ψ = G(F$(=0).head)$blink

and derive the factor δ = G(F$(=0).head)$1:blink of the generalized conjecture
ψ∧δ within the proof of ψ. Indeed, applying incremental coinduction to ψ yields
the new conjecture

All P s:(P = F((=0).head) & s = blink ===>
P(s) & G0(P)$tail$s) (1)

G0 is the predicate p′ created during rule application (see above). Its axiom is:

G0(z0)$z1 <=== z0 = F((=0) . head) & z1 = blink (ax1)

Six simplification steps transform (1) into:

F((=0).head)$blink & G0(F((=0).head))$(1:blink) (2)

Parallel resolution upon F and subsequent simplification steps remove the first
factor of (2). The second factor is a redex for the second rule of incremental
coinduction. Hence (2) is turned into:

All P s:(P = F((=0).head) & s = 1:blink ===>
P(s) & G0(P)$tail(s)) (3)

and a further axiom for G0 is created:

G0(z2)$z3 <=== z2 = F((=0) . head) & z3 = 1:blink (ax2)

Five simplification steps transform (3) into:

F((=0).head)$(1:blink) & G0(F((=0).head))$blink (4)

Three resolution and subsequent simplification steps turn (4) into True.

The conjecture

G(hatom$error)$s ==> G(not$hatom$heat)$s (1)

(see MICROS in section 4) can also be proved by incremental coinduction and
co/resolution. The coinduction rule adds

G0(z0)$s <=== G(hatom$error)$s & z0 = not$hatom$heat

to the set of axioms. Subsequent coresolution and simplification steps automat-
ically lead to:

All s:(G(hatom$error)$s ==> G0(not$hatom$heat)$tail$s) (2)

Algebraic Model Checking 301

(2) admits both coresolution upon G and resolution upon G0. The first step
would lead the proof into a cycle because the only axiom for G (see LTL) is
recursive (G occurs on both sides of the axiom). The axiom for G0, however, is
non-recursive—as axioms introduced by co/induction steps always are. Hence
we choose the resolution step and obtain after simplification:

All s:(G(hatom$error)$s ==> G(hatom$error)$tail$s) (3)

Coresolution upon G and subsequent simplification turn (3) into True.

6 Conclusion

We have presented three approaches to the verification of Kripke structures
based on a labelled or unlabelled transition system (also called Kripke frame) or
a mixture thereof. The first method consists in evaluating modal formulas in an
algebra of sets of states or paths. For state formulas, the evaluation procedure is
part of the simplification component of Expander2. Since fixpoint computations
are involved, model checking by evaluation is restricted to models with a finite
set of states.

The second technique uses simplification rules, which extend the modal algebra
of the first approach by expansion, induction and coinduction. This allows us to
prove also path formulas and to verify Kripke models with infinitely many states.
We have described and illustrated a strategy of applying expansion, co/induction
and other simplification rules that is complete: it terminates whenever any other
strategy would also terminate.

The third approach is based on our previous work [17, 18] on co/Horn logic where
co/Horn clauses axiomatize least resp. greatest relational fixpoints and paral-
lel co/resolution provides the counterpart of expansion in pure simplification
proofs. Co/induction as used in the second approach is replaced by incremental
co/induction, a proof rule that admits the automatic—and often inevitable—
generalization of the respective conjecture. Incremental co/induction was in-
spired by the method of circular coinduction [7, 11] that, however, is tailored to
the proof of equations.

The first method may be compared with other model checkers, which also hide
all logical inference involved from the user by turning both the Kripke structure
and the formula to be proved into some efficiently processible internal repre-
sentation and then running a deterministic algorithm that checks the formula
in a single visible step. The second and the third method work on both the
Kripke structure’s internal representation—if there any—and its specification
given by rewrite rules (Horn clause axioms for ->) and thus admit the treatment
of infinite-state systems. The formula to be proved, however, is processed in its
original form. With the second method, the proof goes through automatically—
provided that co/inductive subconjectures appear as suitable implications and

302 Peter Padawitz

generalizations are not needed (see section 4). Similar co/induction rules were
implemented in Isabelle [6, 24], but their use needs manual control. PVS [10, 12]
and CLAM [5] also admit coinduction, but—like circular coinduction (see sec-
tion 5)—only for proving bisimilarities. Manual control is needed for our third
method, but this is offset by more general co/induction redices and the possibil-
ity to generalize co/inductive conjectures during proof construction.

If proof assistants for Kripke structures were put on a line, starting from the
most efficient to the most powerful ones, model checkers would occupy one end
and established theorem provers the other. Our methods distribute over the
whole line and their integration in Expander2 shows that model checking and
(modal-)theorem proving can be performed simultaneously.

More and greater examples can be found in [23] and the Examples directory of
Expander2. We are also about to integrate inductive techniques such as those for
reasoning about systems communicating between a varying number of processes
[3, 4]. Last not least, the blink example should indicate the actual goal of our
research on model checking, namely to adapt its techniques to the more general
ones used for proving properties of co/algebraic data types.

References

[1] J. van Benthem, J. Bergstra, Logic of Transition Systems, J. Logic, Language
and Information 3 (1995) 247-283

[2] C. Cirstea, A. Kurz, D. Pattinson, L. Schröder, Y. Venema, Modal Logics are
Coalgebraic, The Computer Journal, to appear

[3] E.M. Clarke, O. Grumberg, S. Jha, Verification of Parameterized Networks, ACM
TOPLAS 19 (1997) 726-750

[4] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press 1999
[5] L.A. Dennis, A. Bundy, I. Green, Making a productive use of failure to generate

witnesses for coinduction from divergent proof attempts, Annals of Mathematics
and Artificial Intelligence 29, Springer (2000) 99-138

[6] J. Frost, A Case Study of Co-induction in Isabelle, Report, Computer Labora-
tory, University of Cambridge 1995

[7] J. Goguen, K. Lin, G. Rosu, Conditional Circular Coinductive Rewriting with
Case Analysis, Proc. WADT’02, Springer LNCS 2755 (2003) 216-232

[8] H. P. Gumm, Universal Coalgebras and their Logics, AJSE-Mathematics, to ap-
pear

[9] J. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245
(2000) 55-101

[10] H. Gottliebsen, Co-inductive Proofs for Streams in PVS, Report, Queen Mary,
University of London 2007

[11] D. Hausmann, T. Mossakowski, L. Schröder, Iterative Circular Coinduction for
CoCasl in Isabelle/HOL, Proc. FASE’05, Springer LNCS 3442 (2005) 341-356

[12] U. Hensel, B. Jacobs, Coalgebraic Theories of Sequences in PVS, J. Logic and
Computation 9 (1999) 463-500

[13] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about
Systems, 2nd Ed. Cambridge University Press 2004

Algebraic Model Checking 303

[14] B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS
Bulletin 62 (1997) 222-259

[15] A. Kurz, Specifying Coalgebras with Modal Logic, Theoretical Computer Science
260 (2001) 119-138

[16] Z. Manna, Mathematical Theory of Computation, McGraw-Hill 1974
[17] P. Padawitz, Proof in Flat Specifications, in: Algebraic Foundations of Systems

Specification, IFIP State-of-the-Art Report, Springer (1999) 321-384
[18] P. Padawitz, Swinging Types = Functions + Relations + Transition Systems,

Theoretical Computer Science 243 (2000) 93-165
[19] P. Padawitz, Dialgebraic Specification and Modeling, draft, fldit-www.cs.tu-

dortmund.de/∼peter/Dialg.pdf
[20] P. Padawitz, Expander2: A Formal Methods Presenter and Animator, fldit-

www.cs.tu-dortmund.de/∼peter/Expander2.html
[21] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal Reason-

ing, in: Formal Methods in Software and Systems Modeling: Essays Dedicated
to Hartmut Ehrig, Springer LNCS 3393 (2005) 236-258

[22] P. Padawitz, Expander2: Program verification between interaction and automa-
tion, Proc. 15th Workshop on Functional and (Constraint) Logic Programming,
Elsevier ENTCS 177 (2007) 35-57

[23] P. Padawitz, Algebraic Model Checking and more, slides in German, fldit-
www.cs.tu-dortmund.de/∼peter/Haskellprogs/CTL.pdf

[24] L. C. Paulson, Mechanizing Coinduction and Corecursion in Higher-Order Logic,
J. Logic and Computation 7 (1997) 175-204

[25] J. Rutten, Universal Coalgebra: A Theory of Systems, Theoretical Computer
Science 249 (2000) 3-80

[26] C. Stirling, Modal and Temporal Logics, in: Handbook of Logic in Computer
Science, Clarendon Press (1992) 477-563

. .

Prof. Dr. Peter Padawitz

Fakultät für Informatik
Technische Universtität Dortmund
D-44221 Dortmund (Germany)

From 1976 to 1982, Peter Padawitz was a colleague of Hans-Jörg Kreowski
at TU Berlin. Due to their common interest in algebraic specification, they
are coauthors of several publications and continued to meet at various occa-
sions, e.g., the meetings of the ifip Working Group 1.3 (Foundations of System
Specification) and the WADT conferences.

. .

	Introduction
	Kripke structures in Expander2
	Modal logic and algebra
	Model checking by simplification
	Model checking by co/resolution and co/induction
	Conclusion

