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Courses on algebraic specification and logic have been important corner-
stones of teaching theoretical computer science for many years. Moreover, alge-
braic specification and logic are applied in areas like software specification and
verification, but also in ontologies and weak artificial intelligence1, and other ar-
eas. During my studies, I myself was greatly influenced by courses on algebraic
specification and logic. The logic courses mainly provided a very abstract and
dry introduction to the formalities of logic — the motivation for logic needed
to have arisen independently of the course. By contrast, Hans-Jörg Kreowski
always has carefully motivated his courses on algebraic specification (and other
subjects), has brought spirit into concepts by using a graphic and descriptive
style of presentation, and activated students by insisting on letting them answer
questions, discuss points and solve exercises, with room for developing own ideas
(especially within so-called student projects, a specialty of Bremen university).
This teaching greatly influenced my choice of research subject.

Dear Hans-Jörg, I wish you all the best for your 60th birthday, and please
continue your mixture of brilliant research and excellent teaching even though
facing the fact that our university system by far does not encourage and support
the latter to the degree actually needed,2 and also students often are not used
to an activating teaching style.

In this work, I will report on some research and some teaching I have done
in the context of the Common Algebraic Specification Language (Casl [3,4]).
Casl is a common language for algebraic specification that has been initiated
by the IFIP working group 1.3 “Foundations of systems specification” (see also
the report [1]), which was founded and initially lead by Hans-Jörg Kreowski.

1 First-Order Logic

Basically, I regularly teach a course about logic that is quite popular (attended by
roughly 100 students) and a course on more specialised subjects usually attended
only by smaller groups of students.

1.1 Language, Proof and Logic

For teaching first-order logic, I use the book “Language, proof and logic” [2],
abbreviated LPL. The most striking feature of LPL is the use of software tools

1Here, weak AI is used for systems that solve tasks in specialised domains using
heuristics or learning, as opposed to strong AI, which aims at passing the Turing test.

2As a curiosity: I tried to buy a book about university didactic in the university’s
book shop — they had no such book directly available, only books about school
didactic.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 269–286, 2009.
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Fig. 1: Evaluating first-order sentences with the program Tarski’s world.

supporting the students with their own exercises and experiments in logic. This
goes as far that a server in Stanford can automatically evaluate some of the
students’ exercises and give detailed feedback, such that students can revise
their solutions. This allows a far better activation of students than with lectures
alone — in an ex-cathedra lecture with 100 students, only a small portion of
them can actually participate.

However, the usefulness of the software tools should also not be overesti-
mated: it is still very important to have handwritten exercises that are corrected
by the teacher, as well as explanations of the students and discussions within
the lecture.

In my view, the most important insight of LPL is the following: the notion
of first-order structure (or model) is an advanced topic!1 (The same holds for
notion of algebra used in algebraic specification.) Instead, LPL largely uses a

1It is only treated in part III of the book. Part I is about propositional logic, part
II about first-order logic, and part III about advanced topics.
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Fig. 2: Sample proof with the program Fitch.

fixed interpretation of first-order logic in a blocks world (see Fig. 1 showing a
screenshot of the program Tarski’s world).

Of course, with using a fixed domain of interpretation (carrier set) and fixed
interpretation of predicates, one loses much of the “loose specification” approach
used in both algebraic specification and logic. However, the essential gain over
the traditional approach is that a fixed interpretation is much easier to grasp.
Indeed, a useful didactic will proceed from the concrete to the abstract (and
not vice versa), and the abstractness of the concept of (carrier) set (and of
function and relation) is often underestimated — even if illustrated with useful
example carrier sets from computer science like lists, strings or trees.1 Moreover,
fixing the carrier set and interpretation of predicates is not as harmful as it
looks: in a blocks world, it is still possible to obtain some degree of looseness
by using different configurations of the blocks. Students can then inspect the
effect of different configurations on the evaluation of sentences, and use a game,
a so-called Henkin-Hintikka game, to understand the evaluation in more detail.
Some looseness of course is also essential to understand the concept of logical

1Let me further illustrate this point with some anecdotes about the concept of
function. Vladimiro Sassone told me that he taught a course on recursive functions.
After several weeks, he spent one lecture on students’ questions. The first question
was: “what is a function?”. Michael Kohlhase regularly poses this question in his oral
exams, and in spite of him announcing this question, only about 60% of students
know the answer.



272 Till Mossakowski

consequence — another concept that is surprisingly difficult to grasp for many
students. The most difficult part to understand is that logical consequence does
not imply the truth of the premises — it also holds in cases where the premises
are always false.

Fig. 3: Sample proof with Hets and SPASS.

Here, the interplay of Tarski’s world with Fitch greatly helps: Fitch is a
program that can be used for the construction of a natural deduction proof, in
case that a logical consequence actually holds, see Fig. 2. In the other cases,
Tarski’s world can be used to construct countermodels.

LPL offers a great deal of motivation and explanation of the natural deduc-
tion calculus (and Fitch) in terms of common natural language arguments. It
must be noted though that students more often have difficulties with Fitch than
with Tarski’s world. The reason seems to be again the level of abstraction: while
Tarski’s world is about a blocks world that is still close to everyday’s experience,
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Fitch is about proofs that follow certain rules which are quite common in math-
ematical arguments, but not in everyday’s experience. Moreover, students often
have difficulties with finding suitable rules to apply in a given situation, or with
the development of a proof strategy. Therefore, the development of proof strate-
gies is explicitly discussed in the lecture and supported with numerous exercises.
However, I think that this still does not suffice. An interactive dialogue suggest-
ing different strategies or heuristics might help to stimulate more experiments
also for those students that do not grasp natural deduction so quickly.

1.2 Hets and State-of-the-Art Provers

This also brings me to another point: the relation of Fitch to state-of-the-art
automated and interactive theorem provers. Some students are motivated to
conduct larger proofs, but Fitch is not suited for this, since it is not possible
to prove lemmas and theorems for later re-use. Here, I use Casl and the Het-
erogeneous Tool Set Hets [8,7], which offers the connection to a selection of
resolution provers (SPASS, Vampire) and tableau provers (Isabelle), as well as
to SAT solvers (zChaff, minisat) — all tools that are used in current research.
However, these tools of course do not offer the special proof rule provided by
Fitch that can be used to derive facts that are specific to the blocks world (this
rule is called “AnaCon”). Actually, the rule AnaCon can be simulated with a
suitable first-order axiomatisation of the blocks world in Casl. Then proofs can
be conducted e.g. with the automated resolution prover SPASS [10]. A drawback
is that the output format of resolution proofs is still rather cryptic, since the
problem is first translated to clause form. A translation from resolution proofs
to natural deduction (using tools like Tramp [5] or Metis [6]) could help here,
but one should be careful not to provide an automatic tool that completely
discourages students to build their own natural deduction proofs.

2 Structured Specification

While research in algebraic specification started with the application of meth-
ods from universal algebra and equational logic to the specification of abstract
data types, later the algebraic nature was found more in the powerful constructs
that are used to build larger specifications from smaller ones in a modular way.
One such construct is the restriction to so-called initial and free models, a quite
central but complex notion in the area of algebraic specification. While teaching
this notion, I developed the idea to use propositional logic (instead of equa-
tional or first-order logic) to illustrate constructs for structuring specification.
The advantage is that the logic is so simple that one can really concentrate on
the structuring. Moreover, it is possible to display individual models: they are
just rows in a truth table. Using this approach, the following subsections explain
logical consequence, conservative extensions, and initial/free specifications. The
development will be a bit more technical than above, and also will rely on math-
ematical notation. However, it will be intensively illustrated with results from
Hets.
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2.1 Logical Consequence

Logical consequence is the central notion of logic (and is also important for
algebraic specification): what follows from what? As indicated above, logical
consequence is a notion that is difficult to grasp for many students. Hence, with
Hets, we provide an easy truth table approach for illustrating this notion.

Definition 1 (Signature). A propositional signature Σ is a set (of proposi-
tional symbols, or variables).

Definition 2 (Sentence). Given a propositional signature Σ, a propositional
sentence over Σ is one produced by the following grammar

φ ::= p | ⊥ | > | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ

with p ∈ Σ. Sen(Σ) is the set of all Σ-sentences

Definition 3 (Model). Given a propositional signature Σ, a Σ-model (or Σ-
valuation) is a function in Σ → {T, F}. Mod(Σ) is the set of all Σ-models.

A Σ-model M can be extended to

M# : Sen(Σ)→ {T, F}

using truth tables.

Definition 4. φ holds in M (or M satisfies φ), written M |=Σ φ iff

M#(φ) = T

Definition 5 (Logical consequence). Given Γ ⊆ Sen(Σ) and φ ∈ Sen(Σ), φ
is a logical consequence of Γ (written as Γ |= φ), if for all M ∈ Mod(Σ)

M |= Γ implies M |= φ.

Example 6. An argument in natural language is tested for validity by translating
it into propositional logic.

John plays tennis, if it’s
a sunny weekend day.

If John plays tennis, then
Mary goes shopping.

It is Saturday.
It is sunny.
Mary goes shopping

sunny ∧ weekend → tennis
tennis → shopping
saturday
sunny
saturday → weekend
shopping

The set of premises has the sentence shopping as a logical consequence
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 logic Propositional

 spec Weekend =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sat => we %(satW)%
 . sunny %(sun)%
 . shop %(shop)% %implied
 end �

Listing 1: A simple logical consequence

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || sat | shop | sunny | tennis | we || SWT | TSh | sat | satW | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+======+=====++=====
 o || F | F | F | F | F || T | T | F | T | F || F
 o || F | F | F | F | T || T | T | F | T | F || F
 o || F | F | F | T | F || T | F | F | T | F || F
 o || F | F | F | T | T || T | F | F | T | F || F
 o || F | F | T | F | F || T | T | F | T | T || F
 o || F | F | T | F | T || F | T | F | T | T || F
 o || F | F | T | T | F || T | F | F | T | T || F
 o || F | F | T | T | T || T | F | F | T | T || F
 o || F | T | F | F | F || T | T | F | T | F || T
 o || F | T | F | F | T || T | T | F | T | F || T
 o || F | T | F | T | F || T | T | F | T | F || T
 o || F | T | F | T | T || T | T | F | T | F || T
 o || F | T | T | F | F || T | T | F | T | T || T
 o || F | T | T | F | T || F | T | F | T | T || T
 o || F | T | T | T | F || T | T | F | T | T || T
 o || F | T | T | T | T || T | T | F | T | T || T
 o || T | F | F | F | F || T | T | T | F | F || F
 o || T | F | F | F | T || T | T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F | F || F
 o || T | F | F | T | T || T | F | T | T | F || F
 o || T | F | T | F | F || T | T | T | F | T || F
 o || T | F | T | F | T || F | T | T | T | T || F
 o || T | F | T | T | F || T | F | T | F | T || F
 o || T | F | T | T | T || T | F | T | T | T || F
 o || T | T | F | F | F || T | T | T | F | F || T
 o || T | T | F | F | T || T | T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F | F || T
 o || T | T | F | T | T || T | T | T | T | F || T
 o || T | T | T | F | F || T | T | T | F | T || T
 o || T | T | T | F | T || F | T | T | T | T || T
 o || T | T | T | T | F || T | T | T | F | T || T
 M+ || T | T | T | T | T || T | T | T | T | T || T �

Listing 2: Truth table for the logical consequence from Listing 1
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Note that the formalisation contains an axiom saturday → weekend
not present in the informal version. This axiom represents implicit background
knowledge. The Hets input syntax for this example is shown in Listing 1.

With Hets, we can now construct the following truth table as shown in
Listing 2. The truth table is divided into three parts, using ||. The first part
consists of the signature: all propositional letters are listed. Below the signature,
you find all possible models, one per row. The second part consists of the theory
(the axioms, also playing the role of premises of the argument): for each axiom,
its truth value is listed. Only rows containing T for every axiom are models of
the theory (indicated by an M). Finally, the third part contains the proof goal, or
conclusion of the argument. The conclusion needs to be true for each row that
is a model.

A simple non-example of a logical consequence (actually, we omitted the fact
that saturday is a weekend day) is shown in Listing 3.

 spec Weekend2 =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sunny %(sun)%
 . shop %(shop)% %implied
 end �

Listing 3: Example of a non-consequence

2.2 Conservative Extensions

A theory is satisfiable, if it has a model.1 Satisfiability of theories is quite impor-
tant for an axiomatic or loose approach to specification: it is easy to introduce
unintentional inconsistencies, and an inconsistent (unsatisfiable) specification
cannot be realised, hence it does not successfully model an aspect of reality.2

Satisfiability of large theories is hard to show. Actually, there are large first-
order theories like the SUMO ontology for which satisfiability is an open question
— indeed there is a prize set up for proving consistency of SUMO [9]. A modular
way to satisfiability is opened up by conservative extensions: in a sense, these
transport satisfiability.

1In some logics like equational logic, each theory is trivially satisfiable. In these
cases, satisfiability should be replaced with satisfiability by a non-trivial model,
where the latter is a model that falsifies at least one sentence.

2This is different for paraconsistent logics, which however will not be considered
here.
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 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || sat | shop | sunny | tennis | we || SWT | TSh | sat | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+=====++=====
 o || F | F | F | F | F || T | T | F | F || F
 o || F | F | F | F | T || T | T | F | F || F
 o || F | F | F | T | F || T | F | F | F || F
 o || F | F | F | T | T || T | F | F | F || F
 o || F | F | T | F | F || T | T | F | T || F
 o || F | F | T | F | T || F | T | F | T || F
 o || F | F | T | T | F || T | F | F | T || F
 o || F | F | T | T | T || T | F | F | T || F
 o || F | T | F | F | F || T | T | F | F || T
 o || F | T | F | F | T || T | T | F | F || T
 o || F | T | F | T | F || T | T | F | F || T
 o || F | T | F | T | T || T | T | F | F || T
 o || F | T | T | F | F || T | T | F | T || T
 o || F | T | T | F | T || F | T | F | T || T
 o || F | T | T | T | F || T | T | F | T || T
 o || F | T | T | T | T || T | T | F | T || T
 o || T | F | F | F | F || T | T | T | F || F
 o || T | F | F | F | T || T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F || F
 o || T | F | F | T | T || T | F | T | F || F
 M- || T | F | T | F | F || T | T | T | T || F
 o || T | F | T | F | T || F | T | T | T || F
 o || T | F | T | T | F || T | F | T | T || F
 o || T | F | T | T | T || T | F | T | T || F
 o || T | T | F | F | F || T | T | T | F || T
 o || T | T | F | F | T || T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F || T
 o || T | T | F | T | T || T | T | T | F || T
 M+ || T | T | T | F | F || T | T | T | T || T
 o || T | T | T | F | T || F | T | T | T || T
 M+ || T | T | T | T | F || T | T | T | T || T
 M+ || T | T | T | T | T || T | T | T | T || T �

Listing 4: Truth table for the non-consequence from Listing 3

 spec Sp =
 Σ1
 Γ1
 then
 Σ∆
 Γ∆
 end �

 spec Animals =
 props bird, penguin
 . penguin => bird
 then
 prop can_fly
 . penguin => not can_fly
 end �

Listing 5: Theory extensions in Casl.
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 logic Propositional

 spec Animal =
 props bird, penguin, living
 . penguin => bird %(pb)%
 . bird => living %(bl)%
 then %cons
 prop animal
 . bird => animal %(ba)%
 . animal => living %(al)%
 end �

 spec Penguin =
 props bird, penguin
 . penguin => bird %(pb)%
 then
 prop can_fly
 . bird => can_fly %(bc)%
 . penguin => not can_fly %(pnc)%
 end �

Listing 6: Example of a conservative and a non-conservative extension in CASL

To illustrate the concept, consider the specification in Listing 6. Indeed, to
formally underpin this, we introduce some notions that will be central for struc-
tured specification:

Definition 7. Given two signatures Σ1, Σ2 a signature morphism is a function
σ : Σ1 → Σ2 (note that signatures are sets).

Sentences can be translated along signature morphisms:

Definition 8. A signature morphism σ : Σ1 → Σ2 induces a sentence transla-
tion σ : Sen(Σ1)→ Sen(Σ2), defined inductively by

– σ(⊥) = ⊥
– σ(>) = >
– σ(φ1 ∧ φ2) = σ(φ1) ∧ σ(φ2)
– etc.

Models are translated against signature morphisms. The intuition is that the
translated model M |σ works as follows: interpret a symbol by first translating
it along the signature morphism σ and then look up the interpretation in the
original model M .

Definition 9. A signature morphism σ : Σ1 → Σ2 induces a model reduction
|σ: Mod(Σ2) → Mod(Σ1). Given M ∈ Mod(Σ2) i.e. M : Σ → {T, F}, then
M |σ∈ Mod(Σ1) is defined as M |σ(φ) := M(σ(φ)) i.e. M |σ= M ◦ σ

Sentence and model translation interact well with each other:
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Theorem 10 (Satisfaction condition). Given a signature morphism σ : Σ1 →
Σ2, M2 ∈ Mod(Σ2) and φ1 ∈ Sen(Σ1), then:

M2 |=Σ2 σ(φ1) iff M2|σ|=Σ1 φ1

(“truth is invariant under change of notation.“)

Definition 11. A theory morphism (Σ1, Γ1) → (Σ2, Γ2) is a signature mor-
phism σ : Σ1 → Σ2 such that for M2 ∈ Mod(Σ2, Γ2) we have M2|σ∈ Mod(Σ1, Γ1)

Extensions (written in Casl with the keyword then; cf. Listing 5) always lead
to a theory morphism (by definition). The semantics of the Casl specification
is the theory morphism σ : (Σ1, Γ1) → (Σ2, Γ2), where Σ2 = Σ1 ∪ Σ∆ and
Γ2 = Γ1 ∪ Γ∆, such that σ : Σ1 → Σ2 is the inclusion.

We are now ready to define conservative extensions:

Definition 12. A theory morphism σ : T1 → T2 is model-theoretically-conservative,
if any M1 ∈ Mod(T1) has a σ-expansion to a T2-model, that is, a model

M2 ∈ Mod(T2) with M2|σ= M1.

We can now evaluate which of the extensions shown in Listing 6 are con-
servative. Actually, the first extension is conservative. In the truth table output
by Hets (see Listing 7), we can see that each model (marked with an M in the
leftmost column) has an expansion (marked with an M in the column right to
the middle).

By contrast, the second extension is not conservative: the last model fails to
have an expansion, see Listing 8.

The central theorem that allows us to transport satisfiability is the following:

Theorem 13. If T1
σ1−→ T2

σ2−→ . . .
σn−1−−−→ Tn are model-theoretically conserva-

tive, and T1 is satisfiable, then Tn is satisfiable.

2.3 Initial and Free Specifications

Freeness and cofreeness constraints are a powerful mechanism at the level of
structured specifications. They work for any logic. Propositional logic is a good
starting point for learning about freeness and cofreeness, since things are much
less complicated here when compared with other logics.

Consider the following two somewhat circular statements:

Harry: John tells the truth.
John: If Mary is right, then Harry does not tell the truth.
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 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 || bird | living | penguin || pb | bl || || animal || ba | al
 ===++======+========+=========++======+======++===++========++========+=======
 M+ || F | F | F || T | T || M || F || T | T
 || | | || | || || T || T | F
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | F | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || F | T | F || T | T || M || F || T | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | T | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | F || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | T || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | F || T | T || || F || F | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | T || T | T || || F || F | T
 || | | || | || M || T || T | T �

Listing 7: Truth table for a conservative extension from Listing 6

 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 || bird | penguin || pb || || can_fly || bc | pnc
 ===++======+=========++======++===++=========++========+=====
 M+ || F | F || T || M || F || T | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 o || F | T || F || || || |
 ---++------+---------++------++---++---------++--------+-----
 M+ || T | F || T || || F || F | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 M- || T | T || T || || F || F | T
 || | || || || T || T | F �

Listing 8: Truth table for a non-conservative extension from Listing 6
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 spec Liar0 =
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 then %implies
 . harry %(harry)%
 . john %(john)%
 . mary %(mary)%
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 9: A circular set of statements

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || harry | john | mary || whenjohn | whenharry || harry
 ===++=======+======+======++==========+===========++======
 M- || F | F | F || T | T || F
 M- || F | F | T || T | T || F
 M- || F | T | F || T | T || F
 M- || F | T | T || T | T || F
 o || T | F | F || F | T || T
 o || T | F | T || F | T || T
 M+ || T | T | F || T | T || T
 o || T | T | T || T | F || T �

Listing 10: Truth table for the circular statements from Listing 9

Let us formalise these statements and look at the logical consequences. We
introduce three propositions telling us whether Harry, John, resp. Mary tell the
truth.

Actually, when calling Hets with the truth table prover, the first goal cannot
be proved, see Listing 10.

The other goals cannot be proved either. So this theory cannot decide the
truth of the propositional letters, and it leaves open whether Harry, John or
Mary tell the truth or lie, and indeed, we have five possible cases (indicated
by the five models, i.e. those rows marked with M in Listing 10). A semantics
that admits many possible interpretations and only constrains them by logical
formulas is called open world semantics.

By contrast, a closed world semantics assumes some default, e.g. any propo-
sitional letter whose truth value cannot be determined is assumed to be false.
Indeed, free or initial semantics imposes this kind of constraints. As a prerequi-
site, we need to define a partial order on propositional models:
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Definition 14. Given a propositional signature Σ and two Σ-models M1 and
M2, then M1 ≤M2 if M1(p) = T implies M2(p) = T for all p ∈ Σ.

Then, a free (or initial) specification, written free{SP}, selects the least
model of a specification:

Mod(free{SP}) = {M ∈ Mod(SP ) |M least model in Mod(SP )}

Note that a least model need not exist; in this case, the model class is empty,
hence the free specification inconsistent. Coming back to our example, have a
look at Listing 11. With the Hets truth table prover, we now get the truth table
in Listing 12. That is, Harry, John and Mary all are lying! Actually, we are not
forced by the specification to think that they tell the truth, so by minimality of
the initial model, the propositional letters are all assigned false.

 spec Liar1 =
 free {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 11: Closed world assumption, specified as a free extension

 || harry | john | mary || notharry | notjohn | free || notmary
 ===++=======+======+======++==========+=========+======++========
 M+ || F | F | F || T | T | T || T
 o || F | F | T || T | T | F || F
 o || F | T | F || T | F | F || T
 o || F | T | T || T | F | F || F
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || F
 o || T | T | F || F | F | F || T
 o || T | T | T || F | F | F || F �

Listing 12: Truth table for the specification of Listing 11

Of course, the assumption that propositional letters are false by default is
somewhat arbitrary. We could have taken the opposite assumption. Indeed, this
exactly is what final (or cofree) specifications do, see Listing 13. However, no
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greatest model exists in this case, hence the cofree specification is inconsistent,
as shown in Listing 14.

Mod(cofree{SP}) = {M ∈ Mod(SP ) |M greatest model in Mod(SP )}

 spec Liar2 =
 cofree {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . false %(false)%
 end �

Listing 13: Closed world assumption, specified as a cofree extension

 || harry | john | mary || whenjohn | whenharry | cofree || false
 ===++=======+======+======++==========+===========+========++======
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || F
 o || F | T | F || T | T | F || F
 o || F | T | T || T | T | F || F
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 14: Truth table for the specification of Listing 13

We can also mix the open and closed world assumptions. Assume that we
want to be unspecific about Mary, but use closed world assumption for Harry
and John, see Listing 15.

The semantics is as follows:

Mod(SP1 then free{SP2}) =
{M ∈ Mod(SP1 then SP2) |

M is the least model in {M ′ ∈ Mod(SP1 then SP2) | M |σ= M ′|σ} }

and as a result, we obtain that both Harry and John lie (independently of
what Marry concerns!), see Listing 16.

The dual concept is cofreeness with mixed open and closed world semantics,
see Listing 17. Also the semantics is obtained by dualising:
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 spec Liar3 =
 prop mary
 then
 free {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(harry)%
 . not john %(john)%
 end �

Listing 15: Mixed open world and closed world semantics using free

 || harry | john | mary || whenjohn | whenharry | free || harry
 ===++=======+======+======++==========+===========+======++======
 M+ || F | F | F || T | T | T || T
 M+ || F | F | T || T | T | T || T
 o || F | T | F || T | T | F || T
 o || F | T | T || T | T | F || T
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 16: Truth table for the specification of Listing 15

 spec Liar4 =
 prop mary
 then
 cofree {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . harry \/ mary %(harrymary)%
 . john %(john)%
 end �

Listing 17: Mixed open world and closed world semantics using cofree
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Mod(SP1 then cofree{SP2}) =
{M ∈ Mod(SP1 then SP2) |

M is the greatest model in {M ′ ∈ Mod(SP1 then SP2) | M |σ= M ′|σ} }

The result in the example is that John tells the truth, and at least either of
Harry and Mary as well, see Listing 18.

 || harry | john | mary || whenjohn | whenharry | cofree || harrymary
 ===++=======+======+======++==========+===========+========++==========
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || T
 o || F | T | F || T | T | F || F
 M+ || F | T | T || T | T | T || T
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || T
 M+ || T | T | F || T | T | T || T
 o || T | T | T || T | F | F || T �

Listing 18: Truth table for the specification of Listing 17

3 Conclusion

The overall picture is as follows: typically, I start with a course on first-order
logic as described in Sect. 1, followed by a more special course on structuring
and institutions, following Sect. 2. The second course starts with propositional
logic, which keeps the examples simple, and then proceeds to description logics
(used for ontologies and semantic web) and finally again to first-order logic.

Teaching algebraic specification and logic can really be fun, and there is
much room for developing better ideas and tools supporting this. Feedback and
improvements are welcome!
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