
Autonomous Units for Solving the

Capacitated Vehicle Routing Problem Based on

Ant Colony Optimization ⋆

Sabine Kuske, Melanie Luderer, and Hauke Tönnies

Abstract. Communities of autonomous units and ant colony systems
have fundamental features in common. Both consists of a set of au-
tonomously acting units that transform and move around a common
environment that is usually a graph. In contrast to ant colony systems,
the actions of autonomous units are specified by graph transformation
rules which have a precisely defined operational semantics and can be vi-
sualized in a straighforward way. In this paper, we model an ant colony
system solving the capacitated vehicle routing problem as a community
of autonomous units. The presented case study shows that the main
characteristics such as tour construction and pheromone update can be
captured in a natural way by autonomous units. Hence, autonomous
units provide a formal and visual framework for ant colony optimization
algorithms.

1 Introduction

Communities of autonomous units are rule-based systems, in which the units act
and interact autonomously in a common environment while striving for a goal
(cf. [KK07,KK08,HKK09]). More concretely, every autonomous unit is composed
of a set of graph transformation rules, a control condition, a specification of ini-
tial private states, and a goal. Moreover, it can ask auxiliary units for help.
Autonomous units transform the common environment and their private states
simultaneously, can communicate with each other via the common environment,
and may act in parallel. A current state of an autonomous unit consists of a com-
mon environment and a private state which are both graphs. An autonomous
unit specifies all state transformation processes that (1) start with an initial
private state and an arbitrary common environment (2) are allowed by the con-
trol condition, and (3) can be obtained via (parallel) applications of the unit’s
rules, auxiliary units, and other autonomous units in the community. Hence,
the semantics of a single autonomous unit includes actions of other autonomous
units which are not known by the unit. This means that the semantics of an
autonomous unit is loose in the sense that it is defined with respect to a set
of (parallel) rules that model the actions of other units. These rules are called
metarules. A state transformation process is called successful if it meets the goal.

⋆ The authors would like to acknowledge that their research is partially supported
by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 223–246, 2009.

224 Sabine Kuske, Melanie Luderer, Hauke Tönnies

A community consists of a set of autonomous units, a specification of initial
common environments, a global control condition, and an overall goal. A current
state of a community is composed of a current common environment plus a pri-
vate state for every autonomous unit. The semantics of a community consists of
all state transformation processes performed by the autonomous units, allowed
by the global control condition, and starting with an initial state. A transfor-
mation process is successful if it reaches the overall goal. The basic components
of communities are provided by a graph transformation approach consisting of
a class of graphs, a class of graph class expressions, a class of rules with a rule
application operator, and a class of control conditions. In the literature there
exists a variety of graph transformation approaches that differ mainly in the
kind of rules and graphs (cf. [Roz97] for an overview on graph transformation
approaches). They all can be used as underlying approach for communities.

Ant colony systems consist of a set of autonomously behaving artificial ants
that move around a common graph and make their decisions according to the
pheromone concentration in their neighbourhood. They are inspired by the way
how ants find short routes between food and their formicary and have been
shown to be well-suited not only for the solving of shortest path problems, but
for a series of more complex problems, typically ocurring in logistics (cf. [DS04]).
Basically, in an ant colony system, a set of ants constructs solutions for a given
problem (mostly NP-hard) by moving along the edges of an underlying graph.
According to the quality of the constructed solutions the ants walk back and
put some pheromone on the traversed items, i.e., the better the solution is the
more pheromone is placed by an ant. During solution construction the pheromone
concentration as well as some further heuristic value help the ants to decide where
to go in each step. Every ant has a memory for storing important information
such as the length of the traversed path, etc.

In this paper, we show that ant colony systems can be modeled by commu-
nities of autonomous units in a natural way. This is illustrated with the example
of the Capacitated Vehicle Routing Problem (CVRP) (cf., e.g., [RDH04,DS04]).
The advantages of modeling ant colony systems as communities of autonomous
units are the following. (1) Autonomous units provide ant colony systems with
a well-founded operational semantics so that verification techniques for graph
transformation can be applied to ant colony systems. (2) The fact that ant ac-
tions can be specified as graph transformation rules allows for a visual modeling
of ant algorithms and hence for a visual representation of ant colony behaviour.
(3) Existing graph transformation tools such as GrGEN [GK08] or AGG [ERT99]
can be used to implement ant algorithms.

This paper is organized as follows. In Section 2, ant colony systems for the
heuristic solving of optimization problems are briefly introduced and a particular
ant colony optimization algorithm for solving the CVRP is recalled. Section 3
presents a particular graph transformation approach that is used throughout this
paper. Section 4 introduces autonomous units and communities of autonomous
units. Section 5 shows how fundamental features of ant colony systems can be

Autonomous Units for Capacitated Vehicle Routing 225

modeled with autonomous units by translating an ant colony system solving the
CVRP into a community. The conclusion is given in Section 6.

2 Ant Colony Opimization

Ant colony optimization (ACO) systems are algorithmic frameworks for the
heuristic solving of optimization problems, typically problems belonging to the
complexity class NP-hard, since no efficient algorithms for this kind of problems
are known that always solve the problem. The idea of ACO originates in the
observation of how ants find short ways between food and their formicary. An
individual ant can hardly see and has a very narrow perspective of its environ-
ment. While searching for food, it leaves a chemical substance on the ground,
called pheromone, which can be sensed by other ants and influence their route
decision. The higher the concentration of pheromone along a way, the higher
the probability that an ant will choose this way as well, thus leaving even more
pheromone. The crucial point is that pheromone evaporates with time. An ant
following a short route to food will return sooner to the formicary (returning ob-
viously on the same way) so that the pheromone concentration on shorter routes
becomes more intense than on longer routes. The higher pheromone concentra-
tion makes more ants choose the short route which in turn raises the pheromone
concentration further. Finally, almost all ants end up choosing one short route,
although not necessarily the shortest one. Since typical optimization problems
can be nicely modeled as graphs, it is the prefered data structure for ACO. The
graphs used in this paper are edge-labeled and undirected and can be defined as
follows.

Definition 1 (Graphs). A graph is a tuple (V, E, att, m), where V is a finite
set of nodes, E is a finite set of edges such that V and E are disjoint, att : E →⋃

k∈{1,2}

(
V
k

)
assigns to every edge a set of one or two sources in V , and m is a

mapping that assigns a label to every edge in E. A graph with no nodes and no
edges is called the empty graph which is denoted by ∅. The components of G are
also denoted by VG, EG, respectively. The set of all graphs is denoted by G.

A solution to an optimization problem consists typically of a tour (e.g. an
ordered sequence of nodes) within the given graph. Intuitively, the complexity of
most NP-hard optimization problems lies in the exponentially growing number
of possible tours when new nodes and edges are added. The lack of an efficient
search method for the ‘best’ way requires an (almost) exhaustive search of all
the possible tours. To solve an optimization problem with ACO, some additional
information is needed. We define optimization problems as follows.

Definition 2 (Optimization Problem). An optimization problem is a 6-
tuple (CG, d, τ, η, S, g) where CG ∈ G is a construction graph, d is a function
that associates every edge with a cost value (e.g. the distance), τ is a function
that associates every edge with a pheromone value, η is a function that asso-
ciates every edge with a number as an heuristic value for the quality of the edge,
S ⊆ V ∗ is the set of solutions, and g assigns a cost g(s) to every s ∈ S.

226 Sabine Kuske, Melanie Luderer, Hauke Tönnies

Basically, ACO works as follows. At first, a predefined number of ants are
placed randomly at some nodes. These ants decide in parallel which edge they
follow in the next step according to a transition rule. Let a be an index to choose
one of n ants and Ua the set of all edges that can be chosen from ant a residing
at some node. The decision, which edge e ∈ Ua to take, is probability-based. The
probabilities are calculated as follows.

pa(e) =
[τ(e)]α · [η(e)]β∑

e∈Ua
[τ(e)]α · [η(e)]β

∀e ∈ Ua

In words this formula states that ants prefer edges with low cost und a high
concentration of pheromone. The experimental parameters α and β control the
influence of the pheromone resp. heuristic value in the decision. In every step
this formula is applied, until all the ants have constructed a complete tour.

The next step concerns the pheromone values. Simulating the evaporation,
the values of τ are reduced: τ(e) ← (1 − ρ) · τ(e) ∀e ∈ ECG where ρ is a
pheromone decay parameter in the intervall (0, 1]. Furthermore the release of
pheromone of the ants is simulated:

τ(e)← τ(e) +

n∑

a=1

∆τa(e), with ∆τa(e) =

{ 1
length(toura) , e ∈ toura

0 otherwise

where toura is the solution constructed by ant a. In contrast to nature, the
release of pheromone takes place after the ants constructed a complete tour,
since the amount of pheromone corresponds to the overall quality of the tour
(e.g. the length of the tour). Furthermore, in some ACO systems not every ant
leaves pheromone, but just the ones having constructed the best tours.

Now the ants are placed again at some randomly chosen nodes and the algo-
rithm starts with the modified values of pheromone. Some variants of this basic
ACO yielding better performance have been proposed in the literature. Details
can be found in [DS04].

2.1 Application: Capacitated Vehicle Routing Problem

An important application field of ACO concerns all kinds of tour planning with
the Traveling Salesperson Problem (TSP) as the most famous one. Another
problem often occurring in distribution logistics is the so called Capacitated
Vehicle Routing Problem (CVRP), which can be described as follows. A number
of customers must be served with some goods that are stored at a central depot.
A number of vehicles with finite and equal capacity is available. The aim is to find
a set of tours such that the demands of all customers are met and the total cost
(the sum of the distances of the tours) is minimized. Combinatorially, a solution
can be formally described as a partition of the cities into m routes {R1, . . . , Rm}.
Each route must satisfy the condition

∑
j∈Ri

demj ≤ k, where demj describes
the demand of the j -th customer and k is the capacity restriction of the vehicles.
Within each partition, an associated permutation function specifies the customer
order.

Autonomous Units for Capacitated Vehicle Routing 227

Relaxing the conditions by allowing any partition (respectively setting k =
∞), the CVRP is transformed into an instance of the Multiple Traveling Sales-
person Problem. Leaving the condition unchanged but with a cost function that
counts the number of partitions CVRP becomes the well-known bin packing
problem. CVRP contains in this sense two NP-hard problems, which in practice
makes it a lot more complicated to solve than TSP for example and it seems
a good idea to use ACO. A formulation of CVRP according to Definition 2
is quickly found. Nevertheless, there are different ways to design the function
η : ECG → R. One easy possibility consists of the reciprocal cost-value of the
edge.

Nevertheless, sometimes other methods are used to calculate the heuristic
values; one elegant way is based on the so-called Savings algorithm. Starting
from the initial (and unfavoured) solution, where every route consists of exactly
one customer, it is calculated, how the quality of the solution changes (how much
one would save), putting two customers i and j in one route. Let di0 denote
the distance between customer i and the depot and dij the distance between
customer i and j. Then the saving value obtained by merging the routes Ri and
Rj together is calculated as follows:

sij = 2 ∗ di0 + 2 ∗ dj0 − (di0 + dij + dj0) (1)

= di0 + dj0 − dij (2)

Elaborated experiments concerning the performance of ACO and Saving Algo-
rithm for the CVRP can be found in [RDH04].

3 A Graph Transformation Approach

Graph transformation approaches provide the main ingredients for communities
of autonomus units. They consist of a class of graphs, a class of rules, a class of
control conditions, and a class of graph class expressions. The graphs are used
to represent the common environments and the private states of communities.
The rules are needed to transform these graphs. Moreover, control conditions can
restrict the non-determinism of rule application, and with graph class expressions
one can specify specific graph sets such as initial environments or goals to be
reached. In the literature, there exists a series of different graph transformation
approaches (cf. [Roz97]).

In the following, we tailor a particular graph transformation approach that
can be used for modeling ACO algorithms. Concretely, the rule class and the
graph class are based on the double-pushout approach [CEH+97]. Additionally,
we introduce a class of control conditions that is suitable for autonomous units
running in parallel. These control conditions are proactive meaning that rules
must always be applied as soon as possible. The class of graph class expressions
allows to specify graph languages in a rule-based way.

228 Sabine Kuske, Melanie Luderer, Hauke Tönnies

3.1 Graphs and Rules

The graphs we use are edge-labeled and undirected as presented in Section 2.
Subgraphs and graph morphisms are defined as follows.

Definition 3 (Subgraph, graph morphism). For G, G′ ∈ G, the graph G is a
subgraph of G′, denoted by G ⊆ G′, if VG ⊆ VG′ , EG ⊆ EG′ , att(e) = att′(e), and
m(e) = m′(e) for all e ∈ EG. A graph morphism g: G→ G′ is a pair (gV , gE) of
mappings with gV : VG → VG′ and gE : EG → EG′ such that labels and sources are
kept, i.e., for all e ∈ EG, gV (attG(e)) = attG′(gE(e)) and mG′(gE(e)) = mG(e).1

The image of G in G′ is the subgraph g(G) of G′ such that Vg(G) = gV (VG) and
Eg(G) = gE(EG).

Remark. In the following, the subscripts V and E of gV and gE are often omitted,
i.e., g(x) means gV (x) for x ∈ V and gE(x) for x ∈ E.

Graphs are depicted as usual with round or boxed nodes and lines as edges.
A loop can be omitted by putting its label inside the node to which the loop
is attached. This can be done for at most one loop per node. We assume the
existence of a special label unlabeled that is omitted in graph drawings.

Graphs can be modified by rules consisting of a negative context, a left-hand
side, a gluing graph, and a right-hand side. Roughly speaking, the negative
context specifies components that must not occur in the graph to which the rule
is applied. The left-hand side, the gluing graph, and the right-hand side are used
to determine which components should be deleted, kept and added, respectively.
In every computation step of a community, the autonomous units transform the
common environment and their private states simultaneously. For this purpose,
every unit applies pairs of rules (r1, r2), where the first rule r1 is applied to the
common environment and r2 to the private state.

Definition 4 (Rule, rule pair). A rule r is a quadruple (N, L, K, R) of graphs
with N ⊇ L ⊇ K ⊆ R where N is the negative context, L is the left-hand side,
K is the gluing graph, and R is the right-hand side. If all components of r are
empty, r is the empty rule. The set of all rules is denoted by R. A rule pair is
a pair of rules r = (r1, r2) where r1 is called the global rule and r2 the private

rule. The set of all rule pairs is denoted by R̃.

Remark. A rule pair r = (r1, r2) where r2 is the empty rule can be regarded as
a single rule. Hence, in the following, we often do not distinguish between single
rules and rule pairs with an empty private rule.

A rule (N, L, K, R) is depicted as N → R where the nodes and edges of K
have the same forms, labels, and relative positions in N and R. The nodes of N
that do not belong to L are coloured grey. The edges of N that do not belong
to L are dashed. Fig. 1 shows a rule in which the negative context consists of
a round node and two rectangle nodes. Each of the rectangle nodes has exactly

1 For a mapping f : A → B and C ⊆ A the set f(C) is defined as {f(x) | x ∈ C}, i.e.,
gV (attG(e)) = {gV (v) | v ∈ attG(e)}.

Autonomous Units for Capacitated Vehicle Routing 229

one loop labeled with a and b, respectively. The round node is connected to both
rectangle nodes. The left-hand side contains the round node, the a-node (i.e., the
rectangle node with the a-loop) and the edge between both. The gluing graph
consists of the round node, and the right-hand side is obtained from the gluing
graph by connecting the round node with a new b-node.

ba −→ b

Fig. 1. A rule

A rule pair r = ((N1, L1, K1, R1), (N2, L2, K2, R2)) (with non-empty private
rule) is depicted as L1|L2 → R1|R2 where the negative contexts and the gluing
graphs are represented as in single rules.

A rule (N, L, K, R) is applied to a graph as follows. (1) Choose an image g(L)
of L in G. (2) Check if g(L) has no negative context given by N up to L. (3)
Delete g(L) up to g(K) from G provided that no dangling edges are produced.
(4) Glue R and the remaining graph in K. The construction needed in the fourth
step can be defined as follows.

Definition 5 (Gluing of graphs). Let K ⊆ R and h: K → Z. Let ≈V be the
equivalence relation on VZ + VR generated by the relation {(v, hV (v)) | v ∈ VK}
and let ≈E be the equivalence relation on EZ +ER generated by {(e, hE(e)) | e ∈
EK}. Let (VZ + VR)/≈V and (EZ + ER)/≈E be the quotient sets of the disjoint
union VZ + VR and EZ + ER, respectively. Then the gluing of Z and R in K
with respect to h yields the graph D = ((VZ + VR)/≈V , (EZ + ER)/≈E , att , m)
where for all e ∈ (EZ + ER)/≈E

att(e) =

{
[attZ(e)] if e = [e] for some e ∈ EZ

2

[attR(e)] if e = [e] for some e ∈ ER − EK

m(e) =

{
mZ(e) if e = [e] for some e ∈ EZ

mR(e) if e = [e] for some e ∈ ER − EK

The application of a rule to a graph is formally defined as follows.

Definition 6 (Rule application). Let r = (N, L, K, R) ∈ R, let G ∈ G, and
let g: L→ G such that g is injective and the following gluing condition is satisfied.

– If L ⊂ N , there exists no g′: N → G with g′(x) = g(x) for all x ∈ VL ∪EL.

– For all e ∈ EG − Eg(L), attG(e) ⊆ VG − (Vg(L) − Vg(K)).

2 For a quotient set A/≈, []: A → A/≈ denotes its natural associated function.

230 Sabine Kuske, Melanie Luderer, Hauke Tönnies

Then r is applied to G by (1) deleting Vg(L) − Vg(K) and Eg(L) − Eg(K), and
(2) constructing the gluing of the resulting graph D and R in K with respect
to g|K: K → D where g|K(x) = g(x) for all x ∈ VK ∪ EK . The semantic
relation of r is denoted by SEM (r) and consists of all pairs (G, G′) such that
G′ can be derived from G via the application of r. For a set P ⊆ R, we define
SEM (P) =

⋃
r∈P SEM (r). For (r1, r2) ∈ R̃, the semantic relation is equal to

{((G1, G2), (G
′
1, G

′
2)) | (Gi, G

′
i) ∈ SEM (ri), i = 1, 2}.

Remark. The described kind of applying graph transformation rules corresponds
to the double-pushout approach presented in e.g. [CEH+97], where also non-
injective matchings of the left-hand side are allowed.

The rule in Fig. 1 can be applied to a graph containing a node v connected
to an a-node but not connected to a b-node. Its application removes the a-node
plus the edge to v and adds a b-node and an edge from this b-node to v. Because
of the gluing condition, the a-node is only connected to v but not to other nodes;
otherwise its deletion would produce dangling edges.

In general, the autonomous units of a community apply their rules in parallel.
A parallel rule application step involving two rules can be defined as follows.

Definition 7 (Parallel rule application). Let G ∈ G and for i = 1, 2, let ri =
(Ni, Li, Ki, Ri) be two rules. Let gi: Li → G be two injective graph morphisms
that satisfy the gluing condition of Definition 6 and the independence condition
g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

3 Then r1 and r2 can be applied in parallel
to G by (1) deleting Vgi(L) − Vgi(K) and Egi(L) − Egi(K) (for i = 1, 2), and (2)
constructing the gluing of the resulting graph D and R1 + R2 in K1 + K2 with
respect to g: K1 + K2 → D, where g(x) = gi(x) if x ∈ VKi

∪ EKi
, for i = 1, 2.4

Remarks.

1. Definition 7 can be extended in a straightforward way from two rules to
arbitrary non-empty multisets of rules. For a multiset m of rules, SEM (m)
denotes the set of all (G, G′) ∈ G × G where G′ is derived from G via the
parallel application of the rules in m. A multiset m of rules will be called
a parallel rule, and for a set P ⊆ R, the set of all parallel rules over P is
denoted by P∗.

2. For a rule pair r = (r1, r2), SEM (r||m) denotes all ((G1, G2), (G
′
1, G

′
2)) ∈

(G × G) × (G × G) where G′
1 is derived from G1 by applying the multiset

obtained from adding r1 to m, and (G2, G
′
2) ∈ SEM (r2).

3.2 Control Conditions

It is often desirable to restrict the non-determinism of rule application. This can
be achieved with control conditions. Concretely, we use as control conditions

3 For G1, G2 ∈ G the intersection G1 ∩G2 yields the pair (V, E) where V = VG1
∩VG2

and E = EG1
∩EG2

. Moreover, we have (V1, E1) ⊆ (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2.
4 The morphism g may be non-injective.

Autonomous Units for Capacitated Vehicle Routing 231

regular expressions equipped with as long as possible and the parallel operator
||.

Definition 8 (Control conditions). Let ID be a set such that P ⊆ ID for
some set P of rule pairs. Then the class C(ID) of control conditions over ID is
inductively defined as follows.

1. {lambda} ∪ ID ∪ {x! | x ∈ P} ⊆ C(ID).
2. For c, c1, c2 ∈ C(ID), we have (c1 + c2), (c1 ; c2), (c

∗), (c1||c2) ∈ C(ID).

Remark. For practical applications, the set ID would consist of names refering
to rule pairs (or units) but for technical simplicity we do not distinguish between
rule pairs (units) and their names.

If ID consists only of rule pairs, a semantics of control conditions can be
defined in an intuitive way. Roughly speaking, the condition lambda applies no
rule. Every rule pair r is a control condition that prescribes one application of
r. The condition c1 + c2 stands for applying c1 or c2, c1 ; c2 means that c1 must
be applied before c2, c∗ applies c arbitrarily often, r! requires that the pair r
be applied as long as possible, and c1||c2 allows only transformations where c1

and c2 are applied in parallel. For example, the expression r1; r
∗
2 + r3! allows all

sequences in which r1 is applied before an arbitrarily often application of r2 or
in which r3 is applied whenever this is possible.5

As stated before, the application of a rule pair by an autonomous unit aut
is generally done in parallel with transformations of the common environment
executed by other autonomous units. Moreover, it may also happen that other
units perform actions before or after rule applications of aut . When defining the
semantics of control conditions the rules of other units are not known. Hence,
the semantics is loose, i.e., it is defined with respect to a setMR of parallel rules
called metarules. For modeling ant-based systems in a suitable way, we require
additionally that rules be applied as early as possible. This leads to proactive
transformation processes. In more detail, for a set P of rule pairs, every proactive
transformation process s specified by a control condition c ∈ C(P) must have
the following property: If in s an application of a rule pair r ∈ P is preceded
by a sequence of k mere metarule applications, the application of r cannot be
shifted to any of the k preceding steps. For defining a proactive semantics of
control conditions, i.e., a semantics that consists only of proactive transformation
processes, we also have to define proactive transformation processes in which no
metarules are applied after the last application of a rule in P . For example, for
i = 1, 2, let SEMMR(ri) be the proactive transformation processes specified by
the rule ri. In order to get all proactive transformation processes specified by
r1 ; r2, we cannot take the sequential composition of the processes in SEMMR(r1)
and SEMMR(r2), because of the following reason. Let s1 be a transformation
process in SEMMR(r1) in which some metarules are applied after r1. Let s2

be a transformation process in SEMMR(r2). Then the sequential composition

5 The operator ∗ has a stronger binding than ; which in turn has a stronger binding
than +.

232 Sabine Kuske, Melanie Luderer, Hauke Tönnies

s1 ◦ s2 is not proactive if r2 is applicable after the application of r1 in s1 but
before the end of s1 because in this case the application of r2 can be shifted to
an earlier step. Hence, before sequentially composing s1 and s2 we have to cut
all metarule applications from s1 that take place after the application of r1.

In the following, a proactive semantics of control conditions is defined for the
case where ID consists of rules, only. In Section 4 we show how this definition
can be employed for the more general case where ID contains units, too.

Definition 9 (Proactive semantics of control conditions). LetMR ⊆ R∗

be a set of parallel rules called metarules and let P ⊆ R̃. Then for each control
condition in C(P) its proactive semantics is defined as follows.

1. SEMMR(lambda) consists of all sequences (G0, . . . , Gn) of graph pairs such
that for i = 1, . . . , n, (Gi−1, Gi) ∈ SEM (m) for some m ∈ MR.6 Moreover,
we define CUT (SEMMR(lambda)) = G × G.

2. SEMMR(r) consists of all sequences s = (G0, . . . , Gn) for which there exist
some j ∈ {1, . . . , n} and m1, . . . , mn ∈ MR such that for i = 1, . . . , j − 1
and i = j + 1, . . . , n, (Gi−1, Gi) ∈ SEM (mi), (Gj−1, Gj) ∈ SEM (r||mj) and
for i = 0, . . . , j − 1, there is no G ∈ G × G such that (Gi, G) ∈ SEM (r||mi).
Moreover, we define cut(s) = true iff j = n and CUT (SEMMR(r)) = {s ∈
SEMMR(r) | cut(s) = true}.

3. SEMMR(c1 + c2) = SEMMR(c1) ∪ SEMMR(c2) and

CUT (SEMMR(c1 + c2)) = CUT (SEMMR(c1)) ∪ CUT (SEMMR(c2)).

4. SEMMR(c1 ; c2) = CUT (SEMMR(c1)) ◦ SEMMR(c2) and

CUT (SEMMR(c1 ; c2)) = CUT (SEMMR(c1)) ◦ CUT (SEMMR(c2)).
7

5. SEMMR(c∗) = SEMMR(lambda)∪CUT (SEMMR(c))∗◦SEMMR(c). More-
over, CUT (SEMMR(c∗)) = (CUT (SEMMR(c)))∗.

6. SEMMR(r!) = CUT (SEMMR(r∗)) ◦ {(G0, . . . , Gk) ∈ SEMMR(lambda) |

Gi ∈ red(r) for i = 1, . . . , k} where for (r1, r2) ∈ R̃, red(r1, r2) consists of all
(G1, G2) ∈ G×G such that r1 is not applicable to G1 or r2 is not applicable to
G2. Moreover, CUT (SEMMR(r!)) = {(G0, . . . , Gk) ∈ CUT (SEMMR(r∗)) |
Gk ∈ red(r)}.

7. SEMMR(c1||c2) = SEMMR∪Rules(c2)∗(c1) ∩ SEMMR∪Rules(c1)∗(c2) where
for i = 1, 2, Rules(ci) is the set of all rule pairs occurring in ci. Moreover,
CUT (SEMMR(c1||c2)) = SEMMR(c1||c2)∩(CUT (SEMMR∪Rules(c2)∗(c1))∪
CUT (SEMMR∪Rules(c1)∗(c2))).

Remark. In the above definition SEMMR(c) is the set of proactive transforma-
tion processes specified by c whereas CUT (SEMMR(c)) is needed for defining
the proactive semantics of control conditions involving sequential composition.

6 In this transformation, the second component of every graph pair remains un-
changed, because m is a multiset of single rules.

7 For sets of sequences S, S′, their sequential composition is denoted by S ◦ S′, and
S∗ is defined as

S

i∈N
Si with S0 = G × G and Si+1 = Si ◦ S.

Autonomous Units for Capacitated Vehicle Routing 233

3.3 Graph Class Expressions

In order to use graph transformation in a meaningful way, it should be possible to
specify initial and terminal graphs of graph transformation processes with graph
class expressions. In general, a graph class expression can be any expression that
specifies a set of graphs. In particular, the graph class expressions used in this
paper are the following.

Definition 10 (Graph class expressions). The class X of all graph class
expressions is defined as follows.

1. all , empty, red(P), (P, C) ∈ X with P ⊆ R and C ∈ C(P) where SEM (all) =
G, SEM (empty) = ∅, SEM (red(P)) consists of all graphs G to which no rule
of P can be applied, and SEM (P, C) consists of all graphs G for which there
is a sequence (G0, . . . , Gn) such that Gn = G, for i = 1, . . . , n (Gi−1, Gi) ∈
SEM (P) and (G0, . . . , Gn) ∈ SEM ∅(C).8

2. For I, T ∈ X , P ⊆ R, and C ∈ C, (I, P, C, T) ∈ X where SEM (I, P, C, T) =
SEM (P, C) ∩ (SEM (I)× SEM (T)).

One example of graph class expressions of the second type is complete =
(empty, {nodes, edges}, nodes∗; edges∗, red({edges})), where nodes and edges are
the rules in Fig. 2.

nodes: c −→
c∈A

c
id

edges: −→

Fig. 2. The rules nodes and edges

Given some alphabet A, the expression complete specifies all complete graphs
composed of round nodes in which every round node is additionally connected
to exactly one uniquely labeled boxed node via an id -edge. The labels of the
boxed nodes are taken from A. It is worth noting that the rule edges cannot
produce loops because we only use injective morphisms to choose a matching
of the left-hand side. In addition, we technically distinguish between round and
boxed nodes by using particularly labeled loops that indicate the respective node
type (round or boxed).

4 Communities of Autonomous Units

Every community is mainly composed of a set of autonomous units that act and
interact in a common environment (see e.g. [HKK09] where a sequential and a
parallel semantics of communities is introduced).

8 Control conditions can be used to define sequences of graphs (instead of sequences
of graph pairs) because, as stated before, rules can be regarded as rule pairs with
empty private component.

234 Sabine Kuske, Melanie Luderer, Hauke Tönnies

4.1 Autonomous Units

Autonomous units transform a common graph and have an additional private
graph where they can store private information. Since the rule set of an au-
tonomous unit can be very large, structuring concepts should be provided to
keep it manageable. Autonomous units allow to import auxiliary units and pro-
vide control conditions as well as graph class expressions. Auxiliary units differ
from autonomous units in the sense that they do not contain graph class expres-
sions. The graph class expressions of every autonomous unit are used to specify
the initial private states as well as the goal. The latter consists of a private goal
concerning the private state and a goal concerning the common environment
that the autonomous unit wants to reach.

Definition 11 (Autonomous units).

1. A unit of import depth 0 is a system unit = (I, U, P, C, g) where I ∈ X is

the initial private graph class expression, U = ∅ is the empty set, P ⊆ R̃ is
a set of rule pairs, C ∈ C(P ∪ U) is a control condition, and g ∈ X × X is
the goal.

2. A unit of import depth n+1 (n ∈ N) is a system unit = (I, U, P, C, g) where
U is a set of units of import depth at most n, and I, P , C, and g are defined
as in point 1.

3. (I, U, P, C, g) is an auxiliary unit if I = all , g = (all , all), and every u ∈ U
is an auxiliary unit.

4. (I, U, P, C, g) is an autonomous unit if every u ∈ U is an auxiliary unit. The
set of autonomous units is denoted by AUT

5. The components of unit are also denoted by Iunit , Uunit , Punit , Cunit , and
gunit , respectively.

Every unit can be converted into a flattened unit with import depth zero.
The rule set and the control condition of the flattened unit can be constructed
as follows.

Definition 12 (Flattening). For unit = (I, U, P, C, g) its flattened rule set
Rules(unit) and its flattened control condition flC (unit) is defined as follows.
If U = ∅, Rules(unit) = P and flC (unit) = C. If U 6= ∅, Rules(unit) = P ∪⋃

u∈U Rules(u) and flC (unit) = C[a] where a: U → C(R̃) is defined as a(u) =
flC (u).9

The parallel semantics of autonomous units consists of all transformation
sequences that start with a pair consisting of an initial private graph and an ar-
bitrary common environment and that are allowed by the flattened control con-
dition. Like for control conditions, we assume the existence of a set of metarules
specifying the common environment transformations that can be performed by
other units. If the transformation reaches the goal, it is called successful.

9 For a control condition c and a mapping a: U ∈ C, C[a] is obtained by replacing
every occurrence of u with a(u), for all u ∈ U .

Autonomous Units for Capacitated Vehicle Routing 235

Definition 13 (Parallel semantics). Let aut = (I, U, P, C, (g1, g2)) be an
autonomous unit, let MR ⊆ R∗, and let s = ((G0, G

′
0), . . . , (Gn, G′

n)) be a
sequence of graph pairs. Then s ∈ PARMR(aut) if G′

0 ∈ SEM (I) and s ∈
SEMMR(flC (aut)). Moreover, s is successful if (Gn, G′

n) ∈ SEM (g1)×SEM (g2).

Remark. In general, the transformation processes of autonomous units may also
be infinite which is appropiate to describe infinite processes and in particular
to investigate convergence behavior of ant-based systems. However, in this first
approach we consider only the finite case, but an extension to the infinite case
is straightforward (cf. [HKK09]).

A community consists of a set of autonomous units, a specification of all
possible initial environments, a global control condition, and an overall goal. In
the following, global control conditions are regular expressions equipped with
the parallel operator ||.

Definition 14 (Global control conditions). Let Aut ⊆ AUT . Then the set
of global control conditions GLC(Aut) is recursively defined as follows.

1. Aut ∪ {aut1|| · · · ||autk | aut i ∈ Aut , i = 1, . . . , k} ⊆ GLC(Aut)
2. For c, c1, c2 ∈ GLC(Aut), we have (c1 + c2), (c1 ; c2), (c∗) ∈ GLC(Aut).

Global control conditions specify sequences of states where every state con-
sists of a common environment plus a private state for every autonomous unit
in a community. Roughly speaking, the global control condition aut specifies all
transformation processes of aut where the private states of all other units are
not changed. The global control condition aut1|| · · · ||autk prescribes the parallel
running of aut1, . . . , autk. The semantics of the remaining control conditions are
defined as expected. In the following we define Aut -states and the semantics of
global control conditions.

Definition 15 (Aut-states and semantics of global control conditions).
For Aut ⊆ AUT , an Aut-state is a pair (G,map) where G ∈ G and map:Aut → G
is a mapping. The semantics of each global control condition in GLC(Aut) is
defined as follows.

1. SEMAut (aut) consists of all sequences ((G0, map0), . . . , (Gn, mapn)) of Aut-
states such that ((G0, map0(aut)), . . . , (Gn, mapn(aut))) ∈ SEM ∅(flC (aut)),
and for each aut ′ ∈ Aut − {aut}, map0(aut ′) = · · · = mapn(aut ′).

2. SEMAut (aut1|| · · · ||autk) consists of all ((G0, map0), . . . , (Gn, mapn)) such
that for i = 1, . . . , k,

((G0, map0(aut i)), . . . , (Gn, mapn(aut i))) ∈ SEMMR(auti)(flC (aut i)),

where MR(aut i) = (
⋃

aut∈{aut1,...,autk}−{auti}
Rules(aut))∗, and for each

aut ∈ Aut − {aut1, . . . , autk}, map0(aut) = · · · = mapn(aut).
3. SEMAut (c1 + c2) = SEMAut (c1) ∪ SEMAut (c2),
4. SEMAut (c1 ; c2) = SEMAut (c1) ◦ SEMAut (c2), and
5. SEMAut (c

∗) = SEMAut (c)
∗.

236 Sabine Kuske, Melanie Luderer, Hauke Tönnies

The components of communities are given in the following definition.

Definition 16 (Community). A community is a tuple (Init ,Aut,Cond ,Goal)
where Init ,Goal ∈ X , Aut ⊆ AUT , and Cond ∈ GLC(Aut).

The parallel semantics of a community consists of all state sequences that are
allowed by the global control condition and start with an initial state consisting of
an initial common environment and an initial private state for each autonomous
unit. The state sequences are successful if they reach the overall goal.

Definition 17 (Parallel community semantics). Let

COM = (Init ,Aut ,Cond ,Goal)

be a community. Then the parallel community semantics of COM , denoted by
PAR(COM) consists of all Aut-state sequences s = ((G0, map0), . . . , (Gn, mapn))
such that G0 ∈ SEM (Init), map0(aut) ∈ SEM (Iaut) (for each aut ∈ Aut), and
s ∈ SEMAut (Cond). Moreover, s is successful if Gn ∈ SEM (Goal).

5 An ACO Community for Solving the CVRP

In this section we present the components of the ACO community COM CV RP

for modeling the Capacitated Vehicle Routing Problem (CVRP) introduced in
Section 2. The initial environment specification of COM CV RP specifies the con-
struction graph of the problem; the set of autonomous units consists of the
autonomous units Ant1, . . . ,Antk (k ∈ N), and Evap&Select ; and the global
control condition Cond is equal to (Ant1|| . . . ||Antk||Evap&Select)∗. In our first
approach the overall goal is equal to all.

Roughly speaking, the community COMCV RP works as follows. The ant
units Ant1 . . .Antk model the ants, which in parallel traverse the graph according
to the savings heuristics introduced in Section 2 and the current pheromone
trails, and search for a solution for the CVRP. When all ants have finished
their search, the autonomous unit Evap&Select first carries out evaporation of
the current pheromone trails. After that it selects the w best solutions. Now
each ant which provides one of the best solutions leaves a pheromone trail on
its solution path according to the quality of the solution. All the units act in
parallel. To ensure the described order we use negative application conditions as
well as control conditions.

5.1 The Initial Environment

The underlying structure of the construction graph of the ACO system modeling
the CVRP is a complete graph with some additional information such as initial
pheromone concentration, distances, etc. Therefore the construction graph for
the CVRP can be defined by the graph class expression depicted in Fig. 3. It
uses as initial expression the graph class expression complete introduced in 3.3.

Autonomous Units for Capacitated Vehicle Routing 237

Construction graph
initial: complete
rules:

depot : −→ depot

cust : depot
dem

−→
x∈N xdem

init :
−→
d∈R

dist: d

τ : z

η:∞

save: dist:d

dist:d1 dist:d2

η:∞

depot

−→ dist:d

dist:d1 dist:d2

η: d1 + d2 − d

depot

conds: depot ; (cust + init + save)∗

goal: red({init, save, cust})

Fig. 3. The graph class expression Construction graph

Its rule depot selects the depot and has to be applied exactly once. The rule cust
adds a number representing the demand to every customer node, i.e., to every
node apart from the depot. The rule init labels every edge e of the initial graph
with a distance d and it inserts two edges between each two nodes of the graph,
one labeled with the heuristic value ∞ the other with an initial pheromone value
z. The rule save computes the heuristic value of every edge based on the savings
heuristics. The control condition requires that the depot is selected first. The
terminal graph class expression red({init, save, cust}) guarantees that the rules
cust, init, and save are applied as long as possible.

5.2 The Ant Units

In general, every ant builds a solution tour by traversing the common environ-
ment according to the current pheromone trails. It first selects its initial position.
Afterwards, it constructs a solution tour t. Then it puts some pheromone on t
if it is selected to do so. Every ant unit Antj uses the auxiliary units tourj , and
put pheroj . The control condition is equal to initial positionj ; tourj ; put pheroj

where initial position j is the rule depicted in Fig. 4. It puts the ant Antj to the
depot and generates its memory Mj where it stores the current load of the ve-
hicle represented by Antj (load), the capacity of the vehicle (cap), its current

238 Sabine Kuske, Melanie Luderer, Hauke Tönnies

location (sit) and the total length of the tours (len). This information is repre-
sented by edges labeled with the respective labels (load, cap, sit and len), which
are each attached to a node labeled with the corresponding value.

depot

c
id ∅ −→

depot

c
id

Aj

ant

c

depot

0Mj
len

sit
0

k

load

cap

Fig. 4. The rule initial positionj

The unit tour j is given in Fig. 5. The global and private parts of the unit’s
rules are depicted one below the other. With tourj the ant builds a solution tour
depending on probabilities for the next move to a feasible neighbour calculated
from the savings heuristics and the current pheromone trails. It contains the
auxiliary units feasible neighboursj and probj , and the rules move, return and
stop. The control condition requires to apply the unit feasible neighboursj first.
This unit is given is given in Fig. 6. It computes the feasible neighbours for an
ant unit Antj and stores them in the memory of the ant. Feasible neighbours
are customer-nodes that are not yet visited and whose demand still fits into the
vehicle. Every application of the only rule feas adds one feasible neighbour to
the memory. Moreover, it uses the auxiliary unit delete nonfeasible that removes
all neighbours from the memory that are connected via a feas-edge to Mj and
whose demand exceeds the remaining capacity of the vehicle.10 This is necessary
because after adding a feasible customer to a tour, the former feasible neighbours
may not fit into the vehicle anymore. For reasons of space limitations a drawing
of delete nonfeasible is omitted.

The unit probj is given in Fig. 7. It provides some of the values that are
needed by the unit tour j for computing the probability that a feasible neighbour
is chosen for a next move. This is done by summing up the pheromone and the
heuristic values of all feasible neighbours. The rule begin initializes these values
with 0. The rule sum must be applied as long as possible. For not counting a
feasible neighbour several times sum changes each label feas into ok. At the end
the unit relabel all privatej(ok,feas) is applied which undoes this relabeling, i.e.,
it changes all ok -edges into feas-edges. It is very simple and hence not depicted.

With the rule move the ant moves to a feasible neighbour with the probability
depicted under the arrow of the rule move in Fig. 5. Moreover, in the memory
the current load of the vehicle, the path followed so far, and the total length of
the tour are updated. With the rule return the ant returns to the depot if no
feasible neighbour is left and resets its current load to 0. Afterwards it starts
to construct a new subtour. Finally, when all nodes are visited, the rule stop

10 We assume that the demand of each customer fits into one vehicle.

Autonomous Units for Capacitated Vehicle Routing 239

tour j

uses: feasible neighboursj , probj

rules:

move:

global: c
Aj

l
dem

id
dist: d

τ :x

η: y

ant
c

Aj

l
dem

id
dist: d

τ :x

η: y ant
−→

x
α
·y

β

τα
·ηβ

private: Mj s

τ
η

m
load

len

sit

phervis

feas

c

Mj s + d

c

m + l
load

len

sit

return:

global:

c
Aj

id
dist:d

ant

depot

c Aj

id
dist: d ant

depot
−→

private: Mj slen

sit

c

feas

m
load

Mj s + d

c

len

sit

0
load

−→

stop:

Aj

ant

depot

Mj

feas

slen

m
load

−→
depot

Aj

ant

slen

Mj slen

0

load

conds: (feasible neighboursj ; (probj ; move + return))∗ ; feasible neighboursj ; stop

Fig. 5. The auxiliary unit tour j

is applied to reset the current load in the memory of the ant to 0. The rule
stop also it adds the information about the length of the found solution to the
common environment by inserting an edge labeled with len from the ant-node
Aj to a new node labeled with the length of the solution.

The unit put pheroj is depicted in Fig. 8. It works a little different for ants,
who should leave a pheromone trail and those who should not. Both kinds of ants
apply different rules, but the structure of rule applications is the same. In both

240 Sabine Kuske, Melanie Luderer, Hauke Tönnies

feasible neighbours j

uses: delete nonfeasible
rules:

feas:
c

l

id

dem

Aj

dist: d
ant Mj

c

i
m

cap load
−→

m+l≤k

c

l

id

Aj

dist: d
ant

dem

Mj

c

i
m

cap load

feas

conds: delete nonfeasible ; feas!

Fig. 6. The auxiliary unit feasible neighboursj

probj

uses: relabel all privatej

rules:

begin: ∅ Mj −→ ∅

0
0

Mj

phervis

sum:
c
id

Aj

τ :x

η: y

ant Mj

c

τ
η

feas

phervis

−→
c
id

Aj

τ : x

η: y

ant Mj

τ + x

c

pher

η + y

vis

ok

conds: begin ; sum! ; relabel all privatej(ok,feas)

Fig. 7. The auxiliary unit probj

cases the ant traverses the solution path stored in its memory and meanwhile
deletes it. (Because the path stored in the memory is shaped like a blossom with
the depot in the middle, first the ”petals” (subtours) are deleted and finally the
depot.) This behaviour is represented by the rules start a (resp. start b) and
put (resp. delete only) and the subexpression of the control condition ((start a
+ start b) ; (put ! + delete only!))∗. One application of a start -rule followed by
applications of the rule put (resp. delete only) as long as possible traverses one
subtour of the found tour beginning and ending at the depot. The rules delete
the traversed path from the memory (leaving the depot); put additionally leaves
a pheromone trail in the common environment with the value 1/s, where s is
the length of the solution tour. Afterwards the remaining subtours are traversed
until no further subtour is left in the memory. Then the respective stop-rule can
be applied, which deletes the ant Aj from the common environment, the depot
from the memory and resets the length of the traversed path to 0.

Autonomous Units for Capacitated Vehicle Routing 241

put pheroj

rules:

start a:

depot

c
id

Aj

put phero

τ : x

Mj s

a

depot

len

sit

c

−→

depot

c
id

Aj

put phero

τ : x + 1/s

Mj s

a

depot

len

sit
c

start b:
Aj

put phero

Mj

a

depot

sit

c

−→
Aj Mj

a

depot

sit
c

put : c
id

Aj

put phero

τ : x

Mj s

a

depot

len

sit

c

−→ c
id

Aj

put phero

τ : x + 1/s

Mj slen

sit
c

delete
only

:
Aj

put phero

Mj

a

depot

sit

c

−→
Aj Mj

sit
c

stop a:
Aj

put phero

Mj s

a

depot

len

sit
−→ ∅

Mj 0len

stop b:
Aj

put phero

Mj s

a

depot

len

sit
−→ ∅

Mj 0len

conds: ((start a + start b) ; (put ! + delete only !))∗ ; (stop a + stop b)

Fig. 8. The auxiliary unit put pheroj

242 Sabine Kuske, Melanie Luderer, Hauke Tönnies

5.3 The Unit Evap&Select

Evap&Select is given in Fig. 9. It is responsible for the evaporation of old
pheromone trails, for the selection of the w best solutions provided by the ants,
and for marking these w ants with a put phero-label.

Evap&Select
uses: relabel all global
rules:

check :

l1A1
len

.

.

.

Ak lklen

−→

l1A1
len

.

.

.

Ak lklen

select :
liAi

put phero

len

.

.

.

Aj ljlen

−→
lj > li

Ai

put phero

delete: liAi
len −→ Ai

conds: check ; relabel all global(τ : z,τ : (1 − ρ) ∗ z) ; selectw ; delete!

Fig. 9. The autonomous unit Evap&Select

With the rule check, which is applied only once, the unit checks whether all
ants have finished their search. This is the case if all ants have written the length
of the found solution into the common environment. With the help of the unit
relabel all global evaporation takes place by multiplying the pheromone value of
every pheromone edge in the common environment with (1−ρ), where ρ ∈ (0, 1]
is a pheromone decay parameter. After that, the rule select is applied w times
(in the control condition this is abbreviated by selectw). The rule select finds
the ant with the best solution, marks it with a label put phero, and deletes the
information about the length of the ant’s solution from the common environment.
Each further application of select finds the next best solution. When the w
best solutions are found, the rule delete is applied as long as possible to delete
the remaining nodes and edges displaying the information about the lengths of
the ants’ solutions. This rank-based approach could be extended by the elitist
strategy (see e.g. [DS04]). In this strategy the best solution so far is memorized
and when pheromone update takes place, this tour gets additional pheromone.

Autonomous Units for Capacitated Vehicle Routing 243

(In our modeling of the CVRP, we do not consider this strategy because of space
limitations.)

Remark. The presented modelization can be used to prove correctness properties
a few of which are informally described here.

– In every transformation sequence of tour j a solution is constructed, i.e., a
set of cycles of the construction graph is traversed by Antj and stored in
its memory such that the depot belongs to every cycle, and every customer
occurs exactly once in exactly one cycle.

– The unit put pheroj deletes the constructed solution from the memory of

Antj and increases the pheromone value of each edge in the solution by 1
s

where s is the length of the solution.
– The unit feasible neighbours stores all nodes in the memory of Antj that are

not visited, yet.
– Each execution of (Ant1|| . . . ||Antk||Evap&Select) models an iteration of the

corresponding ACO-Algorithm, i.e., (1) solution construction, (2) pheromone
update, and (3) evaporation.

6 Conclusion

In this paper, we have modeled an ACO algorithm for the Capacitated Vehicle
Routing Problem as a community of autonomous units. The autonomous behav-
ior of every ant has been modeled as an autonomous unit, and global features
of ACO algorithms such as the construction graph or the order in which so-
lution construction, pheromone update, and evaporation take place have been
modeled with global components of communities such as the initial environment
specification or the global control condition. Since all ACO algorithms basically
work according to the same underlying algorithm, we believe that they all can
be modeled as communities of autonomous units in a natural way.

For solving ACO algorithms in a proper way, we have extended the parallel
working autonomous units of [HKK09] by auxiliary units that allow to encapsu-
late auxiliary tasks in separate units and to manage large rule sets. We also have
added a separate state for every autonomous unit in order to represent memories
of ants. Furthermore, we have defined the syntax and a proactive semantics of a
concrete class of control conditions that is adequate for units running in parallel.
This class consists of regular expressions extended by a parallelism operator and
an operator that prescribes to apply a rule as long as possible. We have given
a construction that flattens the (hierarchical) import structure and the control
conditions of autonomous units so that the parallel semantics of [HKK09] could
be used for the extended units.

The modeling of ACO systems as communities of autonomous units has the
following advantages. (1) The specification of ants as autonomous units provides
the ants with a well-defined operational semantics. (2) The graph transformation
rules of autonomous units allow for a visual specification of ant behavior instead

244 Sabine Kuske, Melanie Luderer, Hauke Tönnies

of string-based pseudo code as it is often used in the literature. (3) The existing
graph transformation systems (cf. e.g. [ERT99,GK08]) facilitate the visual simu-
lation of ant colonies in a straightforward way (see also [Höl08]). (4) The formal
semantics of communities of autonomous units constitutes a basis for proving
correctness results by induction on the length of the transformation sequences or
for examining other characteristics (such as termination) by making use of the
wide theory of rule-based graph transformation (see [Roz97]). (5) Implementing
ACO algorithms with graph transformational systems is useful for verification
purposes, i.e., to check whether the algorithms behave properly for specific cases.

In the future, this and further case studies should be implemented with one
of the existing graph transformation systems so that (1) the emerging behav-
ior of ant colonies can be visually simulated, and (2) ACO algorithms can be
verified. For the implementation purpose we plan to use GrGen [GK08] because
it is one of the fastest and most flexible graph transformation systems. Further
case studies could take into account more advanced elitist strategies as well as
dynamic aspects (see e.g. [ES02,DS04,MGRV05,RDH04,RMLG07]). Another in-
teresting task is to investigate how communities of autonomous units can serve
as a modeling framework for swarm intelligence in general.

References

[CEH+97] Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Mon-
tanari, and Francesca Rossi. Algebraic approaches to graph transformation
part I: Basic concepts and double pushout approach. In Rozenberg [Roz97],
pages 163–245.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT-Press,
2004.

[ERT99] Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. The AGG-
approach: Language and environment. In Hartmut Ehrig, Gregor Engels,
Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools, pages 551–603. World Scientific, Singapore, 1999.

[ES02] Casper Joost Eyckelhof and Marko Snoek. Ant systems for a dynamic TSP
- ants caught in a traffic jam. In M. Dorigo, G. Caro Di, and M. Sam-
pels, editors, Ant Algorithms - Third International Workshop, ANTS 2002,
volume 2462 of Lecture notes in Computer Science, pages 88–98, 2002.

[GK08] Rubino Geiß and Moritz Kroll. GrGen.NET: A fast, expressive, and gen-
eral purpose graph rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf,
editors, Proc. 3rd Intl. Workshop on Applications of Graph Transformation
with Industrial Relevance (AGTIVE ’07), volume 5088 of Lecture Notes in
Computer Science, pages 568–569, 2008.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous
units to model interacting sequential and parallel processes. Fundamenta
Informaticae, 92(3):233–257, 2009.

[Höl08] Karsten Hölscher. Autonomous Units as a Rule-based Concept for the Mod-
eling of Autonomous and Cooperating Processes. Logos Verlag, 2008. PhD
thesis.

Autonomous Units for Capacitated Vehicle Routing 245

[KK07] Hans-Jörg Kreowski and Sabine Kuske. Autonomous units and their seman-
tics - the parallel case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent
Trends in Algebraic Development Techniques, 18th International Workshop,
WADT 2006, volume 4408 of Lecture Notes in Computer Science, pages 56–
73, 2007.

[KK08] Hans-Jörg Kreowski and Sabine Kuske. Communities of autonomous units
for pickup and delivery vehicle routing. In Andy Schürr, Manfred Nagl, and
Albert Zündorf, editors, Proc. 3rd Intl. Workshop on Applications of Graph
Transformation with Industrial Relevance (AGTIVE ’07), volume 5088 of
Lecture Notes in Computer Science, pages 281–296, 2008.

[MGRV05] Roberto Montemanni, Luca Maria Gambardella, Andrea Emilio Rizzoli,
and Alberto V.Donati. Ant colony system for a dynamic vehicle routing
problem. Journal of Combinatorial Optimization, 10(4):327–343, 2005.

[RDH04] Marc Reimann, Karl Doerner, and Richard F. Hartl. D-ants: Savings based
ants divide and conquer the vehicle routing problem. Computers & OR,
31(4):563–591, 2004.

[RMLG07] Andrea Emilio Rizzoli, Roberto Montemanni, Enzo Lucibello, and
Luca Maria Gambardella. Ant colony optimization for real-world vehicle
routing problems. Swarm Intelligence, 1(2):135–151, 2007.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997.

. .

Dr. Sabine Kuske

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
kuske@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜kuske

Sabine Kuske has been a member of Hans-Jörg’s team since November 1991. He
supervised her diploma and doctoral theses. Their common research interests
concern all aspects of graph transformation; in particular, they have been
working together on autonomous units.

. .

Melanie Luderer

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
melu@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜melu

Melanie Luderer is a doctoral student of the International Graduate School for
Dynamics in Logistics since 2006, and Hans-Jörg Kreowski is her supervisor.
He was also the supervisor for her diploma thesis.

. .

246 Sabine Kuske, Melanie Luderer, Hauke Tönnies

. .

Hauke Tönnies

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
hatoe@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜hatoe

Hauke Tönnies is a doctoral student supervised by Hans-Jörg Kreowski since
2008. He is supported by the Collaborative Research Centre 637: Autonomous
Cooperating Logistic Processes.

. .

