
Generation of Celtic Key Patterns

with Tree-based Collage Grammars

Renate Klempien-Hinrichs and Caroline von Totth

Abstract. Tree-based collage grammars are a syntactic device for mod-
elling visual languages. Celtic art provides such languages, which follow
precise rules of construction, for instance key patterns and knotwork.
In this paper, we study the syntactic generation of Celtic key patterns
using tree-based collage grammars. Moreover, we compare the regulation
mechanisms employed here in order to ensure that only consistent key
patterns are generated with those that were used in a previous study for
knotwork.

1 Modelling with collage grammars

Collage grammars are a device to generate sets of pictures in a syntactic manner
[HK91,HKT93,DK99]. They were developed by equipping hyperedge replace-
ment grammars with spatial information: nonterminals come with a location
and an extension in some Euclidean space, and the role of terminals is played by
collages, where a collage is a union of parts and a part is a set of points. Equiv-
alently, collage grammars may be seen as a combination of a tree grammar and
an algebra interpreting the generated trees as collages [Dre00,Dre06], so-called
tree-based collage grammars.

The initially proposed collage grammars were context-free. More powerful
grammar types include the table-driven (or T0L) grammars, where nonterminals
are replaced in parallel with rules from one of finitely many tables [KRS97]
(for T0L collage grammars see [DKK03]). The behaviour of a table-driven tree
grammar may be emulated by a regular tree grammar generating unary trees
as input for a top-down tree transducer; such a unary tree basically states the
sequence of the applied tables in the T0L grammar [Dre06, Lemma 2.5.7].

For any picture-generating mechanism, it is of particular interest to find out
whether a certain class of pictures can be generated. For table-driven collage
grammars, the case study in [DK00] (see also [Dre06, Sect. 3.5]) shows a way to
produce Celtic knotwork. The idea is to identify a small pattern that is repeated
in a tiling-like manner to form the whole design (see [Bai90,Slo95] for distinct
ways to divide a design).

In addition to knotwork, there are three other major design types in Celtic
art: key patterns, spirals, and interlacings with animal or human forms (see
[All93,Bai51] for overviews). Historically, the designs were drawn in medieval
manuscripts, carved on standing stones, or forged in precious metalwork.

In this paper, we present a case study modelling Celtic key patterns, some-
times also called maze patterns, by means of collage grammars. Where a Celtic
knot consists of continuous cords that interweave, key patterns have continuous

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 205–222, 2009.

206 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 1. Celtic designs: a knot (left) and a key pattern (right)

paths that follow straight lines, usually at 45◦ angles, and meet at crossings (see
Figure 1 for examples).

Methods for the construction of key patterns by hand, that may have been
used by the original Celtic artists, are described in [Bai90,Bai93,Mee02]; these
methods are mainly oriented at which straight long lines may be drawn. On the
other hand, small patterns or tiles may be identified that are repeated through-
out the whole design. For this, Sloss [Slo97] overlays a key pattern with a grid
whose axes run parallel to the pattern border, obtaining rectangles of various
sizes. In contrast (and more in line with [Bai93]), we propose to use triangles and
squares with a 45◦ slope as tiles. We then use tree-based collage grammars to
show how these tiles can be structurally combined to yield well-formed key pat-
terns. Moreover, we discuss the structural differences between knotwork [DK00]
and key patterns. All collage grammars for key patterns that we developed were
implemented using Frank Drewes’ system Treebag [Dre06, Sect. 8].

The paper is organised as follows: In Section 2, basic notions of tree-based
collage grammars are recalled. Section 3 contains a structural analysis of basic
key patterns and a description of the collage grammar that we used to gener-
ate them. In Section 4, variations of the first model are proposed. The paper
concludes with a brief summary and ideas for various lines of future research.

2 Tree-based collage grammars

The basic notions for tree-based collage grammars collected in this section follow
presentations given in [DKL03,DEKK03,Dre06]. Please consult these, [Dre06] in
particular, for more detail, including examples.

Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers, and [n] = {1, . . . , n}
for n ∈ N. Moreover, R denotes the set of real numbers, and R

2 the Euclidean
plane, which contains points (x, y) ∈ R

2.

We will use expressions to represent collages and call such an expression a
term (or tree) over a certain signature. In general, a signature is a finite set Σ of
symbols, each symbol f ∈ Σ being assigned a unique rank rankΣ(f) ∈ N. The
set TΣ of terms over Σ is the smallest set such that for n ∈ N, f [t1, . . . , tn] ∈ TΣ

for all f ∈ Σ with rankΣ(f) = n and all t1, . . . , tn ∈ TΣ. For n = 0, we may
omit the parentheses in f [], writing just f instead.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 207

It is now possible to define collages and the relationship between collages
and terms in TΣ formally. A part p ⊆ R

2 is a bounded subset of the Euclidean
plane; intuitively, p is a set of black points. A collage C is a finite set of parts,
and the set of all collages is denoted by C. Transformations f : R

2 → R
2 on R

2

are canonically extended from points to parts and collages, i.e., f(p) = {f(x, y) |
(x, y) ∈ p} for a part p, and f(C) = {f(p) | p ∈ C} for a collage C. For affine
transformations f1, . . . , fn on R

2, 〈〈f1 · · · fn〉〉 denotes the operation f : Cn → C
given by f(C1, . . . , Cn) =

⋃

i∈[n]

fi(Ci) for all C1, . . . , Cn ∈ C. A collage operation

is either an operation of the form 〈〈f1 · · · fn〉〉 for affine transformations f1, . . . , fn

(n ≥ 1) or a constant collage, viewed as an operation of arity 0. A collage

signature is a finite signature Σ consisting of collage operations, where ranks
coincide with arities. For a term t ∈ TΣ, its value is val(t), i.e., the collage
val(t) = f(val(t1), . . . , val(tn)) if t = f [t1, . . . , tn].

By such an interpretation of ranked symbols as collage operations, appropri-
ate grammatical devices for generating sets of terms allow us to generate sets
of collages. Among such devices, we consider the regular tree grammar and the
top-down tree transducer, and we call the combination of a tree generator and
a collage algebra a tree-based collage grammar. Since we deal exclusively with
tree-based collage grammars in this paper, in the following we will refer to them
simply as collage grammars.

A regular tree grammar works analogously to a regular string grammar,
but by replacing nonterminals in terms and having nonterminals occur only
without subterms. Formally, a regular tree grammar is a system G = (N, Σ, P, S)
consisting of

– a finite set N of nonterminals, which are considered to be symbols of rank
0,

– a signature Σ disjoint with N ,

– a finite set P ⊆ N × TΣ∪N of productions, and

– an initial nonterminal S ∈ N .

A term t ∈ TΣ∪N directly derives a term t′ ∈ TΣ∪N , denoted by t −→P t′, if
there is a production A ::= s in P such that t′ is obtained from t by replacing
an occurrence of A in t with s. The language generated by G is L(G) = {t ∈
TΣ | S −→∗

P t}, where −→∗

P denotes the reflexive and transitive closure of −→P ;
such a language is called a regular tree language.

A tree transducer transforms some input tree into an output tree by travers-
ing the input tree symbol by symbol, possibly storing some information in
one of finitely many states. Formally, a top-down tree transducer is a system
td = (Σ, Σ′, Γ, R, γ0) consisting of

– finite input and output signatures Σ and Σ′,

– a finite signature Γ of states of rank 1, where Γ ∩ (Σ ∪ Σ′) = ∅,
– a finite set R of rules, and

– an initial state γ0 ∈ Γ .

208 Renate Klempien-Hinrichs, Caroline von Totth

Each rule in R has the form

γ[f [x1, . . . , xn]] → t[[γ1[xi1], . . . , γm[xim
]]],

where γ, γ1, . . . , γm ∈ Γ are states, n is the rank of symbol f ∈ Σ and x1, . . . , xn

are pairwise distinct variables (of rank 0 and not occurring in Σ ∪Σ′ ∪ Γ); and
t is a term with symbols from Σ′ and m ∈ N subterms of the form γj [xij

] with
ij ∈ [n], i.e., xij

∈ {x1, . . . , xn}.
There is a computation step of td from a term s to a term s′, denoted by

s ⇒R s′, if R contains a rule γ[f [x1, . . . , xn]] → t[[γ1[xi1], . . . , γm[xim
]]], s has

a subterm of the form γ[f [t1, . . . , tn]], and replacing this subterm in s with
t[[γ1[ti1], . . . , γm[tim

]]] (which is formed as in the rule, but with corresponding
subtrees ti1 , . . . , tim

from s instead of variables xi1 , . . . , xim
) yields s′. The tree

transformation computed by td is given by td(s) = {s′ ∈ TΣ′ | γ0[s] ⇒∗

R s′} for
every tree s ∈ TΣ , where ⇒∗

R denotes the reflexive and transitive closure of ⇒R.

3 The structure of Celtic key patterns

In this section, we show a way to structure Celtic key patterns so that they can
be easily generated by collage grammars. We first identify a small set of tiles –
the constant collages – that allows us to put together a whole pattern, and then
describe the syntactic synthesis.

Following [Bai93], a typical key pattern will often be a coherent composition
of isosceles right-angled triangles to which a border line needs to be added, see
Figure 2 left.

Moreover, note that the smooth borders must be produced by triangle hy-
potenuses. In particular, the top and bottom border triangles have horizontal
hypotenuses, whereas the hypotenuses of all other triangles are vertical. This

Fig. 2. Division of a key pattern into triangles (left) and squares (right)

Generation of Celtic Key Patterns with Tree-based Collage Grammars 209

sq d1 d2 d′

1 d′

2

Fig. 3. The set of basic tiles

suggests a division into square tiles as indicated in Figure 2 right, which also
takes care of drawing the border lines. The resulting set of basic tiles (modulo
reflections and 90◦ rotations) is shown in Figure 3. At first glance, the last two
of the five tiles appear to be identical to the preceding two. There are, however,
subtle differences, for two reasons. First, key patterns have two different types
of corners since a corner is obtained by so-called mitring, which means reflecting
a basic triangle at one of its shorter sides; compare, e.g., the two right corners
of a pattern in Figure 2. Secondly, a line always comes with a thickness, and
where a hand-drawn line lies on the connecting sides of two tiles, then each of
the graphic tiles gets a line of half the thickness. Thus, the two middle tiles d1

and d2 in Figure 3 have a short line at a 135◦ angle that is not present in the
last two tiles, and in tile d′1 the left corner of its left black triangle is pointed.

Now let us come to the syntactic arrangement of these tiles in a rectangular
key pattern. The task is to overlay the pattern with a tree whose interpretation
through collage operations yields the pattern. In order to find the tree, we reuse
the idea from [DK00] for rectangular knotwork, namely to develop the pattern
from its centre. One can immediately observe from Figure 2 that the left half
of the pattern may be obtained from the right half by a rotation of 180◦ about
the centre. The right half in turn may be seen as having a horizontal backbone
through the centre, where each vertical line of square tiles above the backbone
may be obtained from the same line below the backbone by a rotation of 180◦

about the crossing point of the vertical line with the backbone. (The border,
however, will need special treatment, which we will discuss at the end of the
section.) Thus, we can concentrate on the lower right section as sketched in
Figure 4 to get an idea of the required collage signature.

As proposed earlier, the figure displays a portion of the tree for the key
pattern in Figure 2 overlaying the pattern structure. The constant symbols sq,
d1 and d2 refer to the tiles given in Figure 3; their placement results from the
operations above them in the tree and reflects the layout of the tiles in the
pattern. Constants r1 and r2 result from mitring d1 and d2, respectively, as
described above. Constant sqm results also from a reflection of sq, but this time
in the vertical (or, equivalently, horizontal) axis through the middle of the tile.
This reflection is necessary because two adjoining tiles need to agree in the path
linking them (this is unlike the knotwork tiles considered in [DK00], where the
cord always leaves through the centre of a tile side).

210 Renate Klempien-Hinrichs, Caroline von Totth

a1

sq

...

a2

mv

sq

d2

...

b1

mv

sqm

d1

...

b2

sq

mv

sq

d2

...

b1

mv

sqm

d1

...

b2

r1

mv

r1

d2

...

b1

mv

r2

r2

Fig. 4. A sketch of a tree over collage operations that generates the lower right section
of the key pattern in Figure 2

The operations work as follows. For all collages C1, C2, C3, C4:

– mv(C1, C2) puts C1 at the current position (meaning the affine transfor-
mation applied to C1 is the identity), and translates C2 downward for the
diagonal length of a tile;

– b1(C2, C3, C4) moves C2 half this length downward, C3 half the length to the
right, and C4 half the length downward followed by a rotation of 180◦ about
its current position;

– b2(C1, C2, C3, C4) behaves as b1, but has in addition collage C1 which is put
at the current position;

– a2(C1, C2) moves C1 one diagonal length downward and C2 half the length
to the right; and

– a1(C1, C2, C3) puts C1 and C2 both at the current position and rotates C3

by 180◦ about that position.

Now these operations have to be organised in order to yield well-formed key
patterns. Let us first take a look at a successful generation process, like the one
shown in Figure 5, where pictorial representations of terms are given for easier
understanding. Starting from some initial item, the idea is to specify the width
of the pattern before the height.

In order to get uniform growth both horizontally and vertically, some regu-
lation mechanism has to be employed. For this, we use a regular tree grammar
producing unary terms over the symbols w1, w2, h1 of rank 1 and h2, wh2 of rank
0 such that the terms without parentheses belong to the string language of the
regular expression w∗

1(w2h1h
∗

1h2|wh2). Symbols wi specify the width and sym-
bols hj the height of the pattern, symbols x1 (i.e., symbols with the index 1) the

Generation of Celtic Key Patterns with Tree-based Collage Grammars 211

⇓

⇓∗

⇓∗

⇓∗

Fig. 5. Typical derivation sequence for a key pattern

212 Renate Klempien-Hinrichs, Caroline von Totth

::=

Fig. 6. Transducer rules to start a computation from the initial state

internal growth and symbols y2 the border construction, with symbol wh2 for
the special case that no vertical growth is to take place. These control terms are
then used as input for a top-down tree transducer that consumes in each step the
first symbol of the term and copies the rest of the term identically to all newly
introduced states. The rules of the transducer are shown in Figures 6–10, in the
same pictorial representation as above, and with grey squares representing the
named transducer states.

::=

Fig. 7. Transducer rules to grow a design horizontally

– State S is the initial state and may encounter symbols w1, w2, wh2 (Figure 6).
As the centre of a key pattern may either lie inside a tile sq or inbetween two
such tiles, there are two options for processing each of the three symbols,
making the transducer nondeterministic. The right-hand-sides in the first
row of Figure 6 are created when w1 is consumed by S. The next two right-
hand-sides result when state S encounters immediately symbol w2, i.e., when
no horizontal growth takes place. In this case, state OM is introduced to work
analogously to state O by producing tiles sqm, but producing tile d′1 instead

Generation of Celtic Key Patterns with Tree-based Collage Grammars 213

::=

::= ::=

Fig. 8. Transducer rules to grow a design vertically

of d1 for the top and bottom border (Figure 8 on the right). We leave it to
the interested reader to find out why nevertheless the key pattern shown in
Figure 1 cannot be generated by the resulting set of transducer rules, and
how to remedy the problem.

– State R executes horizontal growth and may encounter symbols w1, w2, wh2

(Figure 7). The first right-hand-side is the result of processing w1, the second
results from consuming w2, and the last from consuming wh2, respectively.

– State E ignores symbols wi (i.e., it consumes them and proceeds to their
subtree without any further action) and produces the even-numbered vertical
lines using tile sq; analogously, state O produces the odd-numbered vertical
lines using tile sqm. Finally, state OM behaves nearly the same as O, with
the difference that it places tile d′1 instead of d1 for the border (Figure 8).

– States D2 and D3 encounter only symbols hi, from which they grow the lower
half of the right border (and the upper half of the left border).

::= ::=

Fig. 9. Transducer rules to grow the vertical borders

::= ::=

::= ::=

Fig. 10. Transducer rules to produce the second type of corner

214 Renate Klempien-Hinrichs, Caroline von Totth

– The upper half of the right border (and the lower half of the left border)
is grown through states U1, U2 and U3 from symbols hi (Figure 10). These
states produce the alternative corner with tiles d′1 and d′2 as follows: As may
be seen in Figure 5, state U2 is one step behind the other two states, with the
retardation provided by state X on the first occurrence of symbol h1. This
is because U2 has to produce (a rotation of) tile d1 while reading symbol
h1, but on encountering h2, i.e., for the corner, it has to be tile d′1 instead,
which is suitably combined with tile d′2.

Reconsidering the complete model, one may ask why one should start growing
key patterns from their centre, and not rather from the centre of one of their
sides, or indeed a corner. These are, in fact, viable and sometimes even preferable
alternatives. The question will be discussed with the variations of key patterns
studied in the next section.

4 Variations of Celtic key patterns

In Celtic key patterns, both the basic tiles and their structural arrangements
offer many possiblities for distinctive designs. A small collection of alternatives
is presented in this section.

The considerations of the preceding section started with identifying a ba-
sic triangle tile in a complete key pattern. In the original Celtic artwork, many
variations of this first, very typical, triangle may be found. A small collection of
triangles is shown in the first row of Figure 11. Note that in all triangles, the

Fig. 11. Various basic triangles, smallest corresponding key patterns, and derived
square tiles for larger key patterns

path enters at the same position close to the right angle, continues along the
hypotenuse with half the original width, and leaves again at the acute angle op-
posite of the entrance. Any triangle complying with these geometric constraints
can be used instead of the basic triangle of the previous section to produce a

Generation of Celtic Key Patterns with Tree-based Collage Grammars 215

well-formed pattern with continuous paths. The smallest such patterns, consist-
ing entirely of border triangles, are shown in the second row of the figure. In order
to grow larger patterns with the method of the preceding section, one needs to
compose a triangle with its 180◦ rotation about the centre of the hypotenuse to
form a square tile. The derived square tiles are shown in the last two rows of
Figure 11: The third row contains the squares with vertical centre path (as used
in the preceding section), and the fourth row the squares with horizontal centre
path, obtained from the upper squares by a 90◦ rotation. A small selection of
key patterns using these squares is shown in Figure 12.

Fig. 12. Key patterns based uniformly on a triangle

The geometric constraints for triangles imply similar constraints for squares:
A path enters at a fixed position on each side of a square, and the paths within
a square are connected in some way. In Celtic art, many such squares have been
used (see Figure 13 for a small sample). Since these squares cannot be divided
satisfyingly into triangles, they have to be combined with border triangles so
that full key patterns may be generated. Some samples are shown in Figure 14.

One can also combine more than one square type in a key pattern. To avoid
disorderly arrangements, suitable syntactic rules may be employed. One such
rule is to distinguish between constants sq and sqm (rather than having sqm as
a reflection of sq) and thus admit interpretations by different squares; the key
patterns in Figure 15 are of this kind. This rule may be refined by requiring

216 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 13. Sample collection of square tiles

Fig. 14. Key patterns based on a square with a triangle border

Generation of Celtic Key Patterns with Tree-based Collage Grammars 217

that two distinct squares be used alternately to interpret sq, which leads to key
patterns as shown in Figure 16.

Fig. 15. Key patterns where sq and sqm are interpreted differently

Further distribution rules for different squares in a key pattern include:

– Using different squares for the lower half and the upper half; this may be im-
plemented in our model by doubling the states of the transducer so that the
two halves may be treated independently, but to the same vertical extension
as given by the input term.

– Using different squares for each row of squares, but having the choice for the
upper half reflected in the lower half; this may be implemented in the input
term of the transducer by replacing the symbols h1 with references to the
squares that shall be used.

– Finally, one may use branching synchronization to achieve a more general
symmetric distribution of synchronized squares. The method used to gener-
ate breaklines within the rectangular Celtic knot designs in [Dre06] is well-
suited for this. A nesting depth of 2 for the resulting branching collage gram-
mar is sufficient to ensure that the overall design maintains horizontal and
vertical symmetry even though blocks of different squares may alternate in
a nondeterministic fashion.

Coming back to the question at the end of Section 3, the two rules above are
good reasons to start the growth of a key pattern from the centre at least of the

218 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 16. Key patterns where sq is interpreted alternately by two distinct squares

vertical direction. A further reason lies in the last four tiles shown in Figure 13,
i.e., the dead-end spiral, the only type of tile given in that figure that does not
have (at least) 180◦ rotational symmetry. Our model admits rotation of this tile
between the lower and the upper half of a key pattern; see, e.g., the last pattern
in Figure 15. If, however, it is desired that all occurrences of this tile have the
same orientation, then it is preferable to start vertical growth from the top (or
the bottom) of the pattern.

5 Conclusion

In this paper we have shown how rectangular key patterns with interior and
border variations can be modelled using tree-based collage grammars to interpret
the generated terms. All considered key pattern variations are covered by a class
of tree generators that combine a regular tree grammar for unary terms with a
top-down tree transducer.

The model for rectangular knotwork as proposed in [DK00,Dre06] is also
based on square tiles, but uses branching tree grammars to encode a horizon-
tally and vertically symmetric distribution of so-called breaklines over a knot.
Consequently, the syntactic structure of rectangular knotwork with breaklines
may be assumed to be one level more complex than the structure of rectangular
key patterns with regular distribution of tiles.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 219

For both knotwork and key patterns, it is interesting to study how evenly
placed holes of varying sizes and shapes can be added to the base pattern. These
holes can either be left plain, or they can be filled with any type of Celtic tiling.
The designs so produced are called carpet-page designs. We note that for an
authentic look, the holes will have to be distributed in a symmetric fashion
across the expanse of the base design.

While the basic shape of such a hole is rectangular, in Celtic art holes also
come in L, cross or crosslet shapes. The boundary of the hole itself needs to be
sealed off with specific border tiles. Of course, holes need not be restricted to the
interior of the key pattern boundary, but may also lie directly on it, breaking
up the rectangular border. If these border cutouts are regularly distributed as
well, the resulting key pattern designs display a multitude of interesting shapes,
of which the cross is the most basic.

In [DK00,Dre06], a way to include such holes is proposed for square knotwork
panels that are grown diagonally from the centre to the corners and thus come
with a natural vertical/horizontal synchronisation. It would be nice to have a
generalised method that works for rectangular patterns (and therefore needs
additional synchronisation), in any kind of tiling with defined border tiles.

In Celtic art, it is often customary to fill such holes with some contrasting
decorative pattern. This presents a modelling problem, since whatever pattern is
created may not grow beyond the boundaries of the hole, and collage grammars
do not offer context-sensitive queries. No matter whether the new pattern is
created by subdivision or growth, information about the shape and size of the
hole is required in order to create a correct pattern with a border that seamlessly
joins the boundary of its parent hole. Then, a formalism is required that can deal
with the multitude of possible shapes and sizes and create matching patterns.
Additionally, some synchronisation between the scale of the tiles in the base
panel – which inform the dimensions of possible holes – and the scale of hole-
filling tiles must take place.

The creation of round key pattern (or knotwork) panels with a circular tesse-
lation pattern calls for another type of construction method altogether. Collage
grammars as they are used here rely on local replacement, which cannot be used
to recompute the scaling and placement operations necessary to evenly place tiles
along a growing circle. A suitable construction method for circular tesselation
patterns might also shed some light on how to generate Celtic spiral patterns. It
may be interesting to note that in [Dre06], a method is suggested for generating
a tiling of concentric rings of triangles, and from there spiral tilings, including
the Frazer spiral. This which might work for circular Celtic patterns, as the basic
idea is growing concentric rings of tiles outward from an inner circle which is
subdivided in a fan-like arrangement of triangles. This process, however, cannot
generate a truly circular outer border by subdivision.

In the illuminated pages of Celtic manuscripts, key patterns come with colour.
Often, this just entails giving a different colour to the paths than to the back-
ground, which can be achieved just like having white paths on a black back-
ground. Just as often, however, a sophisticated colouring scheme is used based

220 Renate Klempien-Hinrichs, Caroline von Totth

on colour blocks in rectangular or lozenge shapes. How to add colour to key pat-
terns in such a way is an open problem, though colour operations as presented in
[Dre06] might allow simulating at least a simplified version of the original Celtic
colour schemes.

Finally, there are two classes of Celtic key patterns for which we have not
yet devised a collage grammar-based generation technique. The first class uses
squares tiles that are obtained from basic triangles by reflection at the hy-
potenuse. Consequently, these tiles do not have rotational symmetry with respect
to path entry points at their sides, so that they have to be arranged differently
to form entire patterns. The second class uses hook-like squares such as the four
last squares in Figure 13, but some of the path entries may be sealed off. The
reason for this can be seen in Figure 17: There are many long straight black lines
that do not finish off by properly meeting with other black lines at each end. Of
course, lengthening these lines at their ends requires the two neighbouring tiles
which form the line end to agree. Moreover, the orientation of the tiles in hook
patterns is not so uniform as in the key patterns considered in this paper. Next
steps for future work may include writing collage grammars for these classes of
key patterns, too.

Fig. 17. Pseudo hook pattern

References

[All93] J. Romilly Allen. Celtic Art in Pagan and Christian Times. Bracken Books,
London, 1993.

[Bai51] George Bain. Celtic Art. The Methods of Construction. Constable, London,
1951.

[Bai90] Iain Bain. Celtic Knotwork. Constable, London, 1990.

[Bai93] Iain Bain. Celtic Key Patterns. Constable, London, 1993.

[DEKK03] Frank Drewes, Sigrid Ewert, Renate Klempien-Hinrichs, and Hans-Jörg
Kreowski. Computing raster images from grid picture grammars. Jour-

nal of Automata, Languages and Combinatorics, 8(3):499–519, 2003.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 221

[DK99] Frank Drewes and Hans-Jörg Kreowski. Picture generation by collage gram-
mars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, edi-
tors, Handbook of Graph Grammars and Computing by Graph Transforma-

tion, Vol. 2: Applications, Languages, and Tools, chapter 11, pages 397–457.
World Scientific, 1999.

[DK00] Frank Drewes and Renate Klempien-Hinrichs. Picking knots from trees –
the syntactic structure of celtic knotwork. In Proc. 1st Intl. Conference on

Theory and Application of Diagrams 2000, volume 1889 of Lecture Notes in

Artificial Intelligence, pages 89–104. Springer, 2000.
[DKK03] Frank Drewes, Renate Klempien-Hinrichs, and Hans-Jörg Kreowski. Table-

driven and context-sensitive collage languages. Journal of Automata, Lan-

guages and Combinatorics, 8(1):5–24, 2003.
[DKL03] Frank Drewes, Hans-Jörg Kreowski, and Denis Lapoire. Criteria to dis-

prove context freeness of collage languages. Theoretical Computer Science,
290:1445–1458, 2003.

[Dre00] Frank Drewes. Tree-based picture generation. Theoretical Computer Sci-

ence, 246:1–51, 2000.
[Dre06] Frank Drewes. Grammatical Picture Generation – A Tree-Based Approach.

Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.
[HK91] Annegret Habel and Hans-Jörg Kreowski. Collage grammars. In H. Ehrig,

H.-J. Kreowski, and G. Rozenberg, editors, Proc. 4th Intl. Workshop on

Graph Grammars and Their Application to Computer Science, volume 532
of Lecture Notes in Computer Science, pages 411–429, 1991.

[HKT93] Annegret Habel, Hans-Jörg Kreowski, and Stefan Taubenberger. Collages
and patterns generated by hyperedge replacement. Languages of Design,
1:125–145, 1993.

[KRS97] Lila Kari, Grzegorz Rozenberg, and Arto Salomaa. L systems. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages. Vol. I: Word,

Language, Grammar, chapter 5, pages 253–328. Springer, 1997.
[Mee02] Aidan Meehan. Maze Patterns. Thames & Hudson, London, 2002.
[Slo95] Andy Sloss. How to Draw Celtic Knotwork: A Practical Handbook. Bland-

ford Press, 1995.
[Slo97] Andy Sloss. How to Draw Celtic Key Patterns: A Practical Handbook.

Blandford Press, 1997.

. .

Dr. Renate Klempien-Hinrichs

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
rena@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜rena

Renate Klempien-Hinrichs was a member of Hans-Jörg Kreowski’s team from
1993 to 2009. In 2000, she received her doctoral degree from the University of
Bremen under Hans-Jörg’s supervision.

. .

222 Renate Klempien-Hinrichs, Caroline von Totth

. .

Caroline von Totth

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
caro@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜caro

Hans-Jörg Kreowski supervised Caroline von Totth’s diploma thesis. Since
2004, she is a member of his group, working on her doctoral thesis, again
under his supervision.

. .

