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Abstract. This short paper explores the potential of embedding-based
graph rewriting as a tool for understanding natural computing, and in
particular self-assembly. The basic point of view is that aggregation steps
in self-assembly can be adequately described by graph rewriting steps in
an embedding-based graph transformation system: the building blocks of
an assembly correspond to occurrences of rewriting rules, and hence as-
semblies correspond to graph processes. However, meaningful algorithms
do not consist only of aggregation steps, but also of global steps in which
assemblies are modified. A theoretical algorithm is presented in which
the two kinds of steps are combined: on the one hand aggregation steps
that build assemblies, and on the other hand global steps which act on
the assemblies.

1 Introduction

The study of self-assembly has been an interesting and promising part of the fas-
cinating area of natural computing for several years
[WLWS98,KR08,Cas06]. The phenomenon is an important aspect of biologi-
cal systems [ETP+04] and has potential applications in nanotechnology, chem-
istry and material sciences [GJC91]. The basic idea is that components such as
molecules or proteins aggregate to form assemblies that have interesting emerg-
ing properties which are not present in the original components. It is obviously
important to control this aggregation process, i.e. we want to be able to de-
sign the building blocks in such a way that certain a priori known structures
emerge as a result of spontaneous aggregation. These structures may in their
turn interact in a meaningful way with other components.

The basic step in an assembly process is sketched in Figure 1: two components
(left) aggregate to form an assembly (right). It is assumed that this happens
because there is a particular relationship between their surface structures: these
contain active parts (bold segments) that spontaneously stick together; one may
think of atoms or molecules that form bonds between them, like in the case of
Watson-Crick complementarity. Components will be called assemblies whenever
we want to stress that they are built by self-assembly.

The use of graph rewriting [EKMR97,EEPT] as a tool for studying natural
computing and self-assembly has been explored before [HLP08,KGL04]. However
there are a lot of possible directions to follow because of the variety of processes
that need to be described as well as the variety of graph rewriting mechanisms.
The aim of this paper is to explore, in a very preliminary and perhaps naive way,
how the work on graph rewriting with embedding and the corresponding theory
of graph processes from, e.g., [VJ02] can be used in this context. It turns out
that components, surface structure and assemblies correspond to rules, graphs
and graph processes, respectively.
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Fig. 1. Aggregation

The fact that both the surface structure and the assemblies are described
within the same formal framework enables one to switch between the graph/surface
structure and the process/assembly view: the former allows one to describe the
aggregation steps (combination of various assemblies based on their surface struc-
ture) whereas the latter allows one to describe global steps, caused by external
manipulation (heating, extraction, ...). The first kind of step occurs when a large
amount of simple building blocks (molecules) is put into a solution and allowed
to form assemblies; the latter kind happens in response to other manipulations
acting in a uniform way on the assemblies as a whole (e.g. partially breaking
them down). We present an algorithm in which the two kinds of steps are com-
bined; it (theoretically, at least) allows one to recognize the difference between
two solutions, a ”pure” one and one that is contaminated with one or more extra
(but unknown) components, by building assemblies that encode the contaminat-
ing components (but only those). These assemblies can then be extracted and
used to mark the contaminating components, so that they can be removed from
the contaminated solution.

In Section 2 the basic assumptions underlying this work are given, and the
relationship is discussed between components, surface structure and assemblies
on the one hand and rules, graphs and graph processes on the other hand.
The example algorithm is presented in Section 3 and the paper ends by a brief
discussion section.

2 Components, rules and processes

In this section the basic assumptions of the approach are given, and the necessary
elements of graph rewriting, embedding mechanism and processes are briefly
sketched. A formal treatment can be found in, e.g., [VJ02].

2.1 Basic assumptions

A graph transformation system consist essentially of a set of rules that describe
local changes applied to graphs. Traditionally, a rule has a left-hand side and a
right-hand side, which are both also graphs. A rule is applied to a graph g by
matching its left-hand side with a subgraph of g. That subgraph is then removed
and replaced by the right-hand side. In the approach used in this paper the rules
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are equipped with additional information, called ”embedding mechanism”, which
is used to determine the edges of the resulting graph.

The way graph rewriting is related to aggregation is the following. Consider
an assembly step, like the one depicted in the upper part of Figure 2: an existing
assembly (top) gets larger by aggregating with a building block (bottom). The
surface structure of the former is represented by a graph g1 with nodes a, b, c, d, e.
The aggregation leads to a larger assembly with a modified surface structure,
represented by a graph g2 with nodes c, d, e, f, g, h. Thus the effect of adding the
new building block on the surface structures is that g1 is changed into g2, in a
way that can be captured by graph rewriting: the building block is viewed as
a graph rewriting rule and the aggregation step corresponds to its application,
removing the nodes a, b and replacing them by f, g, h. Evidently one also has to
deal with the edges, which represent relationships between surface elements. We
come back to this in subsection 2.2. The approach entails the following three
assumptions concerning aggregation.
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Fig. 2. Aggregation and graph transformation

The first working hypothesis is that the surface structure of components,
which governs the way in which they aggregate, can be adequately described
as a labeled graph. The nodes represent atoms, molecules, ... that are present
at specific locations on the surface, the node labels distinguish between various
kinds of such surface elements, and the edges describe relationships between these
elements that are important for determining whether a group of nodes is active
in the sense that it causes aggregation. One may think of spatial relationships
or vicinity, but there may be others. In Figure 2 the symbols a and b are used
to indicate the fact that binding or aggregation between physical components is
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caused by elements that are ”complementary” in some sense (e.g. having opposite
polarities, Watson-Crick complements, ...). In our approach this information is
implicitly represented by the fact that building blocks are described by graph
rewriting rules which have a designated left-hand side. This is why we will not
use complementary labels such as a and a in the next section; the usual notion
of matching suffices.

The second hypothesis is that the relevant relationships between the elements
of the new surface (i.e., the new edges) can be determined from (1) the surface
of the existing component and (2) the new component. Thus the components,
such as the ones depicted in the left part of Figure 1 will not be treated equally:
one of them (the upper one in the figures) may be thought of as a large assembly
that grows by aggregating with the other one, which is small and simple. Hence
the large assembly ”grows” by adding a new building block. As a result of this,
the building blocks of an assembly are partially ordered, making them similar to
graph processes. The surface of the assembly after the aggregation step consists
of most of the ”old” surface combined with a small, new part that belongs to the
building block. It is assumed that in determining the new surface structure, one
does not need the entire internal structure of the large assembly. The upper half
of Figure 2 depicts an aggregation step where the surface structures are graphs.
Technically the letters a, b, . . . are node labels, but throughout this section we
need not to distinguish between nodes and their label. The lower half of Fig-
ure 2 depicts the transformation of the surface structure, which is now a graph
transformation.

A last assumption is that the effect of an aggregation step is local : a surface
element that is irrelevant for a location does not suddenly become relevant when
an aggregation takes place involving that location: e.g. in Figure 2, e is not
relevant to the locations a and b involved in the aggregation – and thus e is not
connected to either of them. In terms of graph rewriting, the assumption means
that the newly introduced nodes can only be connected to those existing nodes
that are neighbors of the nodes removed by the rewriting. Thus the neighbors of
the new nodes f, g, h are either also new or chosen among the ”old” neighbors
c, d of a and b.

2.2 The embedding mechanism

The lower half of Figure 2 depicts the change in surface structure that corre-
sponds to the aggregation step in the upper half of the figure. This change can
be described by the application of a graph rewriting rule to the graph on the
left: the rule removes nodes a, b and creates f, g, h. The edges of the new surface
are either edges of the old surface, such as (d, e), or edges of the surface of the
newly added building block, such a (f, g), or edges that connect the new nodes
with the old ones, such as (c, f) or (h, d). The mechanism for establishing the
latter kind of edges is known as an embedding mechanism. Here the embedding
mechanism is very simple: each of the new nodes may take over the incoming
and/or outgoing edges of one or more of the nodes that have been removed. In
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Figure 2, f takes over the incoming edges from a and h takes over the outgoing
edges of b. The rule applied is depicted in Figure 3: it consists of two graphs (the
left-hand side and the right-hand side) and two binary relations in and out that
express the way edges are established. In Figure 3 both relations contain only
one pair; in general in, out ⊆ NL ×NR where NL and NR are the sets of nodes
of the left-hand side and the right-hand side, respectively.

b

f hg

in out

a
left-hand side

right-hand side

Fig. 3. A rule

2.3 Processes

In [CMR96,VJ02] graph processes are proposed as a way to describe ”runs” of
a graph rewriting system. Informally, a graph process is a structure obtained
by gluing together the rule occurrences of a run, where the gluing is consistent
with the way the rules are applied. Thus a graph process is essentially a directed
acyclic graph where the nodes are those that occur in the run and where the
edges represent the direct causal dependency relation: whenever a rule occur-
rence removes a node a and introduces a new node b, then b is directly causally
dependent on a. This DAG is further decorated with extra information: the ini-
tial graph of the run is given as well as the rule occurrences. However there is no
information on the order in which the rules are applied other than the causality
relation. Figure 4 depicts a process: the initial graph is the linear structure at
the top and there are three occurrences of the rule depicted at the left. There is
no information about the relative order of rule occurrences 1 and 2, and so the
process describes in fact three possible runs: the three rule occurrences may hap-
pen either in the order 1,2,3, or 2,1,3, or 1 and 2 may happen simultaneously,
followed by 3. The dotted edges are established according to the embedding
mechanism.

Using this notion one has three ways to view the components that act as
building blocks in aggregation steps such as the one considered in Figure 2: a
component with a surface structure, a graph rewriting rule, and a process. Since
such components are not composed of smaller ones they are called ”atomic”.
Similarly, the processes that represent a single rule are called atomic processes.
Figure 5 depicts the three views; the arrows/lines labeled in and out represent
the embedding mechanism.
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Fig. 5. Atomic component, rule and atomic process

The relationship between processes and assemblies is illustrated in Figure 6
(in the process, on the right, only the direct causality relation is represented).
An important property of processes is that, when the embedding satisfies cer-
tain conditions, each slice (maximal set of causally unrelated nodes) uniquely
determines a graph corresponding to that slice: the graph obtained by applying
the rule occurrences that precede the slice in the causality relation to the initial
graph – in any order consistent with the causality relation. In particular, the
graph resulting from the process is uniquely determined; it is the configuration
corresponding to the set of maximal nodes of the causality relation. It has been
proven earlier [VJ02] that the embedding mechanism used in this paper satisfies
the necessary condition. In Figure 6, one may e.g. consider the situation of the
assembly after building blocks 1 and 2 are added. The corresponding slice con-
sists of the square nodes. The property then means that the surface structure
at this point of the aggregation process does not depend on the order in which
blocks 1 and 2 were added; a posteriori inspection of an assembly (which blocks
are present and how are they glued together) suffices to determine its surface
structure. Since the order in which the aggregation takes place would probably
be very hard to control, this property is of crucial importance.



Assemblies as Graph Processes 197

ProcessAssembly

1 2

3

4

Fig. 6. Assembly and process

3 The algorithm

The aim of this section is to sketch how aggregation steps (building assemblies)
and global steps (acting in a uniform way on all components) may be combined
into a meaningful algorithm. In the context of this paper an algorithm describes
a sequence of steps in which test tubes containing a solution are manipulated
in order to obtain a solution with certain desired properties. One important
way to manipulate a test tube is to cause a self-assembly process in it: atomic
components (encoding graph transformation rules) are added to the test tube
and self-assembly is allowed to happen.

The design of aggregation steps is now viewed as the design of a suitable set
of graph transformation rules, and thus it is implicitly assumed that for each of
those rules a component can be constructed which has the right surface structure,
and that this component interacts in the right way with the other components.
It has to be noted that the latter assumption is not obvious; however there is
evidence that unintended interactions can be made improbable by a clever design
of the components. The problem is similar to the DNA code word problem, which
is an interesting research topic on its own.

The global steps, where all components in a solution are modified in a uniform
way, are not local changes based on the surface structure of components, and
thus the rewriting of graphs describing their surface structure is not a natural
way to formalize them. However the more complete description of an assembly
by a graph process provides information that is sufficient to express the global
steps: the atomic components it is built from and the way they are combined.
Two kinds of global steps are needed.

1. extract(m), where the symbol m represents a marker, i.e. a part of a com-
ponent that can easily be detected by its physical properties. The operation
removes all components in which the marker occurs from the test tube.

2. disassemble(R), where R is a set of rules used for aggregation. The operation
removes all atomic components corresponding to rules of R from the assem-
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blies in the test tube. Hence this operation may cause assemblies to fall apart
into smaller pieces. The physical implementation would be a manipulation
that breaks down the components corresponding to R, and only those. This
could be achieved by designing these components in such a way that they
are less stable or less resistant to heat than the other components.

The problem we focus on is the following. Consider two test tubes X and
Y ; Y contains the same components as X but also some additional ones; these
are viewed as a contamination that has to be removed. The algorithm has to
recognize the contaminating components, by yielding a test tube containing as-
semblies that encode the latter, where ”encoding” means that their surface struc-
ture contains a copy, up to a relabeling, of that of the encoded components. The
relabeling is needed to distinguish the encoding from the original.

It is assumed that only some of the components are relevant; in the example
these have the surface structure depicted in Figure 7, where the xi belong to the
set {a, b}. The symbols a, b, l, r represent certain kinds of surface elements and
n is even. The symbols a, b, l, r are relabeled ã, b̃, l̃, r̃ in the encoding.

x1 x2 xnl r
...

Fig. 7. Initial structure

For our purposes X and Y are sets of concrete structures, And obviously
both of them will in general contain many isomorphic copies of each of their
elements.

The algorithm consists of the following steps:

1. Recognize the relevant components of Y : prepare their encoding by forming
a suitable assembly around each of them.

2. Extract these assemblies from Y .
3. Add the result of this to X and form assemblies that mark the encodings of

components that occur in X.
4. Extract the marked encodings; the remaining ones are the desired ones.

To realize step 1, first ignore the relabeling. Then the step can be carried out
by adding to Y the rules (i.e. components realizing the rules) of Figure 8: these
form an assembly that is essentially a binary tree where the leaves are labeled a
or b and each two consecutive leaves have the same parent.

The graph process in the upper part of Figure 9 represents an intermediate
stage in the formation of such an assembly: one more step (applied to the two
square nodes) will complete the tree. Only if the component is of the right form
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      or x = y = c

Fig. 8. Rules for assembly in step 1

the process can be completed by an application of the rule at the right of Figure 8
which attaches the marker m to the assembly (lower left part of Figure 9). The
relabeling of a, b, l, r into ã, b̃, l̃, r̃ can be taken into account by modifying the
rules in the way depicted in Figure 10: a relabeled copy of the encoded structure
is produced.

l ab raa bb

cc c

c
l r

m

Fig. 9. Assembly in step 1

Step 2 can be realized by an extract(m) operation. A potential problem is
that the rules of step 1 can be applied to a component of the right form in
such a way that the assembly obtained is a forest, but not a tree; then that
component is not encoded. However, one may improve the result by using an



200 Dirk Janssens

in out

ba

c
in out

ba

c

ba~
~

Fig. 10. Modified rule

iterative procedure: repeat the sequence (step 1, extract(m), disassemble(R1)),
where R1 is the set of rules of step 1, until nothing is extracted.

Step 3 can be realized by adding the assemblies extracted in step 2 and the
rules of Figure 11 to X. The effect is depicted in Figure 12: an encoding (starting
with l̃) and a component (starting with l) are traversed, until L becomes adjacent
to r and r̃. In that case the encoding is marked, using the rule at the right of
Figure 11. The dotted edges in Figure 12 are established by the embedding
mechanism. If the encoding and the component do not correspond, then L does
not become adjacent to both r and r̃ and the marking does not occur. Step 4
can be done by an extract operation. Again, there is a potential problem because
the assemblies with the encodings may get neutralized by trying to combine
with the wrong component: e.g. when an assembly encoding aaba combines with
component aabba the aggregation process of Figure 12 gets stuck after 4 steps.
Again, an iterative procedure is needed: repeat the sequence (step 3, step 4,
disassemble(R3)) where R3 is the set of rules of step 3.

x, x ∈ {a,b}~
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x xL
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~
r rL
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~

Fig. 11. Rules for traversal
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Fig. 12. Traversal - assembly view

The result of the algorithm is a test tube containing assemblies which encode
the contaminants, i.e. the components of Y that do not occur in X. Using an
iterative procedure similar to the one combining steps 3 and 4 above, it is in
principle possible to use this to remove the contaminants from Y.

4 Discussion

The aim of the paper is to explore the use of graph rewriting based on embed-
ding for the understanding of self-assembly and natural computing. The basic
idea is that graphs capture the active surface structure that controls the way
components in a solution aggregate, and that the way in which such aggregation
changes the surface structure can be captured by graph rewriting. However one
may expect that most meaningful algorithms in this context do not only re-
quire the building of ever larger assemblies, but also operations that break down
or modify such assemblies, and in the algorithm sketched in Section 3 a few of
these operations are used: extracting certain components according to particular
”marker” labels, or removing certain atomic components from the assemblies in
a solution. Thus what seems to be needed is an interplay between aggregation
operations, which are described by graph transformation rules, and which act
on the graphs that describe the active surface of components, and global oper-
ations in which all assemblies of a given kind in a solution are modified. Since
assemblies correspond to processes of the graph rewriting systems that describe
their formation, the theory of graph rewriting and graph processes may provide
a way to obtain a formal framework in which both kinds of operations can be
combined in an elegant way.

Obviously, the material presented here is of a very speculative nature, since
the implicit assumptions concerning the possible realization of the approach in
the physical world may turn out to be naive or unrealistic. To mention just a few:
when reducing the problem of controlling self-assemby to the problem of writing
a suitable graph transformation system, it is assumed that each rule written
down can be realized by a component that behaves exactly in the right way: not
only does it aggregate with another component when the structure corresponding
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to its left-hand side matches part of the structure of the other component, but
this is also the only way it interacts with other components. Another thorny
issue is the assumption about the information to be encoded into the edges,
information that is handled by the embedding mechanism: what are exactly
the relationships between locations on a component that are relevant? How to
encode spatial information into those edges? Also for the the global operations
many questions remain: on the one hand they may seem rather ad-hoc, but on
the other hand they are quite simple. In spite of these reservations, however, the
correspondence between graph rewriting and graph processes on the one hand
and aggregation and assemblies on the other hand seems simple and natural
enough to deserve further attention.
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