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Abstract. Hans-Jörg Kreowski was among the first researchers to point
out that P/T Petri nets can be interpreted as instances of Graph Trans-
formation Systems, a fact now considered folklore. We elaborate on this
observation, discussing how several different models of Petri nets can be
encoded faithfully into Graph Transformation Systems. The key idea we
pursue is that the net encoding is uniquely determined, and distinct net
models are mapped to alternative approaches to graph transformation.

1 Introduction

The success of Petri nets as specification formalism for concurrent or distributed
systems is due (among other things) to the fact that they can describe in a nat-
ural way the evolution of systems whose states have a distributed nature. For
example, in a Place/Transition net like the one depicted in Fig. 1, a state of
the system is represented by a marking, i.e., a set of tokens distributed among
a set of places. Hence the state is intrinsically distributed, thus allowing for an
easy explicit representation of phenomena like mutual exclusion, concurrency,
causality, and non-determinism. Nets and their semantics are therefore a refer-
ence point for any formalism intended to describe concurrent and distributed
systems, and thus also for Graph Transformation Systems (GTSs).
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Fig. 1. (a) A marked P/T net. (b) The marking after the firing of transition t.

Indeed, it belongs to the folklore that Graph Transformation Systems can
be seen as a generalisation of Petri nets. The first formalization of this intu-
ition, to our knowledge, was proposed by Hans-Jörg Kreowski in [1] using the
double-pushout (dpo) approach, and it is illustrated in Fig. 2. The marked net
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of Fig. 1(a) is represented in Fig. 2 by the graph Kr(M0) having three kinds
of nodes (for transitions, places, and tokens, respectively) and where edges con-
nect either places and transitions (modelling the causal dependency relation)
or tokens and places (determining the place where a token lies). Transition t is
represented by rule Kr(t) (the top row of the figure): The rule does not modify
the topological structure of the net (nodes and edges corresponding to places,
transitions and causal dependency relation are also in the interface), but only
deletes and creates the nodes representing tokens together with the edges con-
necting them to places. It is easy to check that the rule is applicable to graph
Kr(M0) (the gluing conditions are satisfied), and since the two squares in the

figure are pushouts, that Kr(M0)
Kr(t)
=⇒ Kr(M1); moreover, the derived graph

Kr(M1) represents the marking M1, such that M0 [t〉M1.
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Fig. 2. Encoding of nets as grammars according to Kreowski.

Several encodings of Petri nets as GTSs have been proposed since then, and
it is impossible even to summarize them here: for some of the earliest, see [2] and
the references therein. In this paper we elaborate on this idea, starting from the
observation that P/T nets are only one (a noticeable one) among the alternative
models of Petri net which have been proposed along the years. Sticking to “low
level” Petri nets, other models of nets may allow at most one token at a time
in a place, as for Condition/Event (C/E) nets [3] or Elementary Net Systems
(ens) [4], and correspondingly a transition can fire only if the post-conditions
are empty. In the so-called Consume-Produce-Read (cpr) nets [5], more per-
missively, the transition can fire anyhow, but the token produced on a place is
“coalesced” with a possibly pre-existing token [5]. Orthogonally, nets of all kinds
can be equipped with read or inhibitor arcs, specifying that the presence or the
absence of a token on a place is necessary for firing, but it does not affect the
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result [6–10]. Another type of arcs, called reset arcs [11], allows to specify that
the firing of a transition deletes all the tokens, if any, from a given place.

What about representing these models of nets as GTSs? In principle, all
of them can be encoded using dpo rewriting, because the latter is Turing com-
plete [12]. We prefer to follow a different approach, which on the one hand allows
us to keep the encoding very simple for all the models of nets mentioned above,
and on the other hand exploits the fact that also for GTSs alternative formalisms
have been proposed. From the GTS side we shall stick to the family of algebraic
approaches, among which we consider the classical single- and double-pushout
approaches [13, 14], and the less known Subobject Transformation Systems [15].
The latter basically consists of rewriting in the lattice of subgraphs of a given
graph, and it turns out to be the natural framework for encoding net models
which allow at most one token on a place (where a state is a subset of places).

We encode nets using a very simple kind of graphs, containing nodes and
unary edges only. A marking of a net is represented by a set of edges, one for
each token, each attached to a node representing a place. It is thus reminiscent
of the encoding by Kreowski discussed above, even if the transitions are not
represented explicitly in the states: They are encoded only as rules of the GTS.
Interestingly, inhibitor and reset arcs can be encoded exactly in the same way:
The different behaviour is determined by the choice of the GTS approach.

The following table summarizes the results we shall present. For each of the
three basic net models, we indicate the GTS approach that can be used to encode
it in presence of read, inhibitor and/or reset arcs: note that we do not allow for
nets which include both inhibitor and reset arcs.

Read arcs Read + Inhibitor Read + Reset

P/T nets dpo or spo dpo spo

ENS sts or sts
⊑

sts sts
⊑

CPR nets stsm or sts
⊑
m stsm sts

⊑
m

Table 1. Summary of the proposed encodings.

The few variants of the sts approach referred to in the table will be intro-
duced later on. The encodings of P/T Petri nets with read, inhibitor and reset
arcs as GTSs were originally discussed in [16]. The present paper provides a sys-
tematic view of such encodings, viewing them in a much more general framework
which recomprises Elementary Net Systems and cpr nets.

The paper is structured as follows. Section 2 presents the three GTS ap-
proaches we deal with in our work, and it is complemented in Section 3 by
the kinds of nets for which we present an encoding. Section 4 discusses these
encodings, and the correspondence between alternative net models and GTS ap-
proaches. Section 5 draws some conclusions and offers pointers to future works.
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2 Algebraic approaches to graph transformation

This section introduces some basic notions concerning the algebraic formalisms
for graph rewriting considered in the paper. We concentrate on typed Graph
Transformations Systems (gtss), both in the single-pushout (spo) [13, 17] and
the double-pushout (dpo) [14, 18] approach, and on Subobject Transformation
Systems (stss) [15]. Typed rewriting is a well-established variant of the classical
proposals where rewriting takes place on so-called typed graphs, i.e., graphs
labelled over a structure which is itself a graph [19, 20].

2.1 Graphs and graph morphisms

We introduce here the basic concepts concerning graphs and their morphisms.
For the sake of simplicity, our introduction to GTSs will deal with unary hyper-
graphs only, since they are just what is needed for the encoding of Petri nets
that we are going to present. Indeed, all the remarks in this section could be
generalized to any kind of (hyper-)graphs or, albeit with some additional care, to
any adhesive category [21]. Similarly, the encodings presented later would work
in standard categories of (hyper-)graphs.

Given a partial function f : A  B we denote by dom(f) its domain, i.e.,
the set {a ∈ A | f(a) is defined}. Let f, g : A  B be two partial functions. We
write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

Definition 1 (graph and graph morphism). A (unary) graph G is a triple
G = (VG, EG, cG), where VG is a set of nodes, EG is a set of edges and cG :
EG → VG is a function mapping each edge to the node it is connected to.

A partial graph morphism f : G  H is a pair of partial functions f = 〈fN :
NG  NH , fE : EG  EH〉 such that cH ◦ fE ≤ fN ◦ cG (see Fig. 3.(a))

We denote by PGraph the category of (unlabelled) graphs and partial graph
morphisms. A morphism is called total if both components are total, and the
corresponding subcategory of PGraph is denoted by Graph.

Notice that if a partial graph morphism f is defined over an edge, then it must
be defined on the node the edge is connected to: This ensures that the domain
of f is a well-formed graph.

Definition 2 (subgraph lattice). A graph G is a subgraph of H, written
G ⊆ H, if NG ⊆ NH , EG ⊆ EH , and the inclusions form a graph morphism.
The set of subgraphs of H ordered by inclusion form a distributive lattice, de-
noted Sub(H), where the meet ∩ and the join ∪ are defined as component-wise
intersection and union, respectively.

Given graphs H and G ⊆ H , we will write, a bit informally, H \G to denote
the set of items (nodes and edges) of H which do not belong to G.

Given a graph T , a typed graph G over T is a graph |G|, together with a
total morphism tG : |G| → T . A partial morphism between T -typed graphs
f : G1  G2 is a partial graph morphisms f : |G1| |G2| consistent with the
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typing, i.e., such that tG1
≥ tG2

◦ f (see Fig. 3.(b)). A typed graph G is called
injective if the typing morphism tG is injective. The category of T -typed graphs
and partial typed graph morphisms is denoted by T -PGraph.
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Fig. 3. Diagrams for partial graph and typed graph morphisms.

Given a partial typed graph morphism f : G1  G2, we denote by dom(f)
the domain of f typed in the obvious way. Given a subgraph G of T , i.e., an
element of Sub(T ), we often consider it as a graph typed over T by the inclusion.
Since we work only with typed notions, we usually omit the qualification “typed”.

2.2 Double-pushout rewriting

Chosen a type graph T , a (T -typed) dpo rule q = (L
l
←֓ K

r
→֒ R) is a pair

of injective (total, T -typed) graph morphisms l : K →֒ L and r : K →֒ R,
where |L|, |K| and |R| are finite graphs. The graphs L, K, and R are called the
left-hand side, the interface, and the right-hand side of the rule, respectively.

Definition 3 (dpo direct derivation). Given a graph G, a dpo rule q, and
a match (i.e., a total graph morphism) g : L→ G, a dpo direct derivation from
G to H using q (based on g) exists, written G⇒dpo

q H, if the diagram

Lq :

g

��

K?
_l

oo � � r
//

k

��

R

h

��

G D
b

oo

d
// H

can be constructed, where both squares are pushouts in T -Graph.

Given an injective morphism l : K →֒ L and a match g : L→ G as in the above
diagram, their pushout complement (i.e., a graph D with morphisms k and b

such that the left square is a pushout) exists if and only if the gluing condition
is satisfied. This consists of two parts:

– the identification condition, requiring that if two distinct nodes or edges of
L are mapped by g to the same image, then both are in the image of l;
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– the dangling condition, stating that no edge in G\ g(L) should be connected
to a node in g(L\ l(K)) (because otherwise the application of the rule would
leave such an edge “dangling”).

2.3 Single-pushout rewriting

Chosen a type graph T , a (T -typed) spo rule q = (L
r

 R) is an injective partial
typed graph morphism r : L  R. The graphs L and R are called the left-hand
side and the right-hand side of the rule, respectively.

Definition 4 (spo direct derivation). Given a graph G, an spo rule q, and
a match (i.e., a total graph morphism) g : L→ G, we say that there is an spo

direct derivation from G to H using q (based on g), written G ⇒spo
q H, if the

following is a pushout square in T -PGraph.

L
g

��

//
r

// R
��

h
��

G //

d
// H

Roughly speaking, the rewriting step removes from the graph G the image of the
items of the left-hand side which are not in the domain of r, namely g(L\dom(r)),
adding the items of the right-hand side which are not in the image of r, namely
R\r(dom(r)). The items in the image of dom(r) are “preserved” by the rewriting
step (intuitively, they are accessed in a “read-only” manner).

A relevant difference with respect to the dpo approach is that here there is
no dangling condition preventing a rule to be applied whenever its application
would leave dangling edges. In fact, as a consequence of the way pushouts are
constructed in T -PGraph, when a node is deleted by the application of a rule
also all the edges connected to such node are deleted by the rewriting step, as a
kind of side-effect. For instance, rule q in the top row of Fig. 4, which consumes
node B, can be applied to the graph G in the same figure. As a result both node
B and edge L are removed.

B

q

G
L

B

Fig. 4. Side-effects in spo rewriting.

Even if the category PGraph has all pushouts, still we will consider a con-
dition which corresponds to the identification condition of the dpo approach.
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Definition 5 (valid match). A match g : L→ G is called valid when for any
x, y ∈ |L|, if g(x) = g(y) then x, y ∈ dom(r).

Conceptually, a match is not valid if it requires a single resource to be con-
sumed twice, or to be consumed and preserved at the same time. In the paper
we consider only valid derivations: This is needed to have a resource-conscious
interpretation for derivations, i.e., where a resource is consumed at most once.

We close this section noting that for each dpo rule we can easily construct
an spo rule, which behaves like the original one when the dangling condition is
satisfied. Clearly, the converse construction is possible as well.

Definition 6 (from dpo to spo rules, and vice versa). Let q = (L
l
←֓ K

r
→֒

R) be a T -typed dpo rule. Then, the associated T -typed spo rule, denoted by
S(q), is given by the partial graph morphism r ◦ l∗ : L  R, where l∗ : L  K

is the partial inverse of l, defined in the obvious way.

Vice versa, for a T -typed spo rule q = (L
r

 R), the associated dpo rule is

defined as D(q) = (L ←֓ dom(r)
r
→֒ R).

2.4 Subgraph Transformation Systems

In the typed approaches to graph transformation, the type graph plays a role
analogous to the set of places in Petri nets. In particular, the constraint that a
place can contain at most one token can be translated into the requirement that
the typing morphism is injective. Both the dpo and the spo approaches can be
equipped with side conditions that guarantee that only injectively typed graphs
are generated during rewriting, but this condition is built-in in the instance of
the Subobject Transformation System approach [15] that we present here.

In the original formulation, the framework where rewriting is defined is the
distributive lattice of subobjects of a fixed object of an adhesive category. Such
generality is unnecessary here, and we instantiate the definitions to the case
where the category of concern is Graph, which is indeed adhesive. As a conse-
quence, in the following we read “sts” as Subgraph Transformation Systems.

Chosen a type graph T , a (T -typed) sts rule q is a triple q = 〈L, K, R〉,
where L, K, R ∈ Sub(T ), K ⊆ L and K ⊆ R. The graphs L, K and R are called
the left-hand side, the interface and the right-hand side of the rule, respectively.

Definition 7 (sts direct derivation). Given a graph G in Sub(T ) and an
sts rule q = 〈L, K, R〉, there is an sts direct derivation from G to H using q,
written G⇒sts

q H, if H ∈ Sub(T ) and there exists D ∈ Sub(T ) such that

(i) L ∪D = G; (iii) D ∪R = H ;

(ii) L ∩D = K; (iv) D ∩R = K.

If such a graph D exists, we shall refer to it as the context of the direct derivation
G⇒sts

q H .
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It is instructive to consider the relationship between an sts direct derivation
and a dpo direct derivation as introduced above. First observe that Sub(T ) can
be seen as a category where the arrows are the inclusions, and a rule 〈L, K, R〉
can be seen as a span q = (L ⊇ K ⊆ R), i.e., a pair of arrows in Sub(T ). Next,
we shall say that there is a contact situation for a rule 〈L, K, R〉 at a subgraph
G ⊇ L ∈ Sub(T ) if G ∩ R 6⊆ L. Intuitively, this means that some items of the
subgraph G are created but not deleted by the rule: If we were allowed to apply
the rule at this match via a dpo direct derivation, the resulting object would
contain the common part twice and consequently the resulting morphism to T

would not be injective; i.e., the result would not be a subgraph of T . The next
result, presented in [15], shows that an sts direct derivation is also a dpo direct
derivation if no contact occurs.

Proposition 1 (sts derivations are contact-free double pushouts). Let
G and H be graphs in Sub(T ) and q = 〈L, K, R〉 be an sts rule. Then G⇒sts

q

H if and only if L ⊆ G, G ∩ R ⊆ L, and G ⇒dpo
q H, i.e., if there is a graph

D ∈ T -Graph such that the diagram below forms two pushouts in T -Graph.

L

⊆

��

(1)

K
⊇

oo
⊆

//

��

(2)

R

��

G Doo // H

In the last result we used the fact that an sts rule can be considered as a
T -typed dpo rule, considering the inclusions as arrows in Graph. Conversely,

a T -typed dpo rule q = (L
l
←֓ K

r
→֒ R) induces an sts rule I(q) obtained

by considering the images of |L|, |K| and |R| in the type graph, i.e., I(q) =
〈tL(|L|), tK(|K|), tR(|R|)〉.

2.5 Other kinds of stss

We introduce here three variations of the definition of sts direct derivation,
obtained by slightly changing the properties verified by the context graph D.

The first definition is reminiscent of the sesqui-pushout approach [22], and
it leads to an spo-like approach for sts, where rules can be applied regardless
of the dangling condition, removing, as a side-effect, those edges which would
remain dangling.

Definition 8 (sts
⊑ direct derivation). Given a graph G in Sub(T ) and an

sts rule q = 〈L, K, R〉, there is an sts⊑ direct derivation from G to H using q,

written G⇒sts⊑

q H, if H ∈ Sub(T ) and

(ii)′ D is the largest subgraph of G such that L ∩D = K;
(iii) D ∪R = H;
(iv) D ∩R = K.
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Dropping the first condition of Definition 7 and imposing the “largest sub-
graph” requirement in (ii) implies that some items of G \L may not occur in D,
as when deleting a node forces the deletion of incident edges in the spo approach.

The next variants drop the requirement D ∩ R = K. This allows for some
overlap between the items preserved in the context D and those newly introduced
by R: The injectivity of the typing forces these items to be coalesced, similarly
to what happens in cpr nets. This is done for stss both in dpo and spo style.

Definition 9 (stsm and sts⊑m direct derivations). Given a graph G in
Sub(T ) and an sts rule q = 〈L, K, R〉, there is an stsm direct derivation
from G to H using q, written G ⇒stsm

q H, if H ∈ Sub(T ) and there exists
D ∈ Sub(T ) such that

(i) L ∪D = G; (iii) D ∪R = H.

(ii) L ∩D = K;

Analogously, there is an sts
⊑
m direct derivation from G to H using q, written

G⇒
sts⊑

m

q H, if H ∈ Sub(T ) and

(ii)′ D is the largest subgraph of G such that L ∩D = K;
(iii) D ∪R = H.

Figure 5 shows the differences among the various kinds of sts direct deriva-
tions introduced in Definitions 7, 8 and 9. The type graph T contains two nodes,
◦ and •, and one edge connected to ◦; all the elements of Sub(T ) (the subgraphs
of T ) are depicted, with the obvious inclusions. The arrows show all the pos-
sible direct derivations using the sts rule q = 〈{◦}, ∅, {•}〉 and the approaches
introduced in Definitions 7, 8 and 9.

T

⊂

⊂

⊂

3, 4

2, 4 ⊂⊂ ⊂1, 2
, 3,

4

⊂

4

Fig. 5. Examples of the various kinds of sts direct derivations. Arrows represent direct
derivations among elements of Sub(T ) using rule q = 〈{◦}, ∅, {•}〉 and the following
approaches: 1 = sts, 2 = sts

⊑, 3 = stsm, 4 = sts
⊑
m.
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2.6 Graph grammars

In the previous sections we presented six different definitions of direct derivation,
each of which determines a different algebraic approach to graph transformation.
For each one of those approaches, a graph grammar contains a type graph, a
start graph, a set of rule names, and a mapping from rule names to corresponding
rules. Clearly, the precise definition of start graph and of rule depends on the
chosen approach.

Definition 10 (graph grammar). A knd graph grammar, where knd ∈ {dpo,

spo, sts, sts⊑, stsm, sts⊑m}, is a tuple G = 〈T, Gs, P, π〉, where T ∈ Graph is
the type graph, P is a set of rule names, π is a function which associates a
knd rule1 to each rule name in P , and Gs is the start graph, which has to be
consistent with knd. That is, Gs is a T -typed graph if knd ∈ {dpo, spo}, and
Gs ∈ Sub(T ) in all other cases.

A derivation over a knd grammar G is a sequence of knd direct deriva-
tions using rules in P , starting from the start graph, namely ρ = {Gi−1 ⇒knd

pi−1

Gi}i∈{1,...,n}, with G0 = Gs.

3 Enriched Petri nets

In this section we introduce some basic extensions of Petri nets, namely, nets
with read, inhibitor and reset arcs. A study of the expressiveness of these kinds
of arcs, along with a comparison with other extensions proposed in the literature,
like priorities, exclusive-or transitions and switches, is carried out in [23, 24].

To give the formal definition of these generalised nets we need some notation
for sets and multisets. Given a set X we write 2X for the powerset of X and
X⊕ for the free commutative monoid over X , with monoid operation ⊕, whose
elements will be referred to as multisets over X . Given a multiset M ∈ X⊕, with
M =

⊕
x∈X Mx · x, for x ∈ X we will write M(x) to denote the coefficient Mx.

Moreover, we denote by [[M ]] the underlying subset of X , defined as [[M ]] = {x ∈
X |M(x) > 0}. With little abuse of notation, we will write x ∈M iff x ∈ [[M ]].

Given M, M ′ ∈ X⊕ we write M ≤M ′ when M(x) ≤M ′(x) for all x ∈ X . In
this case the multiset difference M ′⊖M is the multiset M ′′ such that M⊕M ′′ =
M ′. For Y ⊆ X and M ∈ X⊕, we denote by M [Y ] the restriction of M to Y ,
i.e., M [Y ](x) = M(x) if x ∈ Y , and M [Y ](x) = 0 otherwise. Finally, the symbol
∅ denotes the empty multiset.

3.1 Place/Transition nets

We are now ready to define the enriched P/T nets considered in the paper.
Besides ordinary flow arcs and read arcs, the nets are endowed with so-called
“distinguished arcs” (represented by the �(.) function below), which will be
interpreted either as inhibitor or reset arcs in the token game.

1 To be precise, for knd ∈ {sts
⊑, stsm, sts

⊑
m}, a knd rule is an sts rule.
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Definition 11 (enriched P/T nets). An enriched (marked) P/T Petri net is
a tuple N = 〈S, T r, •(.), (.)•, (.), �(.), m〉, where

– S is a set of places;
– Tr is a set of transitions;
– •(.), (.)• : Tr→ S⊕ are functions mapping each transition to its pre-set and

post-set, respectively;
– (.) : Tr→ 2S is a function mapping each transition to its context;

– �(.) : Tr → 2S is a function mapping each transition to its distinguished
set of places, such that for all t ∈ Tr, ( •t⊕ t⊕ t•)[ �t] = ∅ (i.e., no token in
�t can be either read, consumed or produced by t);

– m ∈ S⊕ is a multiset called the initial marking.

We assume, as usual, that S∩Tr = ∅. We shall denote with •(.), (.)•, (.) and �(.)

also the functions from S to 2Tr defined as, for s ∈ S, •s = {t ∈ Tr | s ∈ t•},
s• = {t ∈ Tr | s ∈ •t}, s = {t ∈ Tr | s ∈ t}, and �s = {t ∈ Tr | s ∈ �t}.

A state of a P/T net is defined as a marking, that is, a set of tokens distributed
over the places. Formally, a marking M is a multiset of places, i.e., M ∈ S⊕. The
token game determines when a transition t is enabled at a given marking, and, if
enabled, what marking is reached after firing the transition. For a transition t to
be enabled at a marking M , it is necessary for M to contain the pre-set of t and
an additional set of tokens which covers the context of t. Additional conditions
for enabledness, as well as the result of firing, depend on the interpretation given
to the distinguished arcs: As anticipated, we interpret them either as inhibitor
arcs or as reset arcs, obtaining the classes of nets below.

Definition 12 (inhibitor and reset P/T nets). An inhibitor P/T net is an
enriched P/T net 〈S, T r, •(.), (.)•, (.), �(.), m〉 where the distinguished arcs are

interpreted as inhibitor arcs. Given a marking M ∈ S⊕ and a transition t ∈ Tr,
t is i-enabled if •t ⊕ t ≤ M and M [ �t] = ∅ (i.e., M contains no token in any
place of �t). The inhibitor transition relation between markings is defined as

M [t〉i M ′ if t is i-enabled at M and M ′ = (M ⊖ •t)⊕ t•.

A reset P/T net is an enriched P/T net where the distinguished arcs are inter-
preted as reset arcs. Given M ∈ S⊕ and t ∈ Tr, t is r-enabled if •t ⊕ t ≤ M .
The reset transition relation is defined as

M [t〉r M ′ if t is r-enabled at M and M ′ = ((M ⊖ •t)⊕ t•)⊖M [ �t]

(i.e., the firing of t deletes all the tokens from places in �t: Such places are
certainly empty after the firing, because they cannot belong to the post-set of t).

For a transition t, if the distinguished set �t is empty the two alternative
enabling conditions coincide, as well as the induced transition relations on mark-
ings. In the following, we call contextual Petri nets the class of nets such that
all its transitions have the distinguished set empty.

Firing sequences and reachable markings are defined in the usual way.
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Example 1. An example of an enriched P/T net N can be found in the left part
of Fig. 6. Graphically, transitions are connected to context places by undirected
arcs and to distinguished places by dotted undirected arcs.

Starting from the initial marking s0⊕ s1⊕ s2⊕ s4, a possible firing sequence
is t1; t2 leading to the marking s2 ⊕ s3 ⊕ 2s4 ⊕ s.

If we first fire t2, the net reaches the marking s0 ⊕ s2 ⊕ s4 ⊕ s. Now, if N

is seen as an inhibitor P/T net, the presence of a token in s inhibits t1 which
cannot fire. If, instead, N is seen as a reset P/T net, transition t1 can fire and,
as a consequence, place s is emptied, producing the marking s2 ⊕ s3 ⊕ 2s4.

3.2 Elementary nets

Let us call elementary a net where the states are defined as (sub)sets of places,
rather than multisets of places as for P/T nets. Thus elementary nets comprise
several net models proposed in the literature, including C/E nets [3], Elementary
Net Systems [4], Consume-Produce-Read nets [5] and others.

An enriched elementary (marked) net 〈S, T r, •(.), (.)•, (.), �(.), m〉 is defined

as an enriched P/T net in Definition 11, requiring •(.), (.)• : Tr → 2S and
m ∈ 2S (i.e., •t and t• for all t ∈ Tr, as well as the initial marking m, are sets
rather than multisets). Furthermore, besides the disjointness condition on the
distinguished places, that is formulated as ( •t ∪ t ∪ t•) ∩ �t = ∅, it is required
that no token in t is consumed or produced, i.e., ( •t ∪ t•) ∩ t = ∅ for all t ∈ Tr.

Both inhibitor and reset elementary nets are easily defined, interpreting the
distinguished arcs as expected. However, since the states are subsets of places,
the enabling condition and the transition relation must ensure that the marking
reached by firing a transition is a set. This is obtained in a different way by the
two models of nets that we introduce: enss require a stronger enabling condition
w.r.t. P/T nets, while cpr nets, intuitively, change the transition relation by
allowing to merge tokens of the marking with those produced by the transition.

Definition 13 (inhibitor and reset Elementary Net Systems). An in-
hibitor ens is an enriched elementary net 〈S, T r, •(.), (.)•, (.), �(.), m〉 where the
distinguished arcs are interpreted as inhibitor arcs. Given a marking M ⊆ S

and a transition t ∈ Tr, t is ie-enabled if •t ∪ t ⊆ M , M ∩ �t = ∅, and
(M \ •t) ∩ t• = ∅. The ie-transition relation between markings is defined as

M [t〉ie M ′ if t is ie-enabled at M and M ′ = (M \ •t) ∪ t•.

A reset ens is an enriched elementary net where the distinguished arcs are in-
terpreted as reset arcs. Given M ⊆ S and t ∈ Tr, t is re-enabled if •t ∪ t ⊆M

and (M \ •t) ∩ t• = ∅. The re-transition relation is defined as

M [t〉re M ′ if t is re-enabled at M and M ′ = ((M \ •t) ∪ t•) \ �t.

The condition (M \ •t) ∩ t• = ∅ ensures that there is “no contact”, i.e., t

can produce a token only if it is not in M , or if it is deleted by t itself. As a
consequence the ∪ operator in the definition of M ′ is actually a disjoint union.
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This is the main difference with respect to cpr nets, where the “no contact”
condition is omitted, and the arguments of ∪ in the definition of the follower
marking might not be disjoint.

Definition 14 (inhibitor and reset cpr nets). An inhibitor cpr net is an
enriched elementary net where for a marking M ⊆ S and a transition t ∈ Tr, t

is ic-enabled if •t∪ t ⊆M and M ∩ �t = ∅; the ic-transition relation is defined
as

M [t〉ic M ′ if t is ic-enabled at M and M ′ = (M \ •t) ∪ t•.

A reset cpr net is an enriched elementary net where for M ⊆ S and t ∈ Tr, t

is rc-enabled if •t ∪ t ⊆M ; the rc-transition relation is defined as

M [t〉rc M ′ if t is rc-enabled at M and M ′ = ((M \ •t) ∪ t•) \ �t.

Example 2. Observe that the net N in Fig. 6 can be seen as an ens. In this case,
starting from the initial marking {s0, s1, s2, s4} the transition t1 cannot fire due
to a contact situation in s4, hence the only possible firing sequence is t2.

If we interpret N as a cpr net, then t1 can fire and the reached marking is
{s1, s2, s3, s4}, where, intuitively, the token generated in s4 is “merged” with the
pre-existing one. In this state, t2 can fire producing the marking {s2, s3, s4, s}.
If we start by firing t2, as in the P/T case, t1 is blocked or can fire (emptying
place s), depending on whether we interpret N as an inhibitor or a reset cpr

net.

4 From enriched nets to graph transformation systems

This section shows how enriched Petri nets can be encoded as graph grammars.
Interestingly, the encoding is essentially the same for all kinds of nets: The
different token game flavours are obtained by changing the approach to rewriting.

4.1 Encoding Petri nets as graph grammars

It is part of the folklore (see e.g. the discussion in [2] and the references therein)
that (ordinary) Petri nets can be seen as a special kind of graph grammars. The
simplest idea is that the marking of a net is represented as a graph with no
edges typed over the places: A token in place s is a node typed over s. Then
transitions are seen as rules which consume and produce nodes, as prescribed
by their pre- and post-set. In this way, Petri nets exactly correspond to graph
grammars acting over graphs containing only nodes, where rules preserve no
item.

To make the encoding parametric with respect to the chosen class of Petri
nets, here we consider a slightly different encoding, where edges, rather than
nodes, play the role of tokens. Roughly, the idea of the encoding is the following:

– a place is represented as a node;
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– tokens in a place are represented as unary edges connected to the corre-
sponding node;

– a transition becomes a rule, which deletes the tokens in its pre-set, produces
the post-set and preserves the tokens in its context; for any place in the
distinguished set of t, the corresponding node is deleted and created again.

Note the chosen encoding for the distinguished set of t: In the dpo approach
this will prevent the application of the rule if there is at least one token (edge) in
the place, thus causing an inhibitor effect. In the spo approach, the application
of the rule will delete as a side-effect any edge possibly attached to the node,
thus giving raise to a reset effect.

As a first step, we show how the set of places underlying an enriched net
(either P/T or elementary) gives raise to a type graph. In all cases there will be
a node s in the type graph for each place s in the net, and the number of edges
incident on the node typed over s will represent the number of tokens in that
place. Also the way in which markings are encoded as graphs does not depend
on the specific kind of nets we are considering.

Definition 15 (type graph, markings). Let S be a set of places. Then, the
associated type graph TS is (S, S, c), where c(s) = s for all s ∈ S.

Given a subset of places S′ ⊆ S and a marking M ∈ S′⊕, we define the
graph GS(S′, M) as (S′, E(M), c), typed in the obvious way over TS, such that
E(M) = {〈s, i〉 | s ∈ [[M ]]∧0 < i ≤M(s)} and c(〈s, i〉) = s for all 〈s, i〉 ∈ E(M).
We write simply GS(M) for GS(S, M).

So, each place contributes a node and an edge in the type graph TS , and a
marking can be regarded as a multiset of edges of the type graph.

We next introduce the encoding of net transitions into grammar rules. As
mentioned above, the encoding is essentially independent of the kind of nets
we are considering: The different firing behaviour will be obtained by changing
the considered rewriting approach. Indeed, we next define the encoding of a
transition as a dpo rule, but changing the rewriting approach (to spo or sts)
will just require a syntactical change in the presentation of the rule.

Definition 16 (net transitions as dpo rules). Let t be a transition of an en-
riched P/T net with place set S. Then t is encoded as a TS-typed dpo transition

GS(t) = GS(X ∪ �t, t⊕ •t)← GS(X, t)→ GS(X ∪ �t, t⊕ t•)

where X = [[ •t⊕ t⊕ t•]] and the left and right morphisms are inclusions.

The dpo rule GS(t) corresponding to a transition t deletes the edges in its
pre-set, preserves the edges in its context and produces the edges in its post-set.
The nodes attached to edges in the pre-set, context and post-set (i.e., the set
X) are preserved. Finally, the nodes corresponding to the places s ∈ �t in the
distinguished set of t are deleted and produced again.

It is now immediate to provide the encoding for the different kinds of Petri
nets into graph grammars of the appropriate approach.
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Inhibitor Reset

P/T nets
dpo spo

GS(t) S(GS(t))

ENS
sts sts

⊑

I(GS(t)) I(GS(t))

CPR nets
stsm sts

⊑
m

I(GS(t)) I(GS(t))

Table 2. Encoding Petri nets as graph grammars.

Definition 17. An enriched Petri net N = 〈S, T r, F, C, D, m〉 of one of the six
types of nets presented in Definitions 12, 13 and 14 is encoded as a knd graph
grammar G(N) = 〈T, Gs, P, π〉 where

– T = TS

– P = Tr

– Gs = GS(m)

Moreover knd and the knd rule π(t) associated to t ∈ P are defined, according
to the type of the net, as shown in Table 2.

Obviously, the encoding also works for contextual nets (see the first column
of Table 1 in the Introduction).

It can be shown that the encoding preserves the firing relation and reacha-
bility, in the sense specified by next theorem.

Theorem 1. Let N be an enriched Petri net of one of the types introduced
in Section 3, let knd be the type of grammar corresponding to the type of
N according to Table 2, and let M be a marking of N . If M [t〉M ′ in N

then GS(M) ⇒knd
t GS(M ′) in the knd graph grammar G(N); vice versa, if

GS(M) ⇒knd
t G′ in the knd graph grammar G(N) then M [t〉M ′′ in N with

GS(M ′′) = G′.

4.2 Examples

In order to provide some more intuition, we next briefly discuss the encoding for
the various classes of Petri nets.

P/T Petri nets. As shown in Table 2, the behaviour of P/T Petri nets is
faithfully captured by standard dpo or spo graph grammars.
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Inhibitor nets. When N is a P/T inhibitor net, G(N) is a dpo graph grammar,
where the effects of the dangling condition are used to encode inhibitor arcs. As
an example, the net in Fig. 6, seen as an inhibitor P/T net, is encoded by the
grammar in the same figure, interpreted as a dpo grammar. Observe that since
place s ∈ �t1, i.e., s inhibits transition t1, the rule associated with t1 deletes and
produces again the node corresponding to s. In this way the presence of tokens
in place s, represented by edges connected to such node, will inhibit the rule
because of the dangling condition.

76540123•s0

1

��

76540123•s1

1

��

t2

1

��
76540123•

s2

t1

1

��
22

22
2

1

����
��
�

76540123 s

76540123s3
76540123• s4

s0 s2 ss4s3

s2s0 s1 s3 s4 s

ss1 s1 s ss1

ss4s0 s3s2

s1 s3 s4 ss0 s2

s0 s4s3s2

t2

t1

T = Gs =

Fig. 6. An enriched Petri net N and the corresponding dpo grammar.

Reset nets. In the case of a P/T reset net N , the encoding G(N) is an spo gram-
mar and the side-effects related to node deletion turn out to capture precisely
the behaviour of reset arcs. As an example the net in Fig. 6, seen as a reset P/T
net, is encoded by the grammar in the same figure, seen as an spo grammar (by
transforming the rules using the function S(.)). The fact that rule t1 deletes and
produces again the node s determines, as side effect, the deletion of all edges
connected to such node, representing tokens in place s.

Contextual nets. For contextual P/T nets, i.e., P/T nets where �t = ∅ for all
t, the rules of the corresponding grammar never delete nodes. Hence, the spo

and the dpo approaches are interchangeable. In particular, ordinary P/T net
transitions t, such that t = �t = ∅, are represented by rules with an interface
containing only nodes (see the rule corresponding to t2 in Fig. 6).

Elementary nets. As shown in Table 2, enss are encoded as stss. As an
example, let us consider again the net N in Fig. 6, which can be interpreted as
an ens interpreting, correspondingly, the grammar on the right as an sts.

Observe that, even though there is a match of the rule t1 in the start graph
Gs, i.e., the left-hand side of the rule is a subgraph of Gs, the rule cannot be
applied, because there is a contact situation. More precisely, referring to Fig. 7,
condition (iv) of Definition 7 (namely, D ∩ R = K) is not satisfied, as the
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intersection between the right-hand side of t1 and the context graph D contains
the edge connected to s4 which is not in K.

If we interpret N as a cpr net and correspondingly the grammar as an stsm,
then the diagram in Fig. 7 is a legal derivation: in fact conditions (i − iii) of
Definition 8 are satisfied, while condition (iv) is not required anymore.

ss4s0 s3s2

s4 ss2s1 s3s0

s0 s4s3s2

s0 ss4s1 s2 s3

s0 s2 ss4s3

s0 s1 s3 s4s2

t1

Fig. 7. A stsm derivation which is not a legal sts one.

5 Concluding remarks and further works

In this paper we discussed the encoding of different Petri net models into Graph
Transformation Systems. Our aim was of a methodological nature, and its ac-
complishments are summarized by the taxonomy proposed in Tables 1 and 2.
Intuitively, the results can be synthesized by the slogan “encode the net once”,
that is, a Petri net is always encoded essentially in the same way, while different
net models correspond to alternative approaches to graph transformation.

A relevant issue, which has been neglected in the present paper, concerns
the study of concurrency in Petri nets and in their graph grammar counterparts.
Admittedly, there is a shortcoming as far as inhibitor nets are considered (already
noted in [16]): If two transitions are inhibited by the same place s, their encodings
as dpo rules cannot be executed in parallel, since both rules delete and produce
again the node corresponding to s. For instance, in the inhibitor net in Fig. 8,

76540123•s1

��

76540123• s2

��

t1

��

76540123

s

t2

��
76540123s′1

76540123 s′2

Fig. 8. An inhibitor net NI : Transitions can fire concurrently. In G(NI) they cannot.
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the two transitions t1 and t2 can fire concurrently. However, in the corresponding
dpo grammar the rules associated to t1 and t2 delete and generate again the
same node s and thus they are forced to be executed sequentially. In general
terms, we would like to see how to perform a technology transfer between the
less-explored models of nets and GTSs, in order to address the issue of concurrent
computations in these yet not fully developed formalisms.
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