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Abstract. Recent ScaLAPACK-style implementations of the Bartels-
Stewart method and the iterative matrix-sign-function-based method
for solving continuous-time Sylvester matrix equations are evaluated
with respect to generality of use, execution time and accuracy of com-
puted results. The test problems include well-conditioned as well as ill-
conditioned Sylvester equations. A method is considered more general if
it can effectively solve a larger set of problems. Ill-conditioning is mea-
sured with respect to the separation of the two matrices in the Sylvester
operator. Experiments carried out on two different distributed memory
machines show that the parallel explicitly blocked Bartels-Stewart algo-
rithm can solve more general problems and delivers far more accuracy
for ill-conditioned problems. It is also up to four times faster for large
enough problems on the most balanced parallel platform (IBM SP), while
the parallel iterative algorithm is almost always the fastest of the two on
the less balanced platform (HPC2N Linux Super Cluster).
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1 Introduction

We consider two different methods for solving the continuous-time Sylvester (SYCT)
equation

AX −XB = C, (1)

where A of size m ×m , B of size n × n and C of size m × n are arbitrary matrices
with real entries. SYCT has a unique solution X of size m × n if and only if A and
B have disjoint spectra, i.e., they have no eigenvalues in common, or equivalently the
separation sep(A, B) �= 0, where sep(A, B) = inf‖X‖F =1 ‖AX −XB‖F .

The Sylvester equation appears naturally in several applications. Examples include
block-diagonalization of a matrix in Schur form and condition estimation of eigenvalue
problems (e.g., see [13, 11, 15]).



In this contribution, we experimentally compare parallel implementations of two
methods for solving SYCT on distributed memory systems. The first is based on
Bartels-Stewart method [1, 15, 7, 8] and is reviewed in Section 2. Several papers, start-
ing with [16], have considered iterative methods for solving SYCT. The second parallel
implementation is an iterative method based on a Newton iteration of the matrix sign
function [3, 4], and is reviewed in Section 3. In Section 4, we display and compare some
computational results of implementations of the two parallel algorithms. A discussion
of the measured execution times on two different parallel distributed memory platforms
is presented in Section 5. Finally, in Section 6, we summarize our findings and outline
ongoing and future work.

2 Explicitly blocked algorithms for solving SYCT

The explicitly blocked method, implemented as the routine PGESYCTD, is based on the
Bartels-Stewart method [1]:

1. Transform A and B to upper (quasi-)triangular Schur form TA and TB, respectively,
using orthogonal similarity transformations:

QT AQ = TA, P T BP = TB.

2. Update the right hand side C of (1) with respect to the transformations done on
A and B:

C̃ = QT CP.

3. Solve the reduced (quasi-)triangular matrix equation:

TAX̃ − X̃TB = C̃.

4. Transform the solution X̃ back to the original coordinate system:

X = QX̃P T .

To carry out Step 1 we use a Hessenberg reduction directly followed by the QR-
algorithm. The updates in Step 2 and the back-transformation in Step 4 are carried out
using general matrix multiply and add (GEMM) operations C ← βC + αop(A)op(B),
where α and β are scalars and op(A) denotes A or its transpose AT [2, 12]. We now
focus on Step 3. If the matrices A and B are in Schur form, we partition the matrices
in SYCT using the blocking factors mb and nb, respectively. This implies that mb is
the row-block size and nb is the column-block size of the matrices C and X (which
overwrites C). By defining Da = �m/mb� and Db = �n/nb�, (1) can be rewritten as

AiiXij −XijBjj = Cij − (

Da∑
k=i+1

AikXkj −
j−1∑
k=1

XikBkj), (2)

where i = 1, 2, . . . , Da and j = 1, 2, . . . , Db. From (2), a serial blocked algorithm can
be formulated, see Figure 1.

Assume that the matrices A, B and C are distributed using 2D block-cyclic mapping
across a Pr × Pc processor grid. For Steps 1, 2 and 4, we use the ScaLAPACK library
routines PDGEHRD, PDLAHQR and PDGEMM [6]. The first two routines are used in Step 1 to
compute the Schur decompositions of A and B (reduction to upper Hessenberg form



for j=1, Db

for i=Da, 1, -1
{Solve the (i, j)th subsystem using a kernel solver}
AiiXij − XijBjj = Cij

for k=1, i − 1
{Update block column j of C}
Ckj = Ckj − AkiXij

end
for k=j + 1, Db

{Update block row i of C}
Cik = Cik + XijBjk

end
end

end

Fig. 1. Block algorithm for solving AX − XB = C, A and B in upper real Schur form.

followed by the parallel QR algorithm [10, 9]). PDGEMM is the parallel implementation of
the level 3 BLAS GEMM operation and is used in Steps 2 and 4 for doing the two-sided
matrix multiply updates.

To carry out Step 3 in parallel, we traverse the matrix C/X along its block diagonals
from South-West to North-East, starting in the South-West corner. To be able to
compute Xij for different values of i and j, we need Aii and Bjj to be owned by the
same process that owns Cij . We also need to have the blocks used in the updates of Cij

in the right place at the right time. This means that in general we have to communicate
for some blocks during the solves and updates. This is done “on demand”: whenever
a processor misses any block that it needs for solving a node subsystem or doing a
GEMM update, it is received from the owner in a single point-to-point communication
[8]. A brief outline of a parallel algorithm PTRSYCTD is presented in Figure 2. The
(quasi-)triangular subsystems AiiXij−XijBjj = Cij in Figure 2 are solved on the grid
nodes using the LAPACK-solver DTRSYL [2].

for k=1, Da + Db − 1
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

if(mynode does not hold Aii and/or Bjj)
Communicate for Aii and/or Bjj

Solve for Xij in AiiXij − XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

if(mynode does not hold block in A needed for updating block column j)
Communicate for requested block in A

Update block column j of C in parallel
if(mynode does not hold block in B needed for updating block row i)

Communicate for requested block in B
Update block row i of C in parallel

endif
end

Fig. 2. Parallel block algorithm for AX − XB = C, A and B in upper real Schur form.

The explicitly blocked method is general since (in theory) it can be used to solve
any instance of SYCT as long as the spectra of A and B are disjoint. Notice that the



algorithm contains an iterative part, the reduction of A and B in upper Hessenberg
form to upper Schur form, which is the most expensive in terms of execution time [7,
8]. For further details we refer to [7, 8, 15].

3 Solving SYCT using Newton iteration for the matrix
sign function

The sign function method can be used to solve SYCT if the spectra of A and −B are
contained in the open left half complex plane, i.e., A and −B are so called Hurwitz- or
c-stable [3].

Let Z be a real p× p matrix with real eigenvalues and let

Z = S

[
J− 0
0 J+

]
S−1 (3)

denote its Jordan decomposition with J− ∈ Ck×k, J+ ∈ C(p−k)×(p−k) containing the
Jordan blocks corresponding to the eigenvalues in the open left and right half planes,
respectively. Then the matrix sign function of Z is defined as

sign(Z) = S

[
−Ik 0
0 Ip−k

]
S−1. (4)

The sign function can be computed via the Newton iteration for the equation
Z2 = I where the starting point is chosen as Z, i.e.,

Z0 = Z,
Zk+1 = (Zk + Z−1

k )/2, k = 0, 1, 2, . . .
(5)

It can be proved [16] that sign(Z) = limk→∞Zk and moreover that

sign

([
A −C
0 B

])
+ Im+n = 2

[
0 X
0 I

]
, (6)

which means that under the given assumptions, SYCT can be solved by applying the
Newton iteration (5) to

Z0 =

[
A −C
0 B

]
. (7)

This iterative process only requires basic numerical linear algebra operations as
matrix-matrix multiplication, inversion and/or solving linear systems of equations.
The method has been parallelized and implemented as the PSLICOT [14, 17] routine
psb04md. The parallel implementation uses the ScaLAPACK routines PDGETRF (LU
factorization), PDGETRS (solving linear systems of equations), PDGETRI (inversion based
on LU factorization), PDTRSM (solution of triangular systems with multiple right-hand
sides) and PDLAPIV (pivoting of a distributed matrix). We expect this iterative method
to be fast and scalable since it consists of computationally well-known and highly par-
allel operations. The obvious drawback of the method is the lower degree of generality,
i.e., the fact that we cannot solve all instances of SYCT due to the restrictions on the
spectra of A and B.

The matrix sign function method can also be applied to other related problems, e.g.,
the stable generalized Lyapunov equation AT XE + ET XA = C, where A, E,X, C ∈



Rn×n and C = CT [3], and it can also be combined with iterative refinement for higher
accuracy. However, this has not been incorporated in psb04md [4]. For further details
we refer to [16, 4, 3, 5].

4 Computational results

In this section, we present and compare measured speed and accuracy results of PGESYCTD
and psb04md using two different parallel platforms. We solve a number of differently
conditioned (regarding the separation of A and B) problems of various sizes using
different processor mesh configurations.

Our target machines are the IBM Scalable POWERparallel (SP) system and the
Super Linux Cluster at High Performance Computing Center North (HPC2N), where
we utilize up to 64 processors of each machine (see Table 4). The test problems are
constructed as follows. Consider the matrix A in the form A = Q(αDA + βMA)QT ,
where DA is (quasi-)diagonal, MA is strictly upper triangular, Q is orthogonal and α
and β are real scalars. We choose MA as a random matrix with uniformly distributed
elements in [-1,1] and prescribe the eigenvalues of A by specifying the elements of
DA. If the matrix B is constructed similarly, we can construct differently conditioned
problems by varying the eigenvalues in DA and DB and choosing appropriate values
of the scaling factors. For example, the factor β is used to control the distance from
normality, β‖MA‖, of the matrix A.

A representative selection of our results for problems with m = n are shown in
Tables 1, 2, and 3. Results for problems with m �= n are not presented here but will
not lead to any different conclusions. We have chosen close to optimal block sizes
for the different parallel algorithms and parallel architectures. The upper parts of
Tables 1 and 2 correspond to well-conditioned problems, and the lower parts represent
moderately to very ill-conditioned problems. We display the performance ratios qT ,
qX and qR, which correspond to the execution time ratio and two accuracy ratios, the
Frobenius norms of the absolute (forward) error ‖X − X̃‖F and the absolute residual
‖R‖F = ‖C − AX̃ + X̃B‖F of the two implementations, where X and X̃ denote the
exact and computed solutions, respectively. If a ratio is larger than 1.0, psb04md shows
better results, otherwise PGESYCTD is better.

When the algorithm in psb04md converged, it did so in less than 20 iterations. We
used an upper threshold of 100 iterations. To signal that psb04md does not converge,
we use the notation dnc.

Recall that SYCT has a unique solution if and only if the A and B have disjoint
spectra, or equivalently sep(A, B) �= 0, where

sep(A,B) = inf‖X‖F =1‖AX −XB‖F = σmin(ZSYCT) = ‖Z−1
SYCT‖−1

2 , (8)

and ZSYCT is the mn × mn matrix representation of the Sylvester operator defined
by ZSYCT = In ⊗ A + BT ⊗ Im. Moreover, sep(A, B) is a condition number for the
SYCT equation, but it is expensive to compute in practice (O(m3n3) operations).
However, we can compute a lower bound of sep(A, B)−1 = ‖Z−1

SY CT ‖2 in parallel, which
is based on the same technique as described in [13, 11]. Since a tiny value of sep(A,B)
signals ill-conditioning for SYCT, the sep−1-estimate signals ill-conditioning when it
gets large. We expect the explicitly blocked method to handle ill-conditioned problems
better than the fully iterative, since it relies on orthogonal transformations and it has a
direct (backward stable) solution method for the reduced triangular problem. To signal



Table 1. Speed and accuracy results on IBM SP system for the routines PGESYCTD and psb04md solving
the general equation AX − XB = C for well- and ill-conditioned problems. All problems use the
blocking factors mb = nb = 64 . In the upper part of the table, A and −B have the eigenvalues
λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0. For the lower part A and −B have the eigenvalues:
a) λAi = −i, λBi = −1000.0 · i−1, α = β = 1.0, b) λAi = −i, λBi = −2000.0 · i−1, α = β = 1.0 , c)
A and −B have the eigenvalues λi = −i, αA = αB = βA = 1.0, βB = 50.0.

PGESYCTD psb04md Performance ratios

m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR

512 3.7E-3 1 × 1 60.0 4.1E-12 1.2E-9 43.8 1.1E-12 2.4E-10 1.37 3.73 0.50
512 3.8E-3 2 × 1 49.2 4.1E-12 1.2E-9 37.1 2.1E-12 9.1E-10 1.33 1.95 1.32
512 3.8E-3 2 × 2 40.4 4.3E-12 1.2E-9 33.0 1.8E-12 8.0E-10 1.22 2.39 1.50
512 3.8E-3 4 × 2 33.6 3.8E-12 1.1E-9 33.1 1.9E-12 8.0E-10 1.02 2.00 1.38
1024 2.1E-3 1 × 1 534 1.2E-11 6.6E-9 529 1.0E-10 3.3E-8 1.01 0.12 0.20
1024 2.1E-3 2 × 1 287 1.2E-11 6.5E-9 253 8.2E-12 6.8E-9 1.13 1.38 0.96
1024 2.1E-3 2 × 2 177 1.1E-11 5.4E-9 169 2.2E-11 8.9E-9 1.05 0.50 0.61
1024 2.1E-3 4 × 2 138 1.1E-11 6.6E-9 170 8.1E-12 6.8E-9 0.81 1.36 0.97
1024 2.1E-3 4 × 4 106 1.3E-11 6.7E-9 142 6.6E-12 5.5E-9 0.75 1.97 1.22
2048 1.1E-3 2 × 2 1625 3.8E-11 3.5E-8 6141 2.9E-11 4.9E-8 0.26 1.31 0.71
2048 1.1E-3 4 × 2 835 3.5E-11 3.7E-8 1031 3.5E-11 4.8E-8 0.81 1.00 0.08
2048 1.1E-3 4 × 4 446 3.3E-11 3.7E-8 658 2.1E-11 3.6E-8 0.68 1.57 1.03
2048 1.1E-3 8 × 4 359 4.0E-11 3.7E-8 670 2.5E-11 3.9E-8 0.54 1.60 0.95
2048 1.1E-3 8 × 8 302 3.5E-11 3.7E-8 588 2.5E-11 3.9E-8 0.51 1.40 0.95
3072 7.6E-4 4 × 2 3355 6.3E-11 9.7E-8 11504 5.7E-11 1.5E-7 0.29 1.11 0.65
3072 7.6E-4 4 × 4 1677 6.3E-11 1.0E-7 2473 4.9E-11 1.3E-7 0.68 1.29 0.77
3072 7.6E-4 8 × 4 1056 6.4E-11 1.0E-7 2078 1.3E-10 2.0E-7 0.51 0.49 0.50
3072 7.6E-4 8 × 8 705 6.6E-11 1.0E-7 1556 6.3E-10 6.8E-7 0.45 0.10 0.15
4096 5.9E-4 4 × 4 3788 9.5E-11 2.0E-7 11602 8.3E-11 2.7E-7 0.33 1.14 0.74
4096 5.9E-4 8 × 4 2330 9.6E-11 2.1E-7 5036 7.8E-11 2.5E-7 0.46 1.23 0.84
4096 5.9E-4 8 × 8 1365 1.0E-10 2.1E-7 3102 8.8E-11 2.7E-7 0.44 0.11 0.78
512a 0.17 1 × 1 61.7 6.1E-11 7.2E-10 33.8 1.1E-9 2.6E-7 1.8 5.5E-2 2.8E-3
512a 0.16 2 × 1 47.0 8.5E-11 6.9E-10 29.7 9.4E-10 2.2E-7 1.6 3.1E-3 3.1E-3
512a 0.15 2 × 2 36.1 8.8E-11 6.9E-10 26.8 1.2E-9 2.8E-7 1.4 7.3E-2 2.5E-3
512a 0.16 4 × 2 30.6 8.3E-11 6.7E-10 25.1 1.1E-9 2.8E-7 1.2 7.5E-2 2.4E-3

1024b 2.8 1 × 1 635 7.6E-9 4.0E-9 575 4.9E-5 2.9E-2 1.1 1.6E-4 1.4E-7

1024b 2.8 2 × 1 326 4.1E-9 3.9E-9 206 3.1E-5 1.8E-2 1.6 1.3E-4 2.2E-7

1024b 2.7 2 × 2 188 8.8E-9 3.8E-9 156 6.0E-5 3.3E-2 1.2 1.5E-4 1.2E-7

1024b 2.7 4 × 2 125 1.1E-8 3.8E-9 131 3.6E-5 2.1E-2 0.95 3.1E-4 1.8E-7

1024b 3.4 4 × 4 91 9.3E-9 3.8E-9 118 4.4E-5 2.7E-2 0.77 2.1E-4 1.4E-7
2048c mem 2 × 2 1797 8.3E-5 4.1E-8 43708 dnc dnc 0.0 0.0 0.0
2048c 4.8E4 4 × 2 892 5.8E-5 4.1E-8 1158 1.2 1343 0.77 4.8E-5 3.1E-11
2048c 5.2E4 4 × 4 446 7.2E-5 4.1E-8 708 0.86 982 0.63 8.4E-5 4.2E-11
2048c 5.4E4 8 × 4 348 5.1E-5 4.1E-8 738 0.92 1034 0.47 5.5E-5 4.0E-11
2048c 4.8E4 8 × 8 281 4.2E-5 4.1E-8 733 0.88 1003 0.38 4.8E-5 4.1E-11
3072c mem 4 × 2 3148 1.4E-5 1.1E-7 11358 2.9 5054 0.28 4.8E-6 2.2E-11
3072c 3.9E3 4 × 4 1635 1.1E-5 1.1E-7 2936 1.8 3198 0.51 6.1E-6 3.4E-11
3072c 4.7E3 8 × 4 878 7.3E-6 1.1E-7 2051 1.9 3305 0.43 3.8E-6 3.3E-11
3072c 4.8E3 8 × 8 769 8.6E-6 1.1E-7 1785 1.7 2926 0.43 5.1E-6 3.8E-11
4096c mem 4 × 4 3805 1.9E-4 2.1E-7 15435 85.9 180879 0.25 2.2E-6 1.2E-12
4096c 5.5E4 8 × 4 2066 3.3E-4 2.1E-7 41439 dnc dnc 0.0 0.0 0.0
4096c 6.5E4 8 × 8 1327 1.9E-4 2.1E-7 22487 dnc dnc 0.0 0.0 0.0

when there is not enough memory for both solving the problem and doing condition
estimation, we use the notation mem.

5 Discussion of computational results

The experimental results from the last section reveal the following: For triangular prob-
lems (QA = QB = I), see Table 3 which displays results from the Linux Cluster, the
parallel Bartels-Stewart based method is very much faster than the fully iterative since
it always computes the solution directly using a fixed number of arithmetic operations.



Table 2. Speed and accuracy results on Super Linux Cluster seth for the routines PGESYCTD and
psb04md solving the general equation AX − XB = C for well- and ill-conditioned problems. All
problems use the blocking factors mb = nb = 32 . In the upper part of the table, A and −B have the
eigenvalues λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0. For the lower part A and −B have the
eigenvalues: a) λAi = −i, λBi = −1000.0 · i−1, α = β = 1.0, b) λAi = −i, λBi = −2000.0 · i−1, α =
β = 1.0 , c) A and −B have the eigenvalues λi = −i, αA = αB = βA = 1.0, βB = 50.0.

PGESYCTD psb04md Performance ratios

m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR

1024 2.5E-3 1 × 1 277 6.4E-12 3.5E-9 101 2.9E-12 2.4E-9 2.74 2.21 1.46
1024 2.4E-3 2 × 2 136 6.6E-12 3.5E-9 44 2.8E-12 2.3E-9 3.09 2.36 1.52
1024 2.4E-3 3 × 3 54 6.2E-12 3.5E-9 27 2.8E-12 2.3E-9 2.00 2.21 1.52
1024 2.3E-3 4 × 4 50 6.4E-12 3.6E-9 21 2.8E-12 2.3E-9 2.38 2.29 1.57
1024 2.3E-3 5 × 5 41 7.1E-12 3.6E-9 18 2.8E-12 2.3E-9 2.28 2.54 1.57
1024 2.3E-3 6 × 6 30 6.2E-12 3.6E-9 16 2.8E-12 2.3E-9 1.88 2.21 1.57
1024 2.3E-3 7 × 7 29 7.0E-12 3.6E-9 14 2.8E-9 2.3E-9 2.07 2.50 1.57
1024 2.5E-3 8 × 8 27 5.9E-12 3.4E-9 18 2.9E-12 2.4E-9 1.50 2.03 1.17
2048 1.3E-3 1 × 1 2053 2.1E-11 1.9E-8 1166 1.0E-11 1.8E-8 1.76 2.10 1.06
2048 1.2E-3 2 × 2 763 1.8E-11 1.9E-8 269 1.0E-11 1.7E-8 2.84 1.80 1.12
2048 1.2E-3 3 × 3 505 1.9E-11 2.0E-8 211 1.0E-11 1.7E-8 2.50 1.90 1.18
2048 1.2E-3 4 × 4 331 1.9E-11 1.9E-8 120 1.0E-11 1.7E-8 2.76 1.90 1.12
2048 1.2E-3 5 × 5 181 1.9E-11 2.0E-8 87 1.0E-11 1.7E-8 2.08 1.90 1.18
2048 1.2E-3 6 × 6 143 1.9E-11 2.0E-8 71 1.0E-11 1.7E-8 2.01 1.90 1.18
2048 1.2E-3 7 × 7 128 1.9E-11 2.0E-8 63 1.0E-11 1.7E-8 2.03 1.90 1.18
2048 1.3E-3 8 × 8 140 2.0E-11 2.0E-8 54 1.0E-11 1.7E-8 2.59 2.00 1.18
4096 7.0E-4 2 × 2 6514 5.2E-11 1.1E-7 3174 3.8E-11 1.3E-7 2.05 1.37 0.85
4096 7.0E-4 3 × 3 3338 5.0E-11 1.1E-7 1131 3.8E-11 1.3E-7 2.95 1.32 0.85
4096 7.0E-4 4 × 4 2912 5.0E-11 1.1E-7 909 3.8E-11 1.3E-7 3.20 1.32 0.85
4096 7.0E-4 5 × 5 1466 5.1E-11 1.1E-7 526 3.8E-11 1.3E-7 2.79 1.34 0.85
4096 7.0E-4 6 × 6 1027 5.1E-11 1.1E-7 398 3.8E-11 1.3E-7 2.58 1.34 0.85
4096 7.0E-4 7 × 7 804 5.8E-11 1.1E-7 342 3.8E-11 1.3E-7 2.35 1.53 0.85
4096 6.6E-4 8 × 8 890 5.4E-11 1.1E-7 295 3.8E-11 1.3E-7 3.02 1.42 0.85
8192 mem 4 × 4 15543 1.6E-10 7.5E-7 7425 1.5E-10 9.8E-7 2.09 1.07 0.77
8192 3.5E-4 5 × 5 10435 1.5E-10 7.2E-7 3817 1.5E-10 9.9E-7 2.73 1.00 0.73
8192 3.5E-4 6 × 6 7987 1.5E-10 6.4E-7 2740 1.5E-10 9.9E-7 2.91 1.00 0.65
8192 3.5E-4 7 × 7 6224 1.7E-10 6.5E-7 2197 1.5E-10 9.8E-7 2.83 1.13 0.66
8192 3.6E-4 8 × 8 5313 1.7E-10 6.8E-7 2247 1.5E-10 9.9E-7 2.36 1.13 0.69
1024a 9.2 1 × 1 274 4.3E-9 2.2E-9 73 2.1E-5 1.2E-2 3.75 2.0E-4 1.8E-7
1024a 8.2 2 × 2 121 6.3E-9 2.1E-9 36 1.2E-5 7.2E-3 3.36 5.3E-4 2.9E-7
1024a 5.9 3 × 3 52 4.7E-9 2.1E-9 22 2.1E-5 1.2E-2 2.36 2.2E-4 1.8E-7
1024a 7.2 4 × 4 51 3.3E-9 2.1E-9 18 3.1E-5 1.8E-2 2.83 1.1E-4 1.2E-7
1024a 4.9 5 × 5 35 5.2E-9 2.1E-9 15 3.5E-5 2.1E-2 2.33 1.5E-4 1.0E-7
1024a 6.4 6 × 6 28 5.5E-9 2.1E-9 12 1.9E-5 1.1E-2 2.33 2.9E-4 1.2E-7
1024a 9.0 7 × 7 28 6.3E-9 2.1E-9 12 1.9E-5 1.2E-2 2.33 3.3E-4 1.8E-7
1024a 4.3 8 × 8 26 4.2E-9 2.1E-9 10 1.6E-5 9.6E-3 2.60 2.6E-4 2.2E-7

2048b 5.1E4 1 × 1 2223 2.2E-5 2.3E-8 1211 0.34 389 1.84 6.5E-4 5.9E-11

2048b 4.9E4 2 × 2 859 1.7E-5 2.3E-8 284 0.36 407 3.02 4.7E-4 5.7E-11

2048b 6.4E4 3 × 3 496 3.4E-5 2.3E-8 178 0.41 474 2.79 8.3E-5 4.9E-11

2048b 5.1E4 4 × 4 356 6.3E-5 3.1E-8 132 0.36 421 2.70 1.8E-4 7.4E-11

2048b 6.6E4 5 × 5 189 4.4E-5 2.3E-8 95 0.36 428 1.99 1.2E-4 5.4E-11

2048b 6.7E4 6 × 6 152 8.5E-5 2.3E-8 77 0.34 422 1.97 2.5E-4 5.5E-11

2048b 6.7E4 7 × 7 127 3.5E-5 2.3E-8 68 0.36 412 1.87 9.7E-5 5.6E-11

2048b 6.6E4 8 × 8 145 3.1E-5 2.3E-8 58 0.35 394 2.50 8.9E-5 5.8E-11

4096b 1.3E6 2 × 2 6470 8.1E-3 1.2E-7 24008 dnc dnc 0.27 0.0 0.0

4096b 6.6E4 3 × 3 3611 2.2E-4 1.2E-7 1470 63.3 1.5E5 2.46 3.5E-6 8.0E-13

4096b 5.6E4 4 × 4 2271 1.9E-4 5.1E-6 1202 57.9 1.4E5 1.89 3.3E-6 3.6E-11

4096b 5.8E4 5 × 5 1628 2.8E-4 1.2E-7 4201 dnc dnc 0.39 0.0 0.0

4096b 6.4E4 6 × 6 1134 2.3E-4 1.2E-7 476 62.4 1.5E5 2.38 3.7E-6 8.0E-13

4096b 8.4E4 7 × 7 839 2.2E-4 1.2E-5 409 44.9 1.0E5 2.05 4.9E-6 1.2E-10

4096b 6.7E4 8 × 8 916 1.5E-4 1.2E-7 337 51.5 1.2E5 2.72 2.9E-6 1.0E-12

8192b mem 4 × 4 16538 5.6E-4 6.4E-7 7652 1.22 5.7E3 2.16 4.6E-4 1.1E-10

8192b 2.5E4 5 × 5 10532 7.5E-4 6.6E-7 4037 1.22 5.7E3 2.61 6.1E-4 1.2E-10

8192b 2.5E4 6 × 6 8388 2.7E-4 6.3E-7 3146 0.87 4.1E3 2.67 3.1E-4 1.5E-10

8192b 4.8E4 7 × 7 5623 3.5E-4 6.3E-7 2387 0.37 1.8E3 2.36 9.5E-4 3.5E-10

8192b 3.4E4 8 × 8 5365 8.8E-4 6.0E-7 2240 0.67 2.4E3 2.40 1.3E-4 2.5E-10



Table 3. Speed and accuracy results on Super Linux Cluster seth for the routines PGESYCTD and
psb04md solving the triangular (QA = QB = I) equation AX − XB = C, A and B in real Schur
form for well-conditioned problems. All problems use the blocking factors mb = nb = 128. A and
−B have the eigenvalues λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0.

PGESYCTD psb04md Performance ratios

m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR

1024 2.5E-3 1 × 1 2.6 3.2E-13 3.8E-10 94.3 3.8E-13 4.1E-10 2.7E-2 0.84 0.93
1024 2.5E-3 2 × 2 1.7 3.9E-13 5.3E-10 45.7 4.7E-13 5.5E-10 3.7E-2 0.83 0.96
1024 2.5E-3 3 × 3 1.6 3.9E-13 4.9E-10 30.3 4.7E-13 5.1E-10 5.2E-2 0.83 0.96
1024 2.5E-3 4 × 4 1.5 3.8E-13 5.2E-10 23.5 4.7E-13 5.5E-10 6.4E-2 0.81 0.95
1024 2.5E-3 5 × 5 1.4 4.0E-13 4.7E-10 22.9 4.8E-13 5.0E-10 6.1E-2 0.83 0.94
1024 2.5E-3 6 × 6 1.4 4.1E-13 4.7E-10 22.5 4.9E-13 5.0E-10 6.2E-2 0.84 0.94
1024 2.5E-3 7 × 7 1.4 4.4E-13 5.1E-10 21.1 5.0E-13 5.3E-10 6.6E-2 0.88 0.96
1024 1.1E − 3 8 × 8 1.0 3.9E-13 5.5E-10 17.0 4.5E-13 5.8E-10 5.9E-2 0.87 0.95
2048 1.3E-3 1 × 1 17.8 1.2E-12 3.1E-9 1116 1.1E-12 2.3E-9 1.6E-2 1.01 1.35
2048 1.3E-3 2 × 2 9.5 1.6E-12 4.2E-9 287 1.5E-12 3.7E-9 3.3E-2 1.07 1.14
2048 1.3E-3 3 × 3 7.9 1.6E-12 3.9E-9 166 1.5E-12 3.4E-9 4.8E-2 1.07 1.15
2048 1.3E-3 4 × 4 6.7 1.5E-12 4.0E-9 125 1.5E-12 3.5E-9 5.4E-2 1.00 1.14
2048 1.3E-3 5 × 5 5.9 1.6E-12 3.9E-9 114 1.6E-12 3.4E-9 5.2E-2 1.00 1.15
2048 1.3E-3 6 × 6 5.2 1.5E-12 3.8E-9 87.4 1.5E-12 3.2E-9 5.9E-2 1.00 1.19
2048 1.3E-3 7 × 7 5.0 1.6E-12 3.8E-9 83.8 1.6E-12 3.2E-9 6.0E-2 1.00 1.19
2048 1.3E-3 8 × 8 4.4 1.5E-12 4.1E-9 64.8 1.5E-12 3.6E-9 6.7E-2 1.00 1.14
4096 7.0E-4 1 × 1 129 4.9E-12 2.5E-8 8812 3.0E-12 1.3E-8 1.5E-2 1.63 1.92
4096 6.9E-4 2 × 2 63.4 6.1E-12 3.3E-8 2687 5.1E-12 2.6E-8 2.3E-2 1.20 1.27
4096 6.9E-4 3 × 3 45.7 6.1E-12 3.2E-8 1018 5.4E-12 2.4E-8 4.5E-2 1.13 1.33
4096 6.9E-4 4 × 4 37.1 6.2E-12 3.2E-8 701 5.3E-12 2.4E-8 5.3E-2 1.17 1.33
4096 6.9E-4 5 × 5 29.3 6.3E-12 3.1E-8 554 5.5E-12 2.3E-8 5.3E-2 1.15 1.35
4096 6.9E-4 6 × 6 25.3 6.3E-12 3.0E-8 439 5.6E-12 2.3E-8 5.8E-2 1.13 1.30
4096 6.9E-4 7 × 7 25.6 6.2E-12 3.0E-8 385 5.6E-12 2.2E-8 6.6E-2 1.10 1.36
4096 6.9E-4 8 × 8 22.3 6.2E-12 3.0E-8 326 5.5E-12 2.4E-8 6.8E-2 1.13 1.25
8192 3.5E-4 4 × 4 235 2.5E-11 2.5E-7 6003 2.0E-11 1.8E-7 3.9E-2 1.25 1.39
8192 3.5E-4 5 × 5 167 2.5E-11 2.5E-7 dnc dnc dnc 0.0 0.0 0.0
8192 3.5E-4 6 × 6 139 2.6E-11 3.5E-7 2202 2.1E-11 1.6E-7 6.3E-2 1.23 2.19
8192 3.5E-4 7 × 7 146 2.5E-11 2.5E-7 2045 2.1E-11 1.7E-7 7.1E-2 1.19 1.47
8192 3.5E-4 8 × 8 128 2.6E-11 2.5E-7 dnc dnc dnc 0.0 0.0 0.0

For general problems (QA �= I,QB �= I) the results differ depending on the target
machine. For the IBM SP system (see Table 1), PGESYCTD is able to compete with the
fully iterative method regarding both speed, accuracy and residual errors, for both well-
and ill-conditioned problems. For example, PGESYCTD uses only 33% (well-conditioned
case) and 25% (ill-conditioned case) of the execution time of psb04md for m = n =
4096, Pr = 4, Pc = 4. For the ill-conditioned problems, the difference in accuracy on
the IBM SP system is remarkable: as expected, the explicitly blocked method gives far
more accuracy than the fully iterative, which sometimes did not even converge. For the
Linux-Cluster (see Table 2), psb04md is about two or three times faster than PGESYCTD

for both types of problems. This difference in speed can be explained by the different
characteristics of the machines, see Table 4. For uniprocessor runs psb04md is faster on
both machines, but when we go in parallel the superior memory and network bandwidth
of the SP system makes it possible for PGESYCTD to scale much better than psb04md. On
the less balanced Super Linux Cluster the heavy communication in PGESYCTD becomes
a bottleneck.

For the ill-conditioned problems PGESYCTD gives the best accuracy, both regarding
the forward error ‖X − X̃‖F and the residual error ‖R‖F up to magnitudes 6 and 12,
respectively. For the well-conditioned problems, the routines in general have forward
and residual errors of the same order, even if psb04md shows slightly better forward
error (up to 63% for the largest problems on the Linux Cluster (m = n = 4096, 8192)),
and PGESYCTD shows slightly better residual error (up to 35% for the largest problems



Table 4. Hardware characteristics for Super Linux Cluster and IBM SP System. The parameter ta

denotes the time for performing an arithmetic operation, ts denotes the experimentally measured
startup time for message passing, tn denotes the time to transfer one byte over a single link in the
network and tm denotes the peak time to transfer one byte through the memory of a node. The
SP system has 3 times better flop/network bandwidth ratio and over 12 times better flop/memory
bandwidth ratio than the Super Linux Cluster.

Hardware Super Linux Cluster IBM SP System Parameter Super Linux Cluster IBM SP System

CPU 120 × 2 Athlon MP2k+ 64 thin P2SC ta 3.0 × 10−10 sec. 2.1 × 10−9 sec.

& 1.667Ghz nodes, 120 MHz nodes, ts 3.7 × 10−6 sec. 4.0 × 10−5 sec.
Memory 1-4 Gb/node, 128 Mb/node, tn 3.0 × 10−9 sec. 6.7 × 10−9 sec.

peak 800 Gflops/sec. peak 33.6 Gflops/sec. tm 9.6 × 10−10 sec. 5.6 × 10−10 sec.

Network Wolfkit3 SCI h s i, Multistage network, ta/ts 8.1 × 10−5 5.3 × 10−5

3-dim. torus, peak 150 Mb/sec. ta/tn 0.10 0.31
peak 667 Mb/sec. ta/tm 0.31 3.8

on the Linux Cluster). We remark that the column sep−1 in Tables 1–3 are lower
bounds on the exact values.

6 Summary and future work

We have presented a comparison of parallel ScaLAPACK-style implementations of two
different methods for solving the continuous-time Sylvester equation (1), the Bartels-
Stewart method and the iterative matrix-sign-function-based method. The comparison
has dealt with generality, speed and accuracy.

Experiments carried out on two different distributed memory machines show that
the parallel explicitly blocked Bartels-Stewart algorithm can solve more general prob-
lems and delivers far more accuracy for ill-conditioned problems. A method that im-
poses more restrictions on the spectra on A and B in AX − XB = C is considered
less general. Ill-conditioning is measured with respect to the separation of A and B,
sep(A, B), as defined in equation (8). We remark that sep(A, B) can be much smaller
than the minimum distance between the eigenvalues of A and B. This means that we
can have an ill-conditioned problem even if the spectra of A and B are well-separated,
which for some examples could favour the iterative matrix-sign-function-based method.
The Bartels-Stewart method is also up to four times faster for large enough problems
on the most balanced parallel platform (IBM SP), while the parallel iterative algorithm
is almost always the fastest of the two on the less balanced platform (HPC2N Linux
Super Cluster).

Ongoing work includes implementing general Bartels–Stewart solvers for related
matrix equations, e.g., the continuous-time Lyapunov equation AX + XAT = C,
C = CT and the discrete-time Sylvester equation AXBT − X = C. Our objective
is to construct a software package SCASY of ScaLAPACK-style algorithms for the
most common matrix equations, including generalized forms of the Sylvester/Lyapunov
equations.
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